
Luciano Ramalho

2nd Edition

Covers Python 3.10

Fluent
Python
Clear, Concise, and
Effective Programming

Luciano Ramalho

Fluent Python
Clear, Concise, and

Effective Programming

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05635-5

[LSI]

Fluent Python
by Luciano Ramalho

Copyright © 2022 Luciano Ramalho. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn
Development Editor: Jeff Bleiel
Production Editor: Daniel Elfanbaum
Copyeditor: Sonia Saruba
Proofreader: Kim Cofer

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

April 2022: Second Edition

Revision History for the Second Edition
2022-03-31: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492056355 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Fluent Python, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492056355

Para Marta, com todo o meu amor.

Table of Contents

Preface. xix

Part I. Data Structures

1. The Python Data Model. 3
What’s New in This Chapter 4
A Pythonic Card Deck 5
How Special Methods Are Used 8

Emulating Numeric Types 9
String Representation 12
Boolean Value of a Custom Type 13
Collection API 14

Overview of Special Methods 15
Why len Is Not a Method 17
Chapter Summary 18
Further Reading 18

2. An Array of Sequences. 21
What’s New in This Chapter 22
Overview of Built-In Sequences 22
List Comprehensions and Generator Expressions 25

List Comprehensions and Readability 25
Listcomps Versus map and filter 27
Cartesian Products 27
Generator Expressions 29

Tuples Are Not Just Immutable Lists 30
Tuples as Records 30

v

Tuples as Immutable Lists 32
Comparing Tuple and List Methods 34

Unpacking Sequences and Iterables 35
Using * to Grab Excess Items 36
Unpacking with * in Function Calls and Sequence Literals 37
Nested Unpacking 37

Pattern Matching with Sequences 38
Pattern Matching Sequences in an Interpreter 43

Slicing 47
Why Slices and Ranges Exclude the Last Item 47
Slice Objects 48
Multidimensional Slicing and Ellipsis 49
Assigning to Slices 50

Using + and * with Sequences 50
Building Lists of Lists 51
Augmented Assignment with Sequences 53
A += Assignment Puzzler 54

list.sort Versus the sorted Built-In 56
When a List Is Not the Answer 59

Arrays 59
Memory Views 62
NumPy 64
Deques and Other Queues 67

Chapter Summary 70
Further Reading 71

3. Dictionaries and Sets. 77
What’s New in This Chapter 78
Modern dict Syntax 78

dict Comprehensions 79
Unpacking Mappings 80
Merging Mappings with | 80

Pattern Matching with Mappings 81
Standard API of Mapping Types 83

What Is Hashable 84
Overview of Common Mapping Methods 85
Inserting or Updating Mutable Values 87

Automatic Handling of Missing Keys 90
defaultdict: Another Take on Missing Keys 90
The __missing__ Method 91
Inconsistent Usage of __missing__ in the Standard Library 94

Variations of dict 95

vi | Table of Contents

collections.OrderedDict 95
collections.ChainMap 95
collections.Counter 96
shelve.Shelf 97
Subclassing UserDict Instead of dict 97

Immutable Mappings 99
Dictionary Views 101
Practical Consequences of How dict Works 102
Set Theory 103

Set Literals 105
Set Comprehensions 106

Practical Consequences of How Sets Work 107
Set Operations 107

Set Operations on dict Views 110
Chapter Summary 112
Further Reading 113

4. Unicode Text Versus Bytes. 117
What’s New in This Chapter 118
Character Issues 118
Byte Essentials 120
Basic Encoders/Decoders 123
Understanding Encode/Decode Problems 125

Coping with UnicodeEncodeError 125
Coping with UnicodeDecodeError 126
SyntaxError When Loading Modules with Unexpected Encoding 128
How to Discover the Encoding of a Byte Sequence 128
BOM: A Useful Gremlin 129

Handling Text Files 131
Beware of Encoding Defaults 134

Normalizing Unicode for Reliable Comparisons 140
Case Folding 142
Utility Functions for Normalized Text Matching 143
Extreme “Normalization”: Taking Out Diacritics 144

Sorting Unicode Text 148
Sorting with the Unicode Collation Algorithm 150

The Unicode Database 150
Finding Characters by Name 151
Numeric Meaning of Characters 153

Dual-Mode str and bytes APIs 155
str Versus bytes in Regular Expressions 155
str Versus bytes in os Functions 156

Table of Contents | vii

Chapter Summary 157
Further Reading 158

5. Data Class Builders. 163
What’s New in This Chapter 164
Overview of Data Class Builders 164

Main Features 167
Classic Named Tuples 169
Typed Named Tuples 172
Type Hints 101 173

No Runtime Effect 173
Variable Annotation Syntax 174
The Meaning of Variable Annotations 175

More About @dataclass 179
Field Options 180
Post-init Processing 183
Typed Class Attributes 185
Initialization Variables That Are Not Fields 186
@dataclass Example: Dublin Core Resource Record 187

Data Class as a Code Smell 190
Data Class as Scaffolding 191
Data Class as Intermediate Representation 191

Pattern Matching Class Instances 192
Simple Class Patterns 192
Keyword Class Patterns 193
Positional Class Patterns 194

Chapter Summary 195
Further Reading 196

6. Object References, Mutability, and Recycling. 201
What’s New in This Chapter 202
Variables Are Not Boxes 202
Identity, Equality, and Aliases 204

Choosing Between == and is 206
The Relative Immutability of Tuples 207

Copies Are Shallow by Default 208
Deep and Shallow Copies of Arbitrary Objects 211

Function Parameters as References 213
Mutable Types as Parameter Defaults: Bad Idea 214
Defensive Programming with Mutable Parameters 216

del and Garbage Collection 219
Tricks Python Plays with Immutables 221

viii | Table of Contents

Chapter Summary 223
Further Reading 224

Part II. Functions as Objects

7. Functions as First-Class Objects. 231
What’s New in This Chapter 232
Treating a Function Like an Object 232
Higher-Order Functions 234

Modern Replacements for map, filter, and reduce 235
Anonymous Functions 236
The Nine Flavors of Callable Objects 237
User-Defined Callable Types 239
From Positional to Keyword-Only Parameters 240

Positional-Only Parameters 242
Packages for Functional Programming 243

The operator Module 243
Freezing Arguments with functools.partial 247

Chapter Summary 249
Further Reading 250

8. Type Hints in Functions. 253
What’s New in This Chapter 254
About Gradual Typing 254
Gradual Typing in Practice 255

Starting with Mypy 256
Making Mypy More Strict 257
A Default Parameter Value 258
Using None as a Default 260

Types Are Defined by Supported Operations 260
Types Usable in Annotations 266

The Any Type 266
Simple Types and Classes 269
Optional and Union Types 270
Generic Collections 271
Tuple Types 274
Generic Mappings 276
Abstract Base Classes 278
Iterable 280
Parameterized Generics and TypeVar 282
Static Protocols 286

Table of Contents | ix

Callable 291
NoReturn 294

Annotating Positional Only and Variadic Parameters 295
Imperfect Typing and Strong Testing 296
Chapter Summary 297
Further Reading 298

9. Decorators and Closures. 303
What’s New in This Chapter 304
Decorators 101 304
When Python Executes Decorators 306
Registration Decorators 308
Variable Scope Rules 308
Closures 311
The nonlocal Declaration 315

Variable Lookup Logic 316
Implementing a Simple Decorator 317

How It Works 318
Decorators in the Standard Library 320

Memoization with functools.cache 320
Using lru_cache 323
Single Dispatch Generic Functions 324

Parameterized Decorators 329
A Parameterized Registration Decorator 329
The Parameterized Clock Decorator 332
A Class-Based Clock Decorator 335

Chapter Summary 336
Further Reading 336

10. Design Patterns with First-Class Functions. 341
What’s New in This Chapter 342
Case Study: Refactoring Strategy 342

Classic Strategy 342
Function-Oriented Strategy 347
Choosing the Best Strategy: Simple Approach 350
Finding Strategies in a Module 351

Decorator-Enhanced Strategy Pattern 353
The Command Pattern 355
Chapter Summary 357
Further Reading 358

x | Table of Contents

Part III. Classes and Protocols

11. A Pythonic Object. 363
What’s New in This Chapter 364
Object Representations 364
Vector Class Redux 365
An Alternative Constructor 368
classmethod Versus staticmethod 369
Formatted Displays 370
A Hashable Vector2d 374
Supporting Positional Pattern Matching 377
Complete Listing of Vector2d, Version 3 378
Private and “Protected” Attributes in Python 382
Saving Memory with __slots__ 384

Simple Measure of __slot__ Savings 387
Summarizing the Issues with __slots__ 388

Overriding Class Attributes 389
Chapter Summary 391
Further Reading 392

12. Special Methods for Sequences. 397
What’s New in This Chapter 398
Vector: A User-Defined Sequence Type 398
Vector Take #1: Vector2d Compatible 399
Protocols and Duck Typing 402
Vector Take #2: A Sliceable Sequence 403

How Slicing Works 404
A Slice-Aware __getitem__ 406

Vector Take #3: Dynamic Attribute Access 407
Vector Take #4: Hashing and a Faster == 411
Vector Take #5: Formatting 418
Chapter Summary 425
Further Reading 426

13. Interfaces, Protocols, and ABCs. 431
The Typing Map 432
What’s New in This Chapter 433
Two Kinds of Protocols 434
Programming Ducks 435

Python Digs Sequences 436
Monkey Patching: Implementing a Protocol at Runtime 438
Defensive Programming and “Fail Fast” 440

Table of Contents | xi

Goose Typing 442
Subclassing an ABC 447
ABCs in the Standard Library 449
Defining and Using an ABC 451
ABC Syntax Details 457
Subclassing an ABC 458
A Virtual Subclass of an ABC 460
Usage of register in Practice 463
Structural Typing with ABCs 464

Static Protocols 466
The Typed double Function 466
Runtime Checkable Static Protocols 468
Limitations of Runtime Protocol Checks 471
Supporting a Static Protocol 472
Designing a Static Protocol 474
Best Practices for Protocol Design 476
Extending a Protocol 477
The numbers ABCs and Numeric Protocols 478

Chapter Summary 481
Further Reading 482

14. Inheritance: For Better or for Worse. 487
What’s New in This Chapter 488
The super() Function 488
Subclassing Built-In Types Is Tricky 490
Multiple Inheritance and Method Resolution Order 494
Mixin Classes 500

Case-Insensitive Mappings 500
Multiple Inheritance in the Real World 502

ABCs Are Mixins Too 502
ThreadingMixIn and ForkingMixIn 503
Django Generic Views Mixins 504
Multiple Inheritance in Tkinter 507

Coping with Inheritance 510
Favor Object Composition over Class Inheritance 510
Understand Why Inheritance Is Used in Each Case 510
Make Interfaces Explicit with ABCs 511
Use Explicit Mixins for Code Reuse 511
Provide Aggregate Classes to Users 511
Subclass Only Classes Designed for Subclassing 512
Avoid Subclassing from Concrete Classes 513
Tkinter: The Good, the Bad, and the Ugly 513

xii | Table of Contents

Chapter Summary 514
Further Reading 515

15. More About Type Hints. 519
What’s New in This Chapter 519
Overloaded Signatures 520

Max Overload 521
Takeaways from Overloading max 525

TypedDict 526
Type Casting 534
Reading Type Hints at Runtime 537

Problems with Annotations at Runtime 538
Dealing with the Problem 540

Implementing a Generic Class 541
Basic Jargon for Generic Types 544

Variance 544
An Invariant Dispenser 545
A Covariant Dispenser 546
A Contravariant Trash Can 547
Variance Review 549

Implementing a Generic Static Protocol 552
Chapter Summary 554
Further Reading 555

16. Operator Overloading. 561
What’s New in This Chapter 562
Operator Overloading 101 562
Unary Operators 563
Overloading + for Vector Addition 566
Overloading * for Scalar Multiplication 572
Using @ as an Infix Operator 574
Wrapping-Up Arithmetic Operators 576
Rich Comparison Operators 577
Augmented Assignment Operators 580
Chapter Summary 585
Further Reading 587

Part IV. Control Flow

17. Iterators, Generators, and Classic Coroutines. 593
What’s New in This Chapter 594

Table of Contents | xiii

A Sequence of Words 594
Why Sequences Are Iterable: The iter Function 596

Using iter with a Callable 598
Iterables Versus Iterators 599
Sentence Classes with __iter__ 603

Sentence Take #2: A Classic Iterator 603
Don’t Make the Iterable an Iterator for Itself 605
Sentence Take #3: A Generator Function 606
How a Generator Works 607

Lazy Sentences 610
Sentence Take #4: Lazy Generator 610
Sentence Take #5: Lazy Generator Expression 611

When to Use Generator Expressions 613
An Arithmetic Progression Generator 615

Arithmetic Progression with itertools 618
Generator Functions in the Standard Library 619
Iterable Reducing Functions 630
Subgenerators with yield from 632

Reinventing chain 633
Traversing a Tree 634

Generic Iterable Types 639
Classic Coroutines 641

Example: Coroutine to Compute a Running Average 643
Returning a Value from a Coroutine 646
Generic Type Hints for Classic Coroutines 650

Chapter Summary 652
Further Reading 652

18. with, match, and else Blocks. 657
What’s New in This Chapter 658
Context Managers and with Blocks 658

The contextlib Utilities 663
Using @contextmanager 664

Pattern Matching in lis.py: A Case Study 669
Scheme Syntax 669
Imports and Types 671
The Parser 671
The Environment 673
The REPL 675
The Evaluator 676
Procedure: A Class Implementing a Closure 685
Using OR-patterns 686

xiv | Table of Contents

Do This, Then That: else Blocks Beyond if 687
Chapter Summary 689
Further Reading 690

19. Concurrency Models in Python. 695
What’s New in This Chapter 696
The Big Picture 696
A Bit of Jargon 697

Processes, Threads, and Python’s Infamous GIL 699
A Concurrent Hello World 701

Spinner with Threads 701
Spinner with Processes 704
Spinner with Coroutines 706
Supervisors Side-by-Side 711

The Real Impact of the GIL 713
Quick Quiz 713

A Homegrown Process Pool 716
Process-Based Solution 718
Understanding the Elapsed Times 718
Code for the Multicore Prime Checker 719
Experimenting with More or Fewer Processes 723
Thread-Based Nonsolution 724

Python in the Multicore World 725
System Administration 726
Data Science 727
Server-Side Web/Mobile Development 728
WSGI Application Servers 730
Distributed Task Queues 732

Chapter Summary 733
Further Reading 734

Concurrency with Threads and Processes 734
The GIL 736
Concurrency Beyond the Standard Library 736
Concurrency and Scalability Beyond Python 738

20. Concurrent Executors. 743
What’s New in This Chapter 743
Concurrent Web Downloads 744

A Sequential Download Script 746
Downloading with concurrent.futures 749
Where Are the Futures? 751

Launching Processes with concurrent.futures 754

Table of Contents | xv

Multicore Prime Checker Redux 755
Experimenting with Executor.map 758
Downloads with Progress Display and Error Handling 762

Error Handling in the flags2 Examples 766
Using futures.as_completed 769

Chapter Summary 772
Further Reading 772

21. Asynchronous Programming. 775
What’s New in This Chapter 776
A Few Definitions 777
An asyncio Example: Probing Domains 778

Guido’s Trick to Read Asynchronous Code 780
New Concept: Awaitable 781
Downloading with asyncio and HTTPX 782

The Secret of Native Coroutines: Humble Generators 784
The All-or-Nothing Problem 785

Asynchronous Context Managers 786
Enhancing the asyncio Downloader 787

Using asyncio.as_completed and a Thread 788
Throttling Requests with a Semaphore 790
Making Multiple Requests for Each Download 794

Delegating Tasks to Executors 797
Writing asyncio Servers 799

A FastAPI Web Service 800
An asyncio TCP Server 804

Asynchronous Iteration and Asynchronous Iterables 811
Asynchronous Generator Functions 812
Async Comprehensions and Async Generator Expressions 818

async Beyond asyncio: Curio 821
Type Hinting Asynchronous Objects 824
How Async Works and How It Doesn’t 825

Running Circles Around Blocking Calls 825
The Myth of I/O-Bound Systems 826
Avoiding CPU-Bound Traps 826

Chapter Summary 827
Further Reading 828

xvi | Table of Contents

Part V. Metaprogramming

22. Dynamic Attributes and Properties. 835
What’s New in This Chapter 836
Data Wrangling with Dynamic Attributes 836

Exploring JSON-Like Data with Dynamic Attributes 838
The Invalid Attribute Name Problem 842
Flexible Object Creation with __new__ 843

Computed Properties 845
Step 1: Data-Driven Attribute Creation 846
Step 2: Property to Retrieve a Linked Record 848
Step 3: Property Overriding an Existing Attribute 852
Step 4: Bespoke Property Cache 853
Step 5: Caching Properties with functools 855

Using a Property for Attribute Validation 857
LineItem Take #1: Class for an Item in an Order 857
LineItem Take #2: A Validating Property 858

A Proper Look at Properties 860
Properties Override Instance Attributes 861
Property Documentation 864

Coding a Property Factory 865
Handling Attribute Deletion 868
Essential Attributes and Functions for Attribute Handling 869

Special Attributes that Affect Attribute Handling 870
Built-In Functions for Attribute Handling 870
Special Methods for Attribute Handling 871

Chapter Summary 873
Further Reading 873

23. Attribute Descriptors. 879
What’s New in This Chapter 880
Descriptor Example: Attribute Validation 880

LineItem Take #3: A Simple Descriptor 880
LineItem Take #4: Automatic Naming of Storage Attributes 887
LineItem Take #5: A New Descriptor Type 889

Overriding Versus Nonoverriding Descriptors 892
Overriding Descriptors 894
Overriding Descriptor Without __get__ 895
Nonoverriding Descriptor 896
Overwriting a Descriptor in the Class 897

Methods Are Descriptors 898
Descriptor Usage Tips 900

Table of Contents | xvii

Descriptor Docstring and Overriding Deletion 902
Chapter Summary 903
Further Reading 904

24. Class Metaprogramming. 907
What’s New in This Chapter 908
Classes as Objects 908
type: The Built-In Class Factory 909
A Class Factory Function 911
Introducing __init_subclass__ 914

Why __init_subclass__ Cannot Configure __slots__ 921
Enhancing Classes with a Class Decorator 922
What Happens When: Import Time Versus Runtime 925

Evaluation Time Experiments 926
Metaclasses 101 931

How a Metaclass Customizes a Class 933
A Nice Metaclass Example 934
Metaclass Evaluation Time Experiment 937

A Metaclass Solution for Checked 942
Metaclasses in the Real World 947

Modern Features Simplify or Replace Metaclasses 947
Metaclasses Are Stable Language Features 948
A Class Can Only Have One Metaclass 948
Metaclasses Should Be Implementation Details 949

A Metaclass Hack with __prepare__ 950
Wrapping Up 952
Chapter Summary 953
Further Reading 954

Afterword. 959

Index. 963

xviii | Table of Contents

1 Message to the comp.lang.python Usenet group, Dec. 23, 2002: “Acrimony in c.l.p”.

Preface

Here’s the plan: when someone uses a feature you don’t understand, simply shoot
them. This is easier than learning something new, and before too long the only living
coders will be writing in an easily understood, tiny subset of Python 0.9.6 <wink>.1

—Tim Peters, legendary core developer and author of The Zen of Python

“Python is an easy to learn, powerful programming language.” Those are the first
words of the official Python 3.10 tutorial. That is true, but there is a catch: because
the language is easy to learn and put to use, many practicing Python programmers
leverage only a fraction of its powerful features.

An experienced programmer may start writing useful Python code in a matter of
hours. As the first productive hours become weeks and months, a lot of developers go
on writing Python code with a very strong accent carried from languages learned
before. Even if Python is your first language, often in academia and in introductory
books it is presented while carefully avoiding language-specific features.

As a teacher introducing Python to programmers experienced in other languages, I
see another problem that this book tries to address: we only miss stuff we know
about. Coming from another language, anyone may guess that Python supports regu‐
lar expressions, and look that up in the docs. But if you’ve never seen tuple unpacking
or descriptors before, you will probably not search for them, and you may end up not
using those features just because they are specific to Python.

This book is not an A-to-Z exhaustive reference of Python. Its emphasis is on the lan‐
guage features that are either unique to Python or not found in many other popular
languages. This is also mostly a book about the core language and some of its libra‐
ries. I will rarely talk about packages that are not in the standard library, even though
the Python package index now lists more than 60,000 libraries, and many of them are
incredibly useful.

xix

https://fpy.li/p-1
https://fpy.li/p-2

Who This Book Is For
This book was written for practicing Python programmers who want to become pro‐
ficient in Python 3. I tested the examples in Python 3.10—most of them also in
Python 3.9 and 3.8. When an example requires Python 3.10, it should be clearly
marked.

If you are not sure whether you know enough Python to follow along, review the top‐
ics of the official Python tutorial. Topics covered in the tutorial will not be explained
here, except for some features that are new.

Who This Book Is Not For
If you are just learning Python, this book is going to be hard to follow. Not only that,
if you read it too early in your Python journey, it may give you the impression that
every Python script should leverage special methods and metaprogramming tricks.
Premature abstraction is as bad as premature optimization.

Five Books in One
I recommend that everyone read Chapter 1, “The Python Data Model”. The core
audience for this book should not have trouble jumping directly to any part in this
book after Chapter 1, but often I assume you’ve read preceding chapters in each spe‐
cific part. Think of Parts I through V as books within the book.

I tried to emphasize using what is available before discussing how to build your own.
For example, in Part I, Chapter 2 covers sequence types that are ready to use, includ‐
ing some that don’t get a lot of attention, like collections.deque. Building user-
defined sequences is only addressed in Part III, where we also see how to leverage the
abstract base classes (ABCs) from collections.abc. Creating your own ABCs is dis‐
cussed even later in Part III, because I believe it’s important to be comfortable using
an ABC before writing your own.

This approach has a few advantages. First, knowing what is ready to use can save you
from reinventing the wheel. We use existing collection classes more often than we
implement our own, and we can give more attention to the advanced usage of avail‐
able tools by deferring the discussion on how to create new ones. We are also more
likely to inherit from existing ABCs than to create a new ABC from scratch. And
finally, I believe it is easier to understand the abstractions after you’ve seen them in
action.

The downside of this strategy is the forward references scattered throughout the
chapters. I hope these will be easier to tolerate now that you know why I chose this
path.

xx | Preface

https://fpy.li/p-3

How the Book Is Organized
Here are the main topics in each part of the book:

Part I, “Data Structures”
Chapter 1 introduces the Python Data Model and explains why the special meth‐
ods (e.g., __repr__) are the key to the consistent behavior of objects of all types.
Special methods are covered in more detail throughout the book. The remaining
chapters in this part cover the use of collection types: sequences, mappings, and
sets, as well as the str versus bytes split—the cause of much celebration among
Python 3 users and much pain for Python 2 users migrating their codebases. Also
covered are the high-level class builders in the standard library: named tuple fac‐
tories and the @dataclass decorator. Pattern matching—new in Python 3.10—is
covered in sections in Chapters 2, 3, and 5, which discuss sequence patterns,
mapping patterns, and class patterns. The last chapter in Part I is about the life
cycle of objects: references, mutability, and garbage collection.

Part II, “Functions as Objects”
Here we talk about functions as first-class objects in the language: what that
means, how it affects some popular design patterns, and how to implement func‐
tion decorators by leveraging closures. Also covered here is the general concept
of callables in Python, function attributes, introspection, parameter annotations,
and the new nonlocal declaration in Python 3. Chapter 8 introduces the major
new topic of type hints in function signatures.

Part III, “Classes and Protocols”
Now the focus is on building classes “by hand”—as opposed to using the class
builders covered in Chapter 5. Like any Object-Oriented (OO) language, Python
has its particular set of features that may or may not be present in the language in
which you and I learned class-based programming. The chapters explain how
to build your own collections, abstract base classes (ABCs), and protocols, as well
as how to cope with multiple inheritance, and how to implement operator
overloading—when that makes sense. Chapter 15 continues the coverage of
type hints.

Part IV, “Control Flow”
Covered in this part are the language constructs and libraries that go beyond tra‐
ditional control flow with conditionals, loops, and subroutines. We start with
generators, then visit context managers and coroutines, including the challenging
but powerful new yield from syntax. Chapter 18 includes a significant example
using pattern matching in a simple but functional language interpreter. Chap‐
ter 19, “Concurrency Models in Python” is a new chapter presenting an overview
of alternatives for concurrent and parallel processing in Python, their limitations,
and how software architecture allows Python to operate at web scale. I rewrote

Preface | xxi

the chapter about asynchronous programming to emphasize core language fea‐
tures—e.g., await, async dev, async for, and async with, and show how they
are used with asyncio and other frameworks.

Part V, “Metaprogramming”
This part starts with a review of techniques for building classes with attributes
created dynamically to handle semi-structured data, such as JSON datasets. Next,
we cover the familiar properties mechanism, before diving into how object
attribute access works at a lower level in Python using descriptors. The relation‐
ship among functions, methods, and descriptors is explained. Throughout
Part V, the step-by-step implementation of a field validation library uncovers
subtle issues that lead to the advanced tools of the final chapter: class decorators
and metaclasses.

Hands-On Approach
Often we’ll use the interactive Python console to explore the language and libraries. I
feel it is important to emphasize the power of this learning tool, particularly for those
readers who’ve had more experience with static, compiled languages that don’t pro‐
vide a read-eval-print loop (REPL).

One of the standard Python testing packages, doctest, works by simulating console
sessions and verifying that the expressions evaluate to the responses shown. I used
doctest to check most of the code in this book, including the console listings. You
don’t need to use or even know about doctest to follow along: the key feature of
doctests is that they look like transcripts of interactive Python console sessions, so
you can easily try out the demonstrations yourself.

Sometimes I will explain what we want to accomplish by showing a doctest before the
code that makes it pass. Firmly establishing what is to be done before thinking about
how to do it helps focus our coding effort. Writing tests first is the basis of test-driven
development (TDD), and I’ve also found it helpful when teaching. If you are unfami‐
liar with doctest, take a look at its documentation and this book’s example code
repository.

I also wrote unit tests for some of the larger examples using pytest—which I find eas‐
ier to use and more powerful than the unittest module in the standard library. You’ll
find that you can verify the correctness of most of the code in the book by typing
python3 -m doctest example_script.py or pytest in the command shell of your
OS. The pytest.ini configuration at the root of the example code repository ensures
that doctests are collected and executed by the pytest command.

xxii | Preface

https://fpy.li/doctest
https://fpy.li/doctest
https://fpy.li/code
https://fpy.li/code
https://fpy.li/code

Soapbox: My Personal Perspective
I have been using, teaching, and debating Python since 1998, and I enjoy studying
and comparing programming languages, their design, and the theory behind them.
At the end of some chapters, I have added “Soapbox” sidebars with my own perspec‐
tive about Python and other languages. Feel free to skip these if you are not into such
discussions. Their content is completely optional.

Companion Website: fluentpython.com
Covering new features—like type hints, data classes, and pattern matching—made
this second edition almost 30% larger than the first. To keep the book luggable,
I moved some content to fluentpython.com. You will find links to articles I published
there in several chapters. Some sample chapters are also in the companion website.
The full text is available online at the O’Reilly Learning subscription service. The
example code repository is on GitHub.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Note that when a line break falls within a constant_width term, a hyphen is not
added—it could be misunderstood as part of the term.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Preface | xxiii

http://fluentpython.com
https://fpy.li/p-4
https://fpy.li/p-5
https://fpy.li/code

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Every script and most code snippets that appear in the book are available in the Flu‐
ent Python code repository on GitHub at https://fpy.li/code.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN, e.g., “Fluent Python, 2nd ed., by
Luciano Ramalho (O’Reilly). Copyright 2022 Luciano Ramalho, 978-1-492-05635-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xxiv | Preface

https://fpy.li/code
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://fpy.li/p-4.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: http://www.youtube.com/oreillymedia.

Acknowledgments
I did not expect updating a Python book five years later to be such a major undertak‐
ing, but it was. Marta Mello, my beloved wife, was always there when I needed her.
My dear friend Leonardo Rochael helped me from the earliest writing to the final
technical review, including consolidating and double-checking the feedback from the
other tech reviewers, readers, and editors. I honestly don’t know if I’d have made it
without your support, Marta and Leo. Thank you so much!

Preface | xxv

http://oreilly.com
http://oreilly.com
https://fpy.li/p-4
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
https://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Jürgen Gmach, Caleb Hattingh, Jess Males, Leonardo Rochael, and Miroslav Šedivý
were the outstanding technical review team for the second edition. They reviewed the
whole book. Bill Behrman, Bruce Eckel, Renato Oliveira, and Rodrigo Bernardo
Pimentel reviewed specific chapters. Their many suggestions from different perspec‐
tives made the book much better.

Many readers sent corrections or made other contributions during the early release
phase, including: Guilherme Alves, Christiano Anderson, Konstantin Baikov, K. Alex
Birch, Michael Boesl, Lucas Brunialti, Sergio Cortez, Gino Crecco, Chukwuerika
Dike, Juan Esteras, Federico Fissore, Will Frey, Tim Gates, Alexander Hagerman,
Chen Hanxiao, Sam Hyeong, Simon Ilincev, Parag Kalra, Tim King, David Kwast,
Tina Lapine, Wanpeng Li, Guto Maia, Scott Martindale, Mark Meyer, Andy McFar‐
land, Chad McIntire, Diego Rabatone Oliveira, Francesco Piccoli, Meredith Rawls,
Michael Robinson, Federico Tula Rovaletti, Tushar Sadhwani, Arthur Constantino
Scardua, Randal L. Schwartz, Avichai Sefati, Guannan Shen, William Simpson, Vivek
Vashist, Jerry Zhang, Paul Zuradzki—and others who did not want to be named, sent
corrections after I delivered the draft, or are omitted because I failed to record their
names—sorry.

During my research, I learned about typing, concurrency, pattern matching, and
metaprogramming while interacting with Michael Albert, Pablo Aguilar, Kaleb Bar‐
rett, David Beazley, J. S. O. Bueno, Bruce Eckel, Martin Fowler, Ivan Levkivskyi, Alex
Martelli, Peter Norvig, Sebastian Rittau, Guido van Rossum, Carol Willing, and Jelle
Zijlstra.

O’Reilly editors Jeff Bleiel, Jill Leonard, and Amelia Blevins made suggestions that
improved the flow of the book in many places. Jeff Bleiel and production editor
Danny Elfanbaum supported me throughout this long marathon.

The insights and suggestions of every one of them made the book better and more
accurate. Inevitably, there will still be bugs of my own creation in the final product. I
apologize in advance.

Finally, I want to extend my heartfelt thanks to my colleagues at Thoughtworks Brazil
—and especially to my sponsor, Alexey Bôas—who supported this project in many
ways, all the way.

Of course, everyone who helped me understand Python and write the first edition
now deserves double thanks. There would be no second edition without a successful
first.

xxvi | Preface

Acknowledgments for the First Edition
The Bauhaus chess set by Josef Hartwig is an example of excellent design: beautiful,
simple, and clear. Guido van Rossum, son of an architect and brother of a master font
designer, created a masterpiece of language design. I love teaching Python because it
is beautiful, simple, and clear.

Alex Martelli and Anna Ravenscroft were the first people to see the outline of this
book and encouraged me to submit it to O’Reilly for publication. Their books taught
me idiomatic Python and are models of clarity, accuracy, and depth in technical writ‐
ing. Alex’s 6,200+ Stack Overflow posts are a fountain of insights about the language
and its proper use.

Martelli and Ravenscroft were also technical reviewers of this book, along with Len‐
nart Regebro and Leonardo Rochael. Everyone in this outstanding technical review
team has at least 15 years of Python experience, with many contributions to high-
impact Python projects in close contact with other developers in the community.
Together they sent me hundreds of corrections, suggestions, questions, and opinions,
adding tremendous value to the book. Victor Stinner kindly reviewed Chapter 21,
bringing his expertise as an asyncio maintainer to the technical review team. It was a
great privilege and a pleasure to collaborate with them over these past several
months.

Editor Meghan Blanchette was an outstanding mentor, helping me improve the orga‐
nization and flow of the book, letting me know when it was boring, and keeping me
from delaying even more. Brian MacDonald edited chapters in Part II while Meghan
was away. I enjoyed working with them, and with everyone I’ve contacted at O’Reilly,
including the Atlas development and support team (Atlas is the O’Reilly book pub‐
lishing platform, which I was fortunate to use to write this book).

Mario Domenech Goulart provided numerous, detailed suggestions starting with the
first early release. I also received valuable feedback from Dave Pawson, Elias Dor‐
neles, Leonardo Alexandre Ferreira Leite, Bruce Eckel, J. S. Bueno, Rafael Gonçalves,
Alex Chiaranda, Guto Maia, Lucas Vido, and Lucas Brunialti.

Over the years, a number of people urged me to become an author, but the most per‐
suasive were Rubens Prates, Aurelio Jargas, Rudá Moura, and Rubens Altimari.
Mauricio Bussab opened many doors for me, including my first real shot at writing a
book. Renzo Nuccitelli supported this writing project all the way, even if that meant a
slow start for our partnership at python.pro.br.

The wonderful Brazilian Python community is knowledgeable, generous, and fun.
The Python Brasil group has thousands of people, and our national conferences bring
together hundreds, but the most influential in my journey as a Pythonista were Leo‐
nardo Rochael, Adriano Petrich, Daniel Vainsencher, Rodrigo RBP Pimentel, Bruno
Gola, Leonardo Santagada, Jean Ferri, Rodrigo Senra, J. S. Bueno, David Kwast, Luiz

Preface | xxvii

https://fpy.li/p-7
https://fpy.li/p-8
https://fpy.li/p-9

Irber, Osvaldo Santana, Fernando Masanori, Henrique Bastos, Gustavo Niemayer,
Pedro Werneck, Gustavo Barbieri, Lalo Martins, Danilo Bellini, and Pedro Kroger.

Dorneles Tremea was a great friend (incredibly generous with his time and knowl‐
edge), an amazing hacker, and the most inspiring leader of the Brazilian Python
Association. He left us too early.

My students over the years taught me a lot through their questions, insights, feed‐
back, and creative solutions to problems. Érico Andrei and Simples Consultoria
made it possible for me to focus on being a Python teacher for the first time.

Martijn Faassen was my Grok mentor and shared invaluable insights with me about
Python and Neanderthals. His work and that of Paul Everitt, Chris McDonough, Tres
Seaver, Jim Fulton, Shane Hathaway, Lennart Regebro, Alan Runyan, Alexander
Limi, Martijn Pieters, Godefroid Chapelle, and others from the Zope, Plone, and Pyr‐
amid planets have been decisive in my career. Thanks to Zope and surfing the first
web wave, I was able to start making a living with Python in 1998. José Octavio Cas‐
tro Neves was my partner in the first Python-centric software house in Brazil.

I have too many gurus in the wider Python community to list them all, but besides
those already mentioned, I am indebted to Steve Holden, Raymond Hettinger, A.M.
Kuchling, David Beazley, Fredrik Lundh, Doug Hellmann, Nick Coghlan, Mark Pil‐
grim, Martijn Pieters, Bruce Eckel, Michele Simionato, Wesley Chun, Brandon Craig
Rhodes, Philip Guo, Daniel Greenfeld, Audrey Roy, and Brett Slatkin for teaching me
new and better ways to teach Python.

Most of these pages were written in my home office and in two labs: CoffeeLab and
Garoa Hacker Clube. CoffeeLab is the caffeine-geek headquarters in Vila Madalena,
São Paulo, Brazil. Garoa Hacker Clube is a hackerspace open to all: a community lab
where anyone can freely try out new ideas.

The Garoa community provided inspiration, infrastructure, and slack. I think Aleph
would enjoy this book.

My mother, Maria Lucia, and my father, Jairo, always supported me in every way. I
wish he was here to see the book; I am glad I can share it with her.

My wife, Marta Mello, endured 15 months of a husband who was always working,
but remained supportive and coached me through some critical moments in the
project when I feared I might drop out of the marathon.

Thank you all, for everything.

xxviii | Preface

https://fpy.li/p-10
https://fpy.li/p-11

PART I

Data Structures

1 “Story of Jython”, written as a foreword to Jython Essentials by Samuele Pedroni and Noel Rappin (O’Reilly).

CHAPTER 1

The Python Data Model

Guido’s sense of the aesthetics of language design is amazing. I’ve met many fine lan‐
guage designers who could build theoretically beautiful languages that no one would
ever use, but Guido is one of those rare people who can build a language that is just
slightly less theoretically beautiful but thereby is a joy to write programs in.

—Jim Hugunin, creator of Jython, cocreator of AspectJ, and architect of
the .Net DLR1

One of the best qualities of Python is its consistency. After working with Python for a
while, you are able to start making informed, correct guesses about features that are
new to you.

However, if you learned another object-oriented language before Python, you may
find it strange to use len(collection) instead of collection.len(). This apparent
oddity is the tip of an iceberg that, when properly understood, is the key to every‐
thing we call Pythonic. The iceberg is called the Python Data Model, and it is the API
that we use to make our own objects play well with the most idiomatic language
features.

You can think of the data model as a description of Python as a framework. It formal‐
izes the interfaces of the building blocks of the language itself, such as sequences,
functions, iterators, coroutines, classes, context managers, and so on.

When using a framework, we spend a lot of time coding methods that are called by
the framework. The same happens when we leverage the Python Data Model to build
new classes. The Python interpreter invokes special methods to perform basic object
operations, often triggered by special syntax. The special method names are always
written with leading and trailing double underscores. For example, the syntax

3

https://fpy.li/1-1
https://fpy.li/1-2

obj[key] is supported by the __getitem__ special method. In order to evaluate
my_collection[key], the interpreter calls my_collection.__getitem__(key).

We implement special methods when we want our objects to support and interact
with fundamental language constructs such as:

• Collections
• Attribute access
• Iteration (including asynchronous iteration using async for)
• Operator overloading
• Function and method invocation
• String representation and formatting
• Asynchronous programming using await
• Object creation and destruction
• Managed contexts using the with or async with statements

Magic and Dunder

The term magic method is slang for special method, but how do we
talk about a specific method like __getitem__? I learned to say
“dunder-getitem” from author and teacher Steve Holden. “Dun‐
der” is a shortcut for “double underscore before and after.” That’s
why the special methods are also known as dunder methods. The
“Lexical Analysis” chapter of The Python Language Reference warns
that “Any use of __*__ names, in any context, that does not follow
explicitly documented use, is subject to breakage without warning.”

What’s New in This Chapter
This chapter had few changes from the first edition because it is an introduction to
the Python Data Model, which is quite stable. The most significant changes are:

• Special methods supporting asynchronous programming and other new features,
added to the tables in “Overview of Special Methods” on page 15.

• Figure 1-2 showing the use of special methods in “Collection API” on page 14,
including the collections.abc.Collection abstract base class introduced in
Python 3.6.

4 | Chapter 1: The Python Data Model

https://fpy.li/1-3

Also, here and throughout this second edition I adopted the f-string syntax intro‐
duced in Python 3.6, which is more readable and often more convenient than the
older string formatting notations: the str.format() method and the % operator.

One reason to still use my_fmt.format() is when the definition of
my_fmt must be in a different place in the code than where the for‐
matting operation needs to happen. For instance, when my_fmt has
multiple lines and is better defined in a constant, or when it must
come from a configuration file, or from the database. Those are
real needs, but don’t happen very often.

A Pythonic Card Deck
Example 1-1 is simple, but it demonstrates the power of implementing just two spe‐
cial methods, __getitem__ and __len__.

Example 1-1. A deck as a sequence of playing cards

import collections

Card = collections.namedtuple('Card', ['rank', 'suit'])

class FrenchDeck:
 ranks = [str(n) for n in range(2, 11)] + list('JQKA')
 suits = 'spades diamonds clubs hearts'.split()

 def __init__(self):
 self._cards = [Card(rank, suit) for suit in self.suits
 for rank in self.ranks]

 def __len__(self):
 return len(self._cards)

 def __getitem__(self, position):
 return self._cards[position]

The first thing to note is the use of collections.namedtuple to construct a simple
class to represent individual cards. We use namedtuple to build classes of objects that
are just bundles of attributes with no custom methods, like a database record. In the
example, we use it to provide a nice representation for the cards in the deck, as shown
in the console session:

>>> beer_card = Card('7', 'diamonds')
>>> beer_card
Card(rank='7', suit='diamonds')

A Pythonic Card Deck | 5

But the point of this example is the FrenchDeck class. It’s short, but it packs a punch.
First, like any standard Python collection, a deck responds to the len() function by
returning the number of cards in it:

>>> deck = FrenchDeck()
>>> len(deck)
52

Reading specific cards from the deck—say, the first or the last—is easy, thanks to the
__getitem__ method:

>>> deck[0]
Card(rank='2', suit='spades')
>>> deck[-1]
Card(rank='A', suit='hearts')

Should we create a method to pick a random card? No need. Python already has a
function to get a random item from a sequence: random.choice. We can use it on a
deck instance:

>>> from random import choice
>>> choice(deck)
Card(rank='3', suit='hearts')
>>> choice(deck)
Card(rank='K', suit='spades')
>>> choice(deck)
Card(rank='2', suit='clubs')

We’ve just seen two advantages of using special methods to leverage the Python Data
Model:

• Users of your classes don’t have to memorize arbitrary method names for stan‐
dard operations. (“How to get the number of items? Is it .size(), .length(), or
what?”)

• It’s easier to benefit from the rich Python standard library and avoid reinventing
the wheel, like the random.choice function.

But it gets better.

Because our __getitem__ delegates to the [] operator of self._cards, our deck
automatically supports slicing. Here’s how we look at the top three cards from a
brand-new deck, and then pick just the aces by starting at index 12 and skipping 13
cards at a time:

>>> deck[:3]
[Card(rank='2', suit='spades'), Card(rank='3', suit='spades'),
Card(rank='4', suit='spades')]
>>> deck[12::13]
[Card(rank='A', suit='spades'), Card(rank='A', suit='diamonds'),
Card(rank='A', suit='clubs'), Card(rank='A', suit='hearts')]

6 | Chapter 1: The Python Data Model

Just by implementing the __getitem__ special method, our deck is also iterable:

>>> for card in deck: # doctest: +ELLIPSIS
... print(card)
Card(rank='2', suit='spades')
Card(rank='3', suit='spades')
Card(rank='4', suit='spades')
...

We can also iterate over the deck in reverse:

>>> for card in reversed(deck): # doctest: +ELLIPSIS
... print(card)
Card(rank='A', suit='hearts')
Card(rank='K', suit='hearts')
Card(rank='Q', suit='hearts')
...

Ellipsis in doctests

Whenever possible, I extracted the Python console listings in this
book from doctest to ensure accuracy. When the output was too
long, the elided part is marked by an ellipsis (...), like in the last
line in the preceding code. In such cases, I used the # doctest:
+ELLIPSIS directive to make the doctest pass. If you are trying
these examples in the interactive console, you may omit the doctest
comments altogether.

Iteration is often implicit. If a collection has no __contains__ method, the in opera‐
tor does a sequential scan. Case in point: in works with our FrenchDeck class because
it is iterable. Check it out:

>>> Card('Q', 'hearts') in deck
True
>>> Card('7', 'beasts') in deck
False

How about sorting? A common system of ranking cards is by rank (with aces being
highest), then by suit in the order of spades (highest), hearts, diamonds, and clubs
(lowest). Here is a function that ranks cards by that rule, returning 0 for the 2 of clubs
and 51 for the ace of spades:

suit_values = dict(spades=3, hearts=2, diamonds=1, clubs=0)

def spades_high(card):
 rank_value = FrenchDeck.ranks.index(card.rank)
 return rank_value * len(suit_values) + suit_values[card.suit]

Given spades_high, we can now list our deck in order of increasing rank:

A Pythonic Card Deck | 7

https://fpy.li/doctest

2 A C struct is a record type with named fields.

>>> for card in sorted(deck, key=spades_high): # doctest: +ELLIPSIS
... print(card)
Card(rank='2', suit='clubs')
Card(rank='2', suit='diamonds')
Card(rank='2', suit='hearts')
... (46 cards omitted)
Card(rank='A', suit='diamonds')
Card(rank='A', suit='hearts')
Card(rank='A', suit='spades')

Although FrenchDeck implicitly inherits from the object class, most of its function‐
ality is not inherited, but comes from leveraging the data model and composition. By
implementing the special methods __len__ and __getitem__, our FrenchDeck
behaves like a standard Python sequence, allowing it to benefit from core language
features (e.g., iteration and slicing) and from the standard library, as shown by the
examples using random.choice, reversed, and sorted. Thanks to composition, the
__len__ and __getitem__ implementations can delegate all the work to a list
object, self._cards.

How About Shuffling?

As implemented so far, a FrenchDeck cannot be shuffled because it
is immutable: the cards and their positions cannot be changed,
except by violating encapsulation and handling the _cards

attribute directly. In Chapter 13, we will fix that by adding a one-
line __setitem__ method.

How Special Methods Are Used
The first thing to know about special methods is that they are meant to be called by
the Python interpreter, and not by you. You don’t write my_object.__len__(). You
write len(my_object) and, if my_object is an instance of a user-defined class, then
Python calls the __len__ method you implemented.

But the interpreter takes a shortcut when dealing for built-in types like list, str,
bytearray, or extensions like the NumPy arrays. Python variable-sized collections
written in C include a struct2 called PyVarObject, which has an ob_size field holding
the number of items in the collection. So, if my_object is an instance of one of those
built-ins, then len(my_object) retrieves the value of the ob_size field, and this is
much faster than calling a method.

8 | Chapter 1: The Python Data Model

Pouria

Pouria

More often than not, the special method call is implicit. For example, the statement
for i in x: actually causes the invocation of iter(x), which in turn may call
x.__iter__() if that is available, or use x.__getitem__(), as in the FrenchDeck
example.

Normally, your code should not have many direct calls to special methods. Unless
you are doing a lot of metaprogramming, you should be implementing special meth‐
ods more often than invoking them explicitly. The only special method that is fre‐
quently called by user code directly is __init__ to invoke the initializer of the
superclass in your own __init__ implementation.

If you need to invoke a special method, it is usually better to call the related built-in
function (e.g., len, iter, str, etc.). These built-ins call the corresponding special
method, but often provide other services and—for built-in types—are faster than
method calls. See, for example, “Using iter with a Callable” on page 598 in Chapter 17.

In the next sections, we’ll see some of the most important uses of special methods:

• Emulating numeric types
• String representation of objects
• Boolean value of an object
• Implementing collections

Emulating Numeric Types
Several special methods allow user objects to respond to operators such as +. We will
cover that in more detail in Chapter 16, but here our goal is to further illustrate the
use of special methods through another simple example.

We will implement a class to represent two-dimensional vectors—that is, Euclidean
vectors like those used in math and physics (see Figure 1-1).

The built-in complex type can be used to represent two-
dimensional vectors, but our class can be extended to represent n-
dimensional vectors. We will do that in Chapter 17.

How Special Methods Are Used | 9

Pouria

Pouria

Pouria

Figure 1-1. Example of two-dimensional vector addition; Vector(2, 4) + Vector(2, 1)
results in Vector(4, 5).

We will start designing the API for such a class by writing a simulated console session
that we can use later as a doctest. The following snippet tests the vector addition pic‐
tured in Figure 1-1:

>>> v1 = Vector(2, 4)
>>> v2 = Vector(2, 1)
>>> v1 + v2
Vector(4, 5)

Note how the + operator results in a new Vector, displayed in a friendly format at the
console.

The abs built-in function returns the absolute value of integers and floats, and the
magnitude of complex numbers, so to be consistent, our API also uses abs to calcu‐
late the magnitude of a vector:

>>> v = Vector(3, 4)
>>> abs(v)
5.0

We can also implement the * operator to perform scalar multiplication (i.e., multi‐
plying a vector by a number to make a new vector with the same direction and a
multiplied magnitude):

>>> v * 3
Vector(9, 12)
>>> abs(v * 3)
15.0

10 | Chapter 1: The Python Data Model

Example 1-2 is a Vector class implementing the operations just described, through
the use of the special methods __repr__, __abs__, __add__, and __mul__.

Example 1-2. A simple two-dimensional vector class

"""
vector2d.py: a simplistic class demonstrating some special methods

It is simplistic for didactic reasons. It lacks proper error handling,
especially in the ``__add__`` and ``__mul__`` methods.

This example is greatly expanded later in the book.

Addition::

 >>> v1 = Vector(2, 4)
 >>> v2 = Vector(2, 1)
 >>> v1 + v2
 Vector(4, 5)

Absolute value::

 >>> v = Vector(3, 4)
 >>> abs(v)
 5.0

Scalar multiplication::

 >>> v * 3
 Vector(9, 12)
 >>> abs(v * 3)
 15.0

"""

import math

class Vector:

 def __init__(self, x=0, y=0):
 self.x = x
 self.y = y

 def __repr__(self):
 return f'Vector({self.x!r}, {self.y!r})'

 def __abs__(self):
 return math.hypot(self.x, self.y)

 def __bool__(self):

How Special Methods Are Used | 11

 return bool(abs(self))

 def __add__(self, other):
 x = self.x + other.x
 y = self.y + other.y
 return Vector(x, y)

 def __mul__(self, scalar):
 return Vector(self.x * scalar, self.y * scalar)

We implemented five special methods in addition to the familiar __init__. Note that
none of them is directly called within the class or in the typical usage of the class
illustrated by the doctests. As mentioned before, the Python interpreter is the only
frequent caller of most special methods.

Example 1-2 implements two operators: + and *, to show basic usage of __add__ and
__mul__. In both cases, the methods create and return a new instance of Vector, and
do not modify either operand—self or other are merely read. This is the expected
behavior of infix operators: to create new objects and not touch their operands. I will
have a lot more to say about that in Chapter 16.

As implemented, Example 1-2 allows multiplying a Vector by a
number, but not a number by a Vector, which violates the commu‐
tative property of scalar multiplication. We will fix that with the
special method __rmul__ in Chapter 16.

In the following sections, we discuss the other special methods in Vector.

String Representation
The __repr__ special method is called by the repr built-in to get the string represen‐
tation of the object for inspection. Without a custom __repr__, Python’s console
would display a Vector instance <Vector object at 0x10e100070>.

The interactive console and debugger call repr on the results of the expressions eval‐
uated, as does the %r placeholder in classic formatting with the % operator, and the !r
conversion field in the new format string syntax used in f-strings the str.format
method.

Note that the f-string in our __repr__ uses !r to get the standard representation of
the attributes to be displayed. This is good practice, because it shows the crucial dif‐
ference between Vector(1, 2) and Vector('1', '2')—the latter would not work in
the context of this example, because the constructor’s arguments should be numbers,
not str.

12 | Chapter 1: The Python Data Model

https://fpy.li/1-4
Pouria

The string returned by __repr__ should be unambiguous and, if possible, match the
source code necessary to re-create the represented object. That is why our Vector
representation looks like calling the constructor of the class (e.g., Vector(3, 4)).

In contrast, __str__ is called by the str() built-in and implicitly used by the print
function. It should return a string suitable for display to end users.

Sometimes same string returned by __repr__ is user-friendly, and you don’t need to
code __str__ because the implementation inherited from the object class calls
__repr__ as a fallback. Example 5-2 is one of several examples in this book with a
custom __str__.

Programmers with prior experience in languages with a toString
method tend to implement __str__ and not __repr__. If you only
implement one of these special methods in Python, choose
__repr__.
“What is the difference between __str__ and __repr__ in
Python?” is a Stack Overflow question with excellent contributions
from Pythonistas Alex Martelli and Martijn Pieters.

Boolean Value of a Custom Type
Although Python has a bool type, it accepts any object in a Boolean context, such as
the expression controlling an if or while statement, or as operands to and, or, and
not. To determine whether a value x is truthy or falsy, Python applies bool(x), which
returns either True or False.

By default, instances of user-defined classes are considered truthy, unless either
__bool__ or __len__ is implemented. Basically, bool(x) calls x.__bool__() and uses
the result. If __bool__ is not implemented, Python tries to invoke x.__len__(), and
if that returns zero, bool returns False. Otherwise bool returns True.

Our implementation of __bool__ is conceptually simple: it returns False if the mag‐
nitude of the vector is zero, True otherwise. We convert the magnitude to a Boolean
using bool(abs(self)) because __bool__ is expected to return a Boolean. Outside of
__bool__ methods, it is rarely necessary to call bool() explicitly, because any object
can be used in a Boolean context.

Note how the special method __bool__ allows your objects to follow the truth value
testing rules defined in the “Built-in Types” chapter of The Python Standard Library
documentation.

How Special Methods Are Used | 13

https://fpy.li/1-5
https://fpy.li/1-5
https://fpy.li/1-6

A faster implementation of Vector.__bool__ is this:
 def __bool__(self):
 return bool(self.x or self.y)

This is harder to read, but avoids the trip through abs, __abs__, the
squares, and square root. The explicit conversion to bool is needed
because __bool__ must return a Boolean, and or returns either
operand as is: x or y evaluates to x if that is truthy, otherwise the
result is y, whatever that is.

Collection API
Figure 1-2 documents the interfaces of the essential collection types in the language.
All the classes in the diagram are ABCs—abstract base classes. ABCs and the collec
tions.abc module are covered in Chapter 13. The goal of this brief section is to give
a panoramic view of Python’s most important collection interfaces, showing how
they are built from special methods.

Figure 1-2. UML class diagram with fundamental collection types. Method names in
italic are abstract, so they must be implemented by concrete subclasses such as list
and dict. The remaining methods have concrete implementations, therefore subclasses
can inherit them.

Each of the top ABCs has a single special method. The Collection ABC (new in
Python 3.6) unifies the three essential interfaces that every collection should
implement:

14 | Chapter 1: The Python Data Model

• Iterable to support for, unpacking, and other forms of iteration
• Sized to support the len built-in function
• Container to support the in operator

Python does not require concrete classes to actually inherit from any of these ABCs.
Any class that implements __len__ satisfies the Sized interface.

Three very important specializations of Collection are:

• Sequence, formalizing the interface of built-ins like list and str
• Mapping, implemented by dict, collections.defaultdict, etc.
• Set, the interface of the set and frozenset built-in types

Only Sequence is Reversible, because sequences support arbitrary ordering of their
contents, while mappings and sets do not.

Since Python 3.7, the dict type is officially “ordered,” but that only
means that the key insertion order is preserved. You cannot
rearrange the keys in a dict however you like.

All the special methods in the Set ABC implement infix operators. For example,
a & b computes the intersection of sets a and b, and is implemented in the __and__
special method.

The next two chapters will cover standard library sequences, mappings, and sets in
detail.

Now let’s consider the major categories of special methods defined in the Python
Data Model.

Overview of Special Methods
The “Data Model” chapter of The Python Language Reference lists more than 80 spe‐
cial method names. More than half of them implement arithmetic, bitwise, and com‐
parison operators. As an overview of what is available, see the following tables.

Table 1-1 shows special method names, excluding those used to implement infix
operators or core math functions like abs. Most of these methods will be covered
throughout the book, including the most recent additions: asynchronous special
methods such as __anext__ (added in Python 3.5), and the class customization hook,
__init_subclass__ (from Python 3.6).

Overview of Special Methods | 15

https://fpy.li/1-7
https://fpy.li/dtmodel
Pouria

Table 1-1. Special method names (operators excluded)

Category Method names
String/bytes representation __repr__ __str__ __format__ __bytes__ __fspath__

Conversion to number __bool__ __complex__ __int__ __float__ __hash__
__index__

Emulating collections __len__ __getitem__ __setitem__ __delitem__
__contains__

Iteration __iter__ __aiter__ __next__ __anext__ __reversed__

Callable or coroutine execution __call__ __await__

Context management __enter__ __exit__ __aexit__ __aenter__

Instance creation and destruction __new__ __init__ __del__

Attribute management __getattr__ __getattribute__ __setattr__ __delattr__
__dir__

Attribute descriptors __get__ __set__ __delete__ __set_name__

Abstract base classes __instancecheck__ __subclasscheck__

Class metaprogramming __prepare__ __init_subclass__ __class_getitem__
__mro_entries__

Infix and numerical operators are supported by the special methods listed in
Table 1-2. Here the most recent names are __matmul__, __rmatmul__, and __imat
mul__, added in Python 3.5 to support the use of @ as an infix operator for matrix
multiplication, as we’ll see in Chapter 16.

Table 1-2. Special method names and symbols for operators

Operator category Symbols Method names
Unary numeric - + abs() __neg__ __pos__ __abs__

Rich comparison < <= == != > >= __lt__ __le__ __eq__ __ne__
__gt__ __ge__

Arithmetic + - * / // % @
divmod() round() **
pow()

__add__ __sub__ __mul__ __truediv__
__floordiv__ __mod__ __matmul__ __div
mod__ __round__ __pow__

Reversed arithmetic (arithmetic operators with swapped
operands)

__radd__ __rsub__ __rmul__ __rtrue
div__ __rfloordiv__ __rmod__ __rmat
mul__ __rdivmod__ __rpow__

Augmented
assignment
arithmetic

+= -= *= /= //= %=
@= **=

__iadd__ __isub__ __imul__ __itrue
div__ __ifloordiv__ __imod__ __imat
mul__ __ipow__

Bitwise & | ^ << >> ~ __and__ __or__ __xor__ __lshift__
__rshift__ __invert__

Reversed bitwise (bitwise operators with swapped
operands)

__rand__ __ror__ __rxor__
__rlshift__ __rrshift__

16 | Chapter 1: The Python Data Model

Operator category Symbols Method names
Augmented
assignment bitwise

&= |= ^= <<= >>= __iand__ __ior__ __ixor__
__ilshift__ __irshift__

Python calls a reversed operator special method on the second
operand when the corresponding special method on the first
operand cannot be used. Augmented assignments are shortcuts
combining an infix operator with variable assignment, e.g., a += b.
Chapter 16 explains reversed operators and augmented assignment
in detail.

Why len Is Not a Method
I asked this question to core developer Raymond Hettinger in 2013, and the key to
his answer was a quote from “The Zen of Python”: “practicality beats purity.” In
“How Special Methods Are Used” on page 8, I described how len(x) runs very fast
when x is an instance of a built-in type. No method is called for the built-in objects of
CPython: the length is simply read from a field in a C struct. Getting the number of
items in a collection is a common operation and must work efficiently for such basic
and diverse types as str, list, memoryview, and so on.

In other words, len is not called as a method because it gets special treatment as part
of the Python Data Model, just like abs. But thanks to the special method __len__,
you can also make len work with your own custom objects. This is a fair compromise
between the need for efficient built-in objects and the consistency of the language.
Also from “The Zen of Python”: “Special cases aren’t special enough to break the
rules.”

If you think of abs and len as unary operators, you may be more
inclined to forgive their functional look and feel, as opposed to the
method call syntax one might expect in an object-oriented lan‐
guage. In fact, the ABC language—a direct ancestor of Python that
pioneered many of its features—had an # operator that was the
equivalent of len (you’d write #s). When used as an infix operator,
written x#s, it counted the occurrences of x in s, which in Python
you get as s.count(x), for any sequence s.

Why len Is Not a Method | 17

https://fpy.li/1-8

Chapter Summary
By implementing special methods, your objects can behave like the built-in types,
enabling the expressive coding style the community considers Pythonic.

A basic requirement for a Python object is to provide usable string representations of
itself, one used for debugging and logging, another for presentation to end users.
That is why the special methods __repr__ and __str__ exist in the data model.

Emulating sequences, as shown with the FrenchDeck example, is one of the most
common uses of the special methods. For example, database libraries often return
query results wrapped in sequence-like collections. Making the most of existing
sequence types is the subject of Chapter 2. Implementing your own sequences will be
covered in Chapter 12, when we create a multidimensional extension of the Vector
class.

Thanks to operator overloading, Python offers a rich selection of numeric types, from
the built-ins to decimal.Decimal and fractions.Fraction, all supporting infix
arithmetic operators. The NumPy data science libraries support infix operators
with matrices and tensors. Implementing operators—including reversed operators
and augmented assignment—will be shown in Chapter 16 via enhancements of the
Vector example.

The use and implementation of the majority of the remaining special methods of the
Python Data Model are covered throughout this book.

Further Reading
The “Data Model” chapter of The Python Language Reference is the canonical source
for the subject of this chapter and much of this book.

Python in a Nutshell, 3rd ed. by Alex Martelli, Anna Ravenscroft, and Steve Holden
(O’Reilly) has excellent coverage of the data model. Their description of the mechan‐
ics of attribute access is the most authoritative I’ve seen apart from the actual
C source code of CPython. Martelli is also a prolific contributor to Stack Overflow,
with more than 6,200 answers posted. See his user profile at Stack Overflow.

David Beazley has two books covering the data model in detail in the context of
Python 3: Python Essential Reference, 4th ed. (Addison-Wesley), and Python Cook‐
book, 3rd ed. (O’Reilly), coauthored with Brian K. Jones.

The Art of the Metaobject Protocol (MIT Press) by Gregor Kiczales, Jim des Rivieres,
and Daniel G. Bobrow explains the concept of a metaobject protocol, of which the
Python Data Model is one example.

18 | Chapter 1: The Python Data Model

https://fpy.li/dtmodel
https://fpy.li/pynut3
https://fpy.li/1-9
https://dabeaz.com/per.html
https://fpy.li/pycook3
https://fpy.li/pycook3
https://mitpress.mit.edu/books/art-metaobject-protocol
Pouria

Soapbox

Data Model or Object Model?

What the Python documentation calls the “Python Data Model,” most authors would
say is the “Python object model.” Martelli, Ravenscroft, and Holden’s Python in a
Nutshell, 3rd ed., and David Beazley’s Python Essential Reference, 4th ed. are the best
books covering the Python Data Model, but they refer to it as the “object model.” On
Wikipedia, the first definition of “object model” is: “The properties of objects in gen‐
eral in a specific computer programming language.” This is what the Python Data
Model is about. In this book, I will use “data model” because the documentation
favors that term when referring to the Python object model, and because it is the title
of the chapter of The Python Language Reference most relevant to our discussions.

Muggle Methods

The Original Hacker’s Dictionary defines magic as “yet unexplained, or too compli‐
cated to explain” or “a feature not generally publicized which allows something other‐
wise impossible.”

The Ruby community calls their equivalent of the special methods magic methods.
Many in the Python community adopt that term as well. I believe the special methods
are the opposite of magic. Python and Ruby empower their users with a rich metaob‐
ject protocol that is fully documented, enabling muggles like you and me to emulate
many of the features available to core developers who write the interpreters for those
languages.

In contrast, consider Go. Some objects in that language have features that are magic,
in the sense that we cannot emulate them in our own user-defined types. For exam‐
ple, Go arrays, strings, and maps support the use brackets for item access, as in a[i].
But there’s no way to make the [] notation work with a new collection type that you
define. Even worse, Go has no user-level concept of an iterable interface or an iterator
object, therefore its for/range syntax is limited to supporting five “magic” built-in
types, including arrays, strings, and maps.

Maybe in the future, the designers of Go will enhance its metaobject protocol. But
currently, it is much more limited than what we have in Python or Ruby.

Metaobjects

The Art of the Metaobject Protocol (AMOP) is my favorite computer book title. But I
mention it because the term metaobject protocol is useful to think about the Python
Data Model and similar features in other languages. The metaobject part refers to the
objects that are the building blocks of the language itself. In this context, protocol is a
synonym of interface. So a metaobject protocol is a fancy synonym for object model:
an API for core language constructs.

Further Reading | 19

https://fpy.li/1-10
https://fpy.li/dtmodel
https://fpy.li/1-11

A rich metaobject protocol enables extending a language to support new program‐
ming paradigms. Gregor Kiczales, the first author of the AMOP book, later became a
pioneer in aspect-oriented programming and the initial author of AspectJ, an exten‐
sion of Java implementing that paradigm. Aspect-oriented programming is much
easier to implement in a dynamic language like Python, and some frameworks do it.
The most important example is zope.interface, part of the framework on which the
Plone content management system is built.

20 | Chapter 1: The Python Data Model

https://fpy.li/1-12
https://fpy.li/1-13

1 Leo Geurts, Lambert Meertens, and Steven Pemberton, ABC Programmer’s Handbook, p. 8. (Bosko Books).

CHAPTER 2

An Array of Sequences

As you may have noticed, several of the operations mentioned work equally for texts,
lists and tables. Texts, lists and tables together are called ‘trains’. [...] The FOR com‐
mand also works generically on trains.

—Leo Geurts, Lambert Meertens, and Steven Pembertonm, ABC Programmer’s
Handbook1

Before creating Python, Guido was a contributor to the ABC language—a 10-year
research project to design a programming environment for beginners. ABC intro‐
duced many ideas we now consider “Pythonic”: generic operations on different types
of sequences, built-in tuple and mapping types, structure by indentation, strong
typing without variable declarations, and more. It’s no accident that Python is so
user-friendly.

Python inherited from ABC the uniform handling of sequences. Strings, lists, byte
sequences, arrays, XML elements, and database results share a rich set of common
operations, including iteration, slicing, sorting, and concatenation.

Understanding the variety of sequences available in Python saves us from reinventing
the wheel, and their common interface inspires us to create APIs that properly sup‐
port and leverage existing and future sequence types.

Most of the discussion in this chapter applies to sequences in general, from the famil‐
iar list to the str and bytes types added in Python 3. Specific topics on lists, tuples,
arrays, and queues are also covered here, but the specifics of Unicode strings and byte
sequences appear in Chapter 4. Also, the idea here is to cover sequence types that are
ready to use. Creating your own sequence types is the subject of Chapter 12.

21

These are the main topics this chapter will cover:

• List comprehensions and the basics of generator expressions
• Using tuples as records versus using tuples as immutable lists
• Sequence unpacking and sequence patterns
• Reading from slices and writing to slices
• Specialized sequence types, like arrays and queues

What’s New in This Chapter
The most important update in this chapter is “Pattern Matching with Sequences” on
page 38. That’s the first time the new pattern matching feature of Python 3.10 appears
in this second edition.

Other changes are not updates but improvements over the first edition:

• New diagram and description of the internals of sequences, contrasting contain‐
ers and flat sequences

• Brief comparison of the performance and storage characteristics of list versus
tuple

• Caveats of tuples with mutable elements, and how to detect them if needed

I moved coverage of named tuples to “Classic Named Tuples” on page 169 in Chapter 5,
where they are compared to typing.NamedTuple and @dataclass.

To make room for new content and keep the page count within
reason, the section “Managing Ordered Sequences with Bisect”
from the first edition is now a post in the fluentpython.com com‐
panion website.

Overview of Built-In Sequences
The standard library offers a rich selection of sequence types implemented in C:

Container sequences
Can hold items of different types, including nested containers. Some examples:
list, tuple, and collections.deque.

Flat sequences
Hold items of one simple type. Some examples: str, bytes, and array.array.

22 | Chapter 2: An Array of Sequences

https://fpy.li/bisect
http://fluentpython.com

A container sequence holds references to the objects it contains, which may be of any
type, while a flat sequence stores the value of its contents in its own memory space,
not as distinct Python objects. See Figure 2-1.

Figure 2-1. Simplified memory diagrams for a tuple and an array, each with three
items. Gray cells represent the in-memory header of each Python object—not drawn to
proportion. The tuple has an array of references to its items. Each item is a separate
Python object, possibly holding references to other Python objects, like that two-item
list. In contrast, the Python array is a single object, holding a C language array of three
doubles.

Thus, flat sequences are more compact, but they are limited to holding primitive
machine values like bytes, integers, and floats.

Every Python object in memory has a header with metadata. The
simplest Python object, a float, has a value field and two metadata
fields:

• ob_refcnt: the object’s reference count
• ob_type: a pointer to the object’s type
• ob_fval: a C double holding the value of the float

On a 64-bit Python build, each of those fields takes 8 bytes. That’s
why an array of floats is much more compact than a tuple of floats:
the array is a single object holding the raw values of the floats,
while the tuple consists of several objects—the tuple itself and each
float object contained in it.

Overview of Built-In Sequences | 23

Another way of grouping sequence types is by mutability:

Mutable sequences
For example, list, bytearray, array.array, and collections.deque.

Immutable sequences
For example, tuple, str, and bytes.

Figure 2-2 helps visualize how mutable sequences inherit all methods from immuta‐
ble sequences, and implement several additional methods. The built-in concrete
sequence types do not actually subclass the Sequence and MutableSequence abstract
base classes (ABCs), but they are virtual subclasses registered with those ABCs—as
we’ll see in Chapter 13. Being virtual subclasses, tuple and list pass these tests:

>>> from collections import abc
>>> issubclass(tuple, abc.Sequence)
True
>>> issubclass(list, abc.MutableSequence)
True

Figure 2-2. Simplified UML class diagram for some classes from collections.abc (super‐
classes are on the left; inheritance arrows point from subclasses to superclasses; names
in italic are abstract classes and abstract methods).

Keep in mind these common traits: mutable versus immutable; container versus flat.
They are helpful to extrapolate what you know about one sequence type to others.

The most fundamental sequence type is the list: a mutable container. I expect you
are very familiar with lists, so we’ll jump right into list comprehensions, a powerful
way of building lists that is sometimes underused because the syntax may look
unusual at first. Mastering list comprehensions opens the door to generator expres‐
sions, which—among other uses—can produce elements to fill up sequences of any
type. Both are the subject of the next section.

24 | Chapter 2: An Array of Sequences

List Comprehensions and Generator Expressions
A quick way to build a sequence is using a list comprehension (if the target is a list)
or a generator expression (for other kinds of sequences). If you are not using these
syntactic forms on a daily basis, I bet you are missing opportunities to write code that
is more readable and often faster at the same time.

If you doubt my claim that these constructs are “more readable,” read on. I’ll try to
convince you.

For brevity, many Python programmers refer to list comprehen‐
sions as listcomps, and generator expressions as genexps. I will use
these words as well.

List Comprehensions and Readability
Here is a test: which do you find easier to read, Example 2-1 or Example 2-2?

Example 2-1. Build a list of Unicode code points from a string

>>> symbols = '$¢£¥€¤'
>>> codes = []
>>> for symbol in symbols:
... codes.append(ord(symbol))
...
>>> codes
[36, 162, 163, 165, 8364, 164]

Example 2-2. Build a list of Unicode code points from a string, using a listcomp

>>> symbols = '$¢£¥€¤'
>>> codes = [ord(symbol) for symbol in symbols]
>>> codes
[36, 162, 163, 165, 8364, 164]

Anybody who knows a little bit of Python can read Example 2-1. However, after
learning about listcomps, I find Example 2-2 more readable because its intent is
explicit.

A for loop may be used to do lots of different things: scanning a sequence to count or
pick items, computing aggregates (sums, averages), or any number of other tasks.
The code in Example 2-1 is building up a list. In contrast, a listcomp is more explicit.
Its goal is always to build a new list.

List Comprehensions and Generator Expressions | 25

2 Thanks to reader Tina Lapine for pointing this out.

Of course, it is possible to abuse list comprehensions to write truly incomprehensible
code. I’ve seen Python code with listcomps used just to repeat a block of code for its
side effects. If you are not doing something with the produced list, you should not use
that syntax. Also, try to keep it short. If the list comprehension spans more than two
lines, it is probably best to break it apart or rewrite it as a plain old for loop. Use your
best judgment: for Python, as for English, there are no hard-and-fast rules for clear
writing.

Syntax Tip

In Python code, line breaks are ignored inside pairs of [], {}, or ().
So you can build multiline lists, listcomps, tuples, dictionaries, etc.,
without using the \ line continuation escape, which doesn’t work if
you accidentally type a space after it. Also, when those delimiter
pairs are used to define a literal with a comma-separated series of
items, a trailing comma will be ignored. So, for example, when cod‐
ing a multiline list literal, it is thoughtful to put a comma after the
last item, making it a little easier for the next coder to add one
more item to that list, and reducing noise when reading diffs.

Local Scope Within Comprehensions and Generator Expressions
In Python 3, list comprehensions, generator expressions, and their siblings set and
dict comprehensions, have a local scope to hold the variables assigned in the for
clause.

However, variables assigned with the “Walrus operator” := remain accessible after
those comprehensions or expressions return—unlike local variables in a function.
PEP 572—Assignment Expressions defines the scope of the target of := as the enclos‐
ing function, unless there is a global or nonlocal declaration for that target.2

>>> x = 'ABC'
>>> codes = [ord(x) for x in x]

>>> x
'ABC'
>>> codes
[65, 66, 67]
>>> codes = [last := ord(c) for c in x]

>>> last
67

>>> c
Traceback (most recent call last):

26 | Chapter 2: An Array of Sequences

https://fpy.li/pep572

 File "<stdin>", line 1, in <module>
NameError: name 'c' is not defined

x was not clobbered: it’s still bound to 'ABC'.

last remains.

c is gone; it existed only inside the listcomp.

List comprehensions build lists from sequences or any other iterable type by filtering
and transforming items. The filter and map built-ins can be composed to do the
same, but readability suffers, as we will see next.

Listcomps Versus map and filter
Listcomps do everything the map and filter functions do, without the contortions of
the functionally challenged Python lambda. Consider Example 2-3.

Example 2-3. The same list built by a listcomp and a map/filter composition

>>> symbols = '$¢£¥€¤'
>>> beyond_ascii = [ord(s) for s in symbols if ord(s) > 127]
>>> beyond_ascii
[162, 163, 165, 8364, 164]
>>> beyond_ascii = list(filter(lambda c: c > 127, map(ord, symbols)))
>>> beyond_ascii
[162, 163, 165, 8364, 164]

I used to believe that map and filter were faster than the equivalent listcomps, but
Alex Martelli pointed out that’s not the case—at least not in the preceding examples.
The 02-array-seq/listcomp_speed.py script in the Fluent Python code repository is a
simple speed test comparing listcomp with filter/map.

I’ll have more to say about map and filter in Chapter 7. Now we turn to the use of
listcomps to compute Cartesian products: a list containing tuples built from all items
from two or more lists.

Cartesian Products
Listcomps can build lists from the Cartesian product of two or more iterables. The
items that make up the Cartesian product are tuples made from items from every
input iterable. The resulting list has a length equal to the lengths of the input iterables
multiplied. See Figure 2-3.

List Comprehensions and Generator Expressions | 27

https://fpy.li/2-1
https://fpy.li/code

Figure 2-3. The Cartesian product of 3 card ranks and 4 suits is a sequence of 12
pairings.

For example, imagine you need to produce a list of T-shirts available in two colors
and three sizes. Example 2-4 shows how to produce that list using a listcomp. The
result has six items.

Example 2-4. Cartesian product using a list comprehension

>>> colors = ['black', 'white']
>>> sizes = ['S', 'M', 'L']
>>> tshirts = [(color, size) for color in colors for size in sizes]
>>> tshirts
[('black', 'S'), ('black', 'M'), ('black', 'L'), ('white', 'S'),
 ('white', 'M'), ('white', 'L')]
>>> for color in colors:
... for size in sizes:
... print((color, size))
...
('black', 'S')
('black', 'M')
('black', 'L')
('white', 'S')
('white', 'M')
('white', 'L')
>>> tshirts = [(color, size) for size in sizes
... for color in colors]
>>> tshirts
[('black', 'S'), ('white', 'S'), ('black', 'M'), ('white', 'M'),
 ('black', 'L'), ('white', 'L')]

28 | Chapter 2: An Array of Sequences

This generates a list of tuples arranged by color, then size.

Note how the resulting list is arranged as if the for loops were nested in the same
order as they appear in the listcomp.

To get items arranged by size, then color, just rearrange the for clauses; adding a
line break to the listcomp makes it easier to see how the result will be ordered.

In Example 1-1 (Chapter 1), I used the following expression to initialize a card deck
with a list made of 52 cards from all 13 ranks of each of the 4 suits, sorted by suit,
then rank:

 self._cards = [Card(rank, suit) for suit in self.suits
 for rank in self.ranks]

Listcomps are a one-trick pony: they build lists. To generate data for other sequence
types, a genexp is the way to go. The next section is a brief look at genexps in the
context of building sequences that are not lists.

Generator Expressions
To initialize tuples, arrays, and other types of sequences, you could also start from a
listcomp, but a genexp (generator expression) saves memory because it yields items
one by one using the iterator protocol instead of building a whole list just to feed
another constructor.

Genexps use the same syntax as listcomps, but are enclosed in parentheses rather
than brackets.

Example 2-5 shows basic usage of genexps to build a tuple and an array.

Example 2-5. Initializing a tuple and an array from a generator expression

>>> symbols = '$¢£¥€¤'
>>> tuple(ord(symbol) for symbol in symbols)
(36, 162, 163, 165, 8364, 164)
>>> import array
>>> array.array('I', (ord(symbol) for symbol in symbols))
array('I', [36, 162, 163, 165, 8364, 164])

If the generator expression is the single argument in a function call, there is no
need to duplicate the enclosing parentheses.

The array constructor takes two arguments, so the parentheses around the gen‐
erator expression are mandatory. The first argument of the array constructor
defines the storage type used for the numbers in the array, as we’ll see in “Arrays”
on page 59.

List Comprehensions and Generator Expressions | 29

Example 2-6 uses a genexp with a Cartesian product to print out a roster of T-shirts
of two colors in three sizes. In contrast with Example 2-4, here the six-item list of T-
shirts is never built in memory: the generator expression feeds the for loop produc‐
ing one item at a time. If the two lists used in the Cartesian product had a thousand
items each, using a generator expression would save the cost of building a list with a
million items just to feed the for loop.

Example 2-6. Cartesian product in a generator expression

>>> colors = ['black', 'white']
>>> sizes = ['S', 'M', 'L']
>>> for tshirt in (f'{c} {s}' for c in colors for s in sizes):
... print(tshirt)
...
black S
black M
black L
white S
white M
white L

The generator expression yields items one by one; a list with all six T-shirt varia‐
tions is never produced in this example.

Chapter 17 explains how generators work in detail. Here the idea
was just to show the use of generator expressions to initialize
sequences other than lists, or to produce output that you don’t
need to keep in memory.

Now we move on to the other fundamental sequence type in Python: the tuple.

Tuples Are Not Just Immutable Lists
Some introductory texts about Python present tuples as “immutable lists,” but that is
short selling them. Tuples do double duty: they can be used as immutable lists and
also as records with no field names. This use is sometimes overlooked, so we will start
with that.

Tuples as Records
Tuples hold records: each item in the tuple holds the data for one field, and the posi‐
tion of the item gives its meaning.

If you think of a tuple just as an immutable list, the quantity and the order of the
items may or may not be important, depending on the context. But when using a

30 | Chapter 2: An Array of Sequences

tuple as a collection of fields, the number of items is usually fixed and their order is
always important.

Example 2-7 shows tuples used as records. Note that in every expression, sorting the
tuple would destroy the information because the meaning of each field is given by its
position in the tuple.

Example 2-7. Tuples used as records

>>> lax_coordinates = (33.9425, -118.408056)
>>> city, year, pop, chg, area = ('Tokyo', 2003, 32_450, 0.66, 8014)
>>> traveler_ids = [('USA', '31195855'), ('BRA', 'CE342567'),
... ('ESP', 'XDA205856')]
>>> for passport in sorted(traveler_ids):
... print('%s/%s' % passport)
...
BRA/CE342567
ESP/XDA205856
USA/31195855
>>> for country, _ in traveler_ids:
... print(country)
...
USA
BRA
ESP

Latitude and longitude of the Los Angeles International Airport.

Data about Tokyo: name, year, population (thousands), population change (%),
and area (km²).

A list of tuples of the form (country_code, passport_number).

As we iterate over the list, passport is bound to each tuple.

The % formatting operator understands tuples and treats each item as a separate
field.

The for loop knows how to retrieve the items of a tuple separately—this is called
“unpacking.” Here we are not interested in the second item, so we assign it to _, a
dummy variable.

Tuples Are Not Just Immutable Lists | 31

In general, using _ as a dummy variable is just a convention. It’s
just a strange but valid variable name. However, in a match/case
statement, _ is a wildcard that matches any value but is not bound
to a value. See “Pattern Matching with Sequences” on page 38. And
in the Python console, the result of the preceding command is
assigned to _—unless the result is None.

We often think of records as data structures with named fields. Chapter 5 presents
two ways of creating tuples with named fields.

But often, there’s no need to go through the trouble of creating a class just to name
the fields, especially if you leverage unpacking and avoid using indexes to access the
fields. In Example 2-7, we assigned ('Tokyo', 2003, 32_450, 0.66, 8014) to
city, year, pop, chg, area in a single statement. Then, the % operator assigned
each item in the passport tuple to the corresponding slot in the format string in the
print argument. Those are two examples of tuple unpacking.

The term tuple unpacking is widely used by Pythonistas, but itera‐
ble unpacking is gaining traction, as in the title of PEP 3132 —
Extended Iterable Unpacking.
“Unpacking Sequences and Iterables” on page 35 presents a lot more
about unpacking not only tuples, but sequences and iterables in
general.

Now let’s consider the tuple class as an immutable variant of the list class.

Tuples as Immutable Lists
The Python interpreter and standard library make extensive use of tuples as immuta‐
ble lists, and so should you. This brings two key benefits:

Clarity
When you see a tuple in code, you know its length will never change.

Performance
A tuple uses less memory than a list of the same length, and it allows Python
to do some optimizations.

However, be aware that the immutability of a tuple only applies to the references
contained in it. References in a tuple cannot be deleted or replaced. But if one of
those references points to a mutable object, and that object is changed, then the value
of the tuple changes. The next snippet illustrates this point by creating two tuples—a

and b—which are initially equal. Figure 2-4 represents the initial layout of the b tuple
in memory.

32 | Chapter 2: An Array of Sequences

https://fpy.li/2-2
https://fpy.li/2-2

Figure 2-4. The content of the tuple itself is immutable, but that only means the refer‐
ences held by the tuple will always point to the same objects. However, if one of the ref‐
erenced objects is mutable—like a list—its content may change.

When the last item in b is changed, b and a become different:

>>> a = (10, 'alpha', [1, 2])
>>> b = (10, 'alpha', [1, 2])
>>> a == b
True
>>> b[-1].append(99)
>>> a == b
False
>>> b
(10, 'alpha', [1, 2, 99])

Tuples with mutable items can be a source of bugs. As we’ll see in “What Is Hasha‐
ble” on page 84, an object is only hashable if its value cannot ever change. An unhasha‐
ble tuple cannot be inserted as a dict key, or a set element.

If you want to determine explicitly if a tuple (or any object) has a fixed value, you can
use the hash built-in to create a fixed function like this:

>>> def fixed(o):
... try:
... hash(o)
... except TypeError:
... return False
... return True
...
>>> tf = (10, 'alpha', (1, 2))
>>> tm = (10, 'alpha', [1, 2])
>>> fixed(tf)
True

Tuples Are Not Just Immutable Lists | 33

>>> fixed(tm)
False

We explore this issue further in “The Relative Immutability of Tuples” on page 207.

Despite this caveat, tuples are widely used as immutable lists. They offer some perfor‐
mance advantages explained by Python core developer Raymond Hettinger in a
StackOverflow answer to the question: “Are tuples more efficient than lists in
Python?”. To summarize, Hettinger wrote:

• To evaluate a tuple literal, the Python compiler generates bytecode for a tuple
constant in one operation; but for a list literal, the generated bytecode pushes
each element as a separate constant to the data stack, and then builds the list.

• Given a tuple t, tuple(t) simply returns a reference to the same t. There’s no
need to copy. In contrast, given a list l, the list(l) constructor must create a
new copy of l.

• Because of its fixed length, a tuple instance is allocated the exact memory space
it needs. Instances of list, on the other hand, are allocated with room to spare,
to amortize the cost of future appends.

• The references to the items in a tuple are stored in an array in the tuple struct,
while a list holds a pointer to an array of references stored elsewhere. The indi‐
rection is necessary because when a list grows beyond the space currently alloca‐
ted, Python needs to reallocate the array of references to make room. The extra
indirection makes CPU caches less effective.

Comparing Tuple and List Methods
When using a tuple as an immutable variation of list, it is good to know how similar
their APIs are. As you can see in Table 2-1, tuple supports all list methods that do
not involve adding or removing items, with one exception—tuple lacks the
__reversed__ method. However, that is just for optimization; reversed(my_tuple)
works without it.

Table 2-1. Methods and attributes found in list or tuple (methods implemented by object
are omitted for brevity)

list tuple

s.__add__(s2) ● ● s + s2—concatenation

s.__iadd__(s2) ● s += s2—in-place concatenation

s.append(e) ● Append one element after last

s.clear() ● Delete all items

s.__contains__(e) ● ● e in s

s.copy() ● Shallow copy of the list

34 | Chapter 2: An Array of Sequences

https://fpy.li/2-3
https://fpy.li/2-3

list tuple

s.count(e) ● ● Count occurrences of an element

s.__delitem__(p) ● Remove item at position p

s.extend(it) ● Append items from iterable it

s.__getitem__(p) ● ● s[p]—get item at position

s.__getnewargs__() ● Support for optimized serialization with pickle

s.index(e) ● ● Find position of first occurrence of e

s.insert(p, e) ● Insert element e before the item at position p

s.__iter__() ● ● Get iterator

s.__len__() ● ● len(s)—number of items

s.__mul__(n) ● ● s * n—repeated concatenation

s.__imul__(n) ● s *= n—in-place repeated concatenation

s.__rmul__(n) ● ● n * s—reversed repeated concatenationa

s.pop([p]) ● Remove and return last item or item at optional position p

s.remove(e) ● Remove first occurrence of element e by value

s.reverse() ● Reverse the order of the items in place

s.__reversed__() ● Get iterator to scan items from last to first

s.__setitem__(p, e) ● s[p] = e—put e in position p, overwriting existing itemb

s.sort([key], [reverse]) ● Sort items in place with optional keyword arguments key and
reverse

a Reversed operators are explained in Chapter 16.
b Also used to overwrite a subsequence. See “Assigning to Slices” on page 50.

Now let’s switch to an important subject for idiomatic Python programming: tuple,
list, and iterable unpacking.

Unpacking Sequences and Iterables
Unpacking is important because it avoids unnecessary and error-prone use of
indexes to extract elements from sequences. Also, unpacking works with any iterable
object as the data source—including iterators, which don’t support index notation
([]). The only requirement is that the iterable yields exactly one item per variable in
the receiving end, unless you use a star (*) to capture excess items, as explained in
“Using * to Grab Excess Items” on page 36.

The most visible form of unpacking is parallel assignment; that is, assigning items
from an iterable to a tuple of variables, as you can see in this example:

>>> lax_coordinates = (33.9425, -118.408056)
>>> latitude, longitude = lax_coordinates # unpacking
>>> latitude

Unpacking Sequences and Iterables | 35

33.9425
>>> longitude
-118.408056

An elegant application of unpacking is swapping the values of variables without using
a temporary variable:

>>> b, a = a, b

Another example of unpacking is prefixing an argument with * when calling a
function:

>>> divmod(20, 8)
(2, 4)
>>> t = (20, 8)
>>> divmod(*t)
(2, 4)
>>> quotient, remainder = divmod(*t)
>>> quotient, remainder
(2, 4)

The preceding code shows another use of unpacking: allowing functions to return
multiple values in a way that is convenient to the caller. As another example, the
os.path.split() function builds a tuple (path, last_part) from a filesystem path:

>>> import os
>>> _, filename = os.path.split('/home/luciano/.ssh/id_rsa.pub')
>>> filename
'id_rsa.pub'

Another way of using just some of the items when unpacking is to use the * syntax, as
we’ll see right away.

Using * to Grab Excess Items
Defining function parameters with *args to grab arbitrary excess arguments is a
classic Python feature.

In Python 3, this idea was extended to apply to parallel assignment as well:

>>> a, b, *rest = range(5)
>>> a, b, rest
(0, 1, [2, 3, 4])
>>> a, b, *rest = range(3)
>>> a, b, rest
(0, 1, [2])
>>> a, b, *rest = range(2)
>>> a, b, rest
(0, 1, [])

In the context of parallel assignment, the * prefix can be applied to exactly one vari‐
able, but it can appear in any position:

36 | Chapter 2: An Array of Sequences

>>> a, *body, c, d = range(5)
>>> a, body, c, d
(0, [1, 2], 3, 4)
>>> *head, b, c, d = range(5)
>>> head, b, c, d
([0, 1], 2, 3, 4)

Unpacking with * in Function Calls and Sequence Literals
PEP 448—Additional Unpacking Generalizations introduced more flexible syntax for
iterable unpacking, best summarized in “What’s New In Python 3.5”.

In function calls, we can use * multiple times:

>>> def fun(a, b, c, d, *rest):
... return a, b, c, d, rest
...
>>> fun(*[1, 2], 3, *range(4, 7))
(1, 2, 3, 4, (5, 6))

The * can also be used when defining list, tuple, or set literals, as shown in these
examples from “What’s New In Python 3.5”:

>>> *range(4), 4
(0, 1, 2, 3, 4)
>>> [*range(4), 4]
[0, 1, 2, 3, 4]
>>> {*range(4), 4, *(5, 6, 7)}
{0, 1, 2, 3, 4, 5, 6, 7}

PEP 448 introduced similar new syntax for **, which we’ll see in “Unpacking Map‐
pings” on page 80.

Finally, a powerful feature of tuple unpacking is that it works with nested structures.

Nested Unpacking
The target of an unpacking can use nesting, e.g., (a, b, (c, d)). Python will do the
right thing if the value has the same nesting structure. Example 2-8 shows nested
unpacking in action.

Example 2-8. Unpacking nested tuples to access the longitude

metro_areas = [
 ('Tokyo', 'JP', 36.933, (35.689722, 139.691667)),
 ('Delhi NCR', 'IN', 21.935, (28.613889, 77.208889)),
 ('Mexico City', 'MX', 20.142, (19.433333, -99.133333)),
 ('New York-Newark', 'US', 20.104, (40.808611, -74.020386)),
 ('São Paulo', 'BR', 19.649, (-23.547778, -46.635833)),
]

Unpacking Sequences and Iterables | 37

https://fpy.li/pep448
https://fpy.li/2-4
https://fpy.li/2-4

3 Thanks to tech reviewer Leonardo Rochael for this example.

def main():
 print(f'{"":15} | {"latitude":>9} | {"longitude":>9}')
 for name, _, _, (lat, lon) in metro_areas:
 if lon <= 0:
 print(f'{name:15} | {lat:9.4f} | {lon:9.4f}')

if __name__ == '__main__':
 main()

Each tuple holds a record with four fields, the last of which is a coordinate pair.

By assigning the last field to a nested tuple, we unpack the coordinates.

The lon <= 0: test selects only cities in the Western hemisphere.

The output of Example 2-8 is:

 | latitude | longitude
Mexico City | 19.4333 | -99.1333
New York-Newark | 40.8086 | -74.0204
São Paulo | -23.5478 | -46.6358

The target of an unpacking assignment can also be a list, but good use cases are rare.
Here is the only one I know: if you have a database query that returns a single record
(e.g., the SQL code has a LIMIT 1 clause), then you can unpack and at the same time
make sure there’s only one result with this code:

>>> [record] = query_returning_single_row()

If the record has only one field, you can get it directly, like this:

>>> [[field]] = query_returning_single_row_with_single_field()

Both of these could be written with tuples, but don’t forget the syntax quirk that
single-item tuples must be written with a trailing comma. So the first target would be
(record,) and the second ((field,),). In both cases you get a silent bug if you for‐
get a comma.3

Now let’s study pattern matching, which supports even more powerful ways to
unpack sequences.

Pattern Matching with Sequences
The most visible new feature in Python 3.10 is pattern matching with the match/case
statement proposed in PEP 634—Structural Pattern Matching: Specification.

38 | Chapter 2: An Array of Sequences

https://fpy.li/pep634

Python core developer Carol Willing wrote the excellent introduc‐
tion to pattern matching in the “Structural Pattern Matching” sec‐
tion of “What’s New In Python 3.10”. You may want to read that
quick overview. In this book, I chose to split the coverage of pat‐
tern matching over different chapters, depending on the pattern
types: “Pattern Matching with Mappings” on page 81 and “Pattern
Matching Class Instances” on page 192. An extended example is in
“Pattern Matching in lis.py: A Case Study” on page 669.

Here is a first example of match/case handling sequences. Imagine you are designing
a robot that accepts commands sent as sequences of words and numbers, like BEEPER
440 3. After splitting into parts and parsing the numbers, you’d have a message like
['BEEPER', 440, 3]. You could use a method like this to handle such messages:

Example 2-9. Method from an imaginary Robot class

 def handle_command(self, message):
 match message:
 case ['BEEPER', frequency, times]:
 self.beep(times, frequency)
 case ['NECK', angle]:
 self.rotate_neck(angle)
 case ['LED', ident, intensity]:
 self.leds[ident].set_brightness(ident, intensity)
 case ['LED', ident, red, green, blue]:
 self.leds[ident].set_color(ident, red, green, blue)
 case _:
 raise InvalidCommand(message)

The expression after the match keyword is the subject. The subject is the data that
Python will try to match to the patterns in each case clause.

This pattern matches any subject that is a sequence with three items. The first
item must be the string 'BEEPER'. The second and third item can be anything,
and they will be bound to the variables frequency and times, in that order.

This matches any subject with two items, the first being 'NECK'.

This will match a subject with three items starting with 'LED'. If the number of
items does not match, Python proceeds to the next case.

Another sequence pattern starting with 'LED', now with five items—including
the 'LED' constant.

Pattern Matching with Sequences | 39

https://fpy.li/2-6
https://fpy.li/2-7

4 In my view, a sequence of if/elif/elif/.../else blocks is a fine replacement for switch/case. It doesn’t
suffer from the fallthrough and dangling else problems that some language designers irrationally copied from
C—decades after they were widely known as the cause of countless bugs.

This is the default case. It will match any subject that did not match a previous
pattern. The _ variable is special, as we’ll soon see.

On the surface, match/case may look like the switch/case statement from the C lan‐
guage—but that’s only half the story.4 One key improvement of match over switch is
destructuring—a more advanced form of unpacking. Destructuring is a new word in
the Python vocabulary, but it is commonly used in the documentation of languages
that support pattern matching—like Scala and Elixir.

As a first example of destructuring, Example 2-10 shows part of Example 2-8 rewrit‐
ten with match/case.

Example 2-10. Destructuring nested tuples—requires Python ≥ 3.10

metro_areas = [
 ('Tokyo', 'JP', 36.933, (35.689722, 139.691667)),
 ('Delhi NCR', 'IN', 21.935, (28.613889, 77.208889)),
 ('Mexico City', 'MX', 20.142, (19.433333, -99.133333)),
 ('New York-Newark', 'US', 20.104, (40.808611, -74.020386)),
 ('São Paulo', 'BR', 19.649, (-23.547778, -46.635833)),
]

def main():
 print(f'{"":15} | {"latitude":>9} | {"longitude":>9}')
 for record in metro_areas:
 match record:
 case [name, _, _, (lat, lon)] if lon <= 0:
 print(f'{name:15} | {lat:9.4f} | {lon:9.4f}')

The subject of this match is record— i.e., each of the tuples in metro_areas.

A case clause has two parts: a pattern and an optional guard with the if
keyword.

In general, a sequence pattern matches the subject if:

1. The subject is a sequence and;
2. The subject and the pattern have the same number of items and;
3. Each corresponding item matches, including nested items.

40 | Chapter 2: An Array of Sequences

https://fpy.li/2-8
https://fpy.li/2-9

For example, the pattern [name, _, _, (lat, lon)] in Example 2-10 matches a
sequence with four items, and the last item must be a two-item sequence.

Sequence patterns may be written as tuples or lists or any combination of nested
tuples and lists, but it makes no difference which syntax you use: in a sequence pat‐
tern, square brackets and parentheses mean the same thing. I wrote the pattern as a
list with a nested 2-tuple just to avoid repeating brackets or parentheses in
Example 2-10.

A sequence pattern can match instances of most actual or virtual subclasses of collec
tions.abc.Sequence, with the exception of str, bytes, and bytearray.

Instances of str, bytes, and bytearray are not handled as sequen‐
ces in the context of match/case. A match subject of one of those
types is treated as an “atomic” value—like the integer 987 is treated
as one value, not a sequence of digits. Treating those three types as
sequences could cause bugs due to unintended matches. If you
want to treat an object of those types as a sequence subject, convert
it in the match clause. For example, see tuple(phone) in the
following:

 match tuple(phone):
 case ['1', *rest]: # North America and Caribbean
 ...
 case ['2', *rest]: # Africa and some territories
 ...
 case ['3' | '4', *rest]: # Europe
 ...

In the standard library, these types are compatible with sequence patterns:

list memoryview array.array
tuple range collections.deque

Unlike unpacking, patterns don’t destructure iterables that are not sequences (such as
iterators).

The _ symbol is special in patterns: it matches any single item in that position, but it
is never bound to the value of the matched item. Also, the _ is the only variable that
can appear more than once in a pattern.

You can bind any part of a pattern with a variable using the as keyword:

 case [name, _, _, (lat, lon) as coord]:

Given the subject ['Shanghai', 'CN', 24.9, (31.1, 121.3)], the preceding pat‐
tern will match, and set the following variables:

Pattern Matching with Sequences | 41

Variable Set Value

name 'Shanghai'

lat 31.1

lon 121.3

coord (31.1, 121.3)

We can make patterns more specific by adding type information. For example, the
following pattern matches the same nested sequence structure as the previous exam‐
ple, but the first item must be an instance of str, and both items in the 2-tuple must
be instances of float:

 case [str(name), _, _, (float(lat), float(lon))]:

The expressions str(name) and float(lat) look like constructor
calls, which we’d use to convert name and lat to str and float.
But in the context of a pattern, that syntax performs a runtime type
check: the preceding pattern will match a four-item sequence in
which item 0 must be a str, and item 3 must be a pair of floats.
Additionally, the str in item 0 will be bound to the name variable,
and the floats in item 3 will be bound to lat and lon, respectively.
So, although str(name) borrows the syntax of a constructor call,
the semantics are completely different in the context of a pattern.
Using arbitrary classes in patterns is covered in “Pattern Matching
Class Instances” on page 192.

On the other hand, if we want to match any subject sequence starting with a str, and
ending with a nested sequence of two floats, we can write:

 case [str(name), *_, (float(lat), float(lon))]:

The *_ matches any number of items, without binding them to a variable. Using
*extra instead of *_ would bind the items to extra as a list with 0 or more items.

The optional guard clause starting with if is evaluated only if the pattern matches,
and can reference variables bound in the pattern, as in Example 2-10:

 match record:
 case [name, _, _, (lat, lon)] if lon <= 0:
 print(f'{name:15} | {lat:9.4f} | {lon:9.4f}')

The nested block with the print statement runs only if the pattern matches and the
guard expression is truthy.

42 | Chapter 2: An Array of Sequences

5 The latter is named eval in Norvig’s code; I renamed it to avoid confusion with Python’s eval built-in.

Destructuring with patterns is so expressive that sometimes a
match with a single case can make code simpler. Guido van Ros‐
sum has a collection of case/match examples, including one that
he titled “A very deep iterable and type match with extraction”.

Example 2-10 is not an improvement over Example 2-8. It’s just an example to con‐
trast two ways of doing the same thing. The next example shows how pattern match‐
ing contributes to clear, concise, and effective code.

Pattern Matching Sequences in an Interpreter
Peter Norvig of Stanford University wrote lis.py: an interpreter for a subset of the
Scheme dialect of the Lisp programming language in 132 lines of beautiful and reada‐
ble Python code. I took Norvig’s MIT-licensed source and updated it to Python 3.10
to showcase pattern matching. In this section, we’ll compare a key part of Norvig’s
code—which uses if/elif and unpacking—with a rewrite using match/case.

The two main functions of lis.py are parse and evaluate.5 The parser takes Scheme
parenthesized expressions and returns Python lists. Here are two examples:

>>> parse('(gcd 18 45)')
['gcd', 18, 45]
>>> parse('''
... (define double
... (lambda (n)
... (* n 2)))
... ''')
['define', 'double', ['lambda', ['n'], ['*', 'n', 2]]]

The evaluator takes lists like these and executes them. The first example is calling a
gcd function with 18 and 45 as arguments. When evaluated, it computes the greatest
common divisor of the arguments: 9. The second example is defining a function
named double with a parameter n. The body of the function is the expression (* n
2). The result of calling a function in Scheme is the value of the last expression in its
body.

Our focus here is destructuring sequences, so I will not explain the evaluator actions.
See “Pattern Matching in lis.py: A Case Study” on page 669 to learn more about how
lis.py works.

Example 2-11 shows Norvig’s evaluator with minor changes, abbreviated to show
only the sequence patterns.

Pattern Matching with Sequences | 43

https://fpy.li/2-10
https://fpy.li/2-11

Example 2-11. Matching patterns without match/case

def evaluate(exp: Expression, env: Environment) -> Any:
 "Evaluate an expression in an environment."
 if isinstance(exp, Symbol): # variable reference
 return env[exp]
 # ... lines omitted
 elif exp[0] == 'quote': # (quote exp)
 (_, x) = exp
 return x
 elif exp[0] == 'if': # (if test conseq alt)
 (_, test, consequence, alternative) = exp
 if evaluate(test, env):
 return evaluate(consequence, env)
 else:
 return evaluate(alternative, env)
 elif exp[0] == 'lambda': # (lambda (parm…) body…)
 (_, parms, *body) = exp
 return Procedure(parms, body, env)
 elif exp[0] == 'define':
 (_, name, value_exp) = exp
 env[name] = evaluate(value_exp, env)
 # ... more lines omitted

Note how each elif clause checks the first item of the list, and then unpacks the list,
ignoring the first item. The extensive use of unpacking suggests that Norvig is a fan of
pattern matching, but he wrote that code originally for Python 2 (though it now
works with any Python 3).

Using match/case in Python ≥ 3.10, we can refactor evaluate as shown in
Example 2-12.

Example 2-12. Pattern matching with match/case—requires Python ≥ 3.10

def evaluate(exp: Expression, env: Environment) -> Any:
 "Evaluate an expression in an environment."
 match exp:
 # ... lines omitted
 case ['quote', x]:
 return x
 case ['if', test, consequence, alternative]:
 if evaluate(test, env):
 return evaluate(consequence, env)
 else:
 return evaluate(alternative, env)
 case ['lambda', [*parms], *body] if body:
 return Procedure(parms, body, env)
 case ['define', Symbol() as name, value_exp]:
 env[name] = evaluate(value_exp, env)
 # ... more lines omitted

44 | Chapter 2: An Array of Sequences

 case _:
 raise SyntaxError(lispstr(exp))

Match if subject is a two-item sequence starting with 'quote'.

Match if subject is a four-item sequence starting with 'if'.

Match if subject is a sequence of three or more items starting with 'lambda'. The
guard ensures that body is not empty.

Match if subject is a three-item sequence starting with 'define', followed by an
instance of Symbol.

It is good practice to have a catch-all case. In this example, if exp doesn’t match
any of the patterns, the expression is malformed, and I raise SyntaxError.

Without a catch-all, the whole match statement does nothing when a subject does not
match any case—and this can be a silent failure.

Norvig deliberately avoided error checking in lis.py to keep the code easy to under‐
stand. With pattern matching, we can add more checks and still keep it readable. For
example, in the 'define' pattern, the original code does not ensure that name is an
instance of Symbol—that would require an if block, an isinstance call, and more
code. Example 2-12 is shorter and safer than Example 2-11.

Alternative patterns for lambda

This is the syntax of lambda in Scheme, using the syntactic convention that the suffix
… means the element may appear zero or more times:

(lambda (parms…) body1 body2…)

A simple pattern for the lambda case 'lambda' would be this:

 case ['lambda', parms, *body] if body:

However, that matches any value in the parms position, including the first 'x' in this
invalid subject:

['lambda', 'x', ['*', 'x', 2]]

The nested list after the lambda keyword in Scheme holds the names of the formal
parameters for the function, and it must be a list even if it has only one element. It
may also be an empty list, if the function takes no parameters—like Python’s ran
dom.random().

In Example 2-12, I made the 'lambda' pattern safer using a nested sequence pattern:

Pattern Matching with Sequences | 45

 case ['lambda', [*parms], *body] if body:
 return Procedure(parms, body, env)

In a sequence pattern, * can appear only once per sequence. Here we have two
sequences: the outer and the inner.

Adding the characters [*] around parms made the pattern look more like the Scheme
syntax it handles, and gave us an additional structural check.

Shortcut syntax for function definition

Scheme has an alternative define syntax to create a named function without using a
nested lambda. This is the syntax:

(define (name parm…) body1 body2…)

The define keyword is followed by a list with the name of the new function and zero
or more parameter names. After that list comes the function body with one or more
expressions.

Adding these two lines to the match takes care of the implementation:

 case ['define', [Symbol() as name, *parms], *body] if body:
 env[name] = Procedure(parms, body, env)

I’d place that case after the other define case in Example 2-12. The order between
the define cases is irrelevant in this example because no subject can match both of
these patterns: the second element must be a Symbol in the original define case, but
it must be a sequence starting with a Symbol in the define shortcut for function
definition.

Now consider how much work we’d have adding support for this second define syn‐
tax without the help of pattern matching in Example 2-11. The match statement does
a lot more than the switch in C-like languages.

Pattern matching is an example of declarative programming: the code describes
“what” you want to match, instead of “how” to match it. The shape of the code fol‐
lows the shape of the data, as Table 2-2 illustrates.

Table 2-2. Some Scheme syntactic forms and case patterns to handle them

Scheme syntax Sequence pattern

(quote exp) ['quote', exp]

(if test conseq alt) ['if', test, conseq, alt]

(lambda (parms…) body1 body2…) ['lambda', [*parms], *body] if body

(define name exp) ['define', Symbol() as name, exp]

(define (name parms…) body1
body2…)

['define', [Symbol() as name, *parms], *body]
if body

46 | Chapter 2: An Array of Sequences

I hope this refactoring of Norvig’s evaluate with pattern matching convinced you
that match/case can make your code more readable and safer.

We’ll see more of lis.py in “Pattern Matching in lis.py: A Case
Study” on page 669, when we’ll review the complete match/case
example in evaluate. If you want to learn more about Norvig’s
lis.py, read his wonderful post “(How to Write a (Lisp) Interpreter
(in Python))”.

This concludes our first tour of unpacking, destructuring, and pattern matching with
sequences. We’ll cover other types of patterns in later chapters.

Every Python programmer knows that sequences can be sliced using the s[a:b] syn‐
tax. We now turn to some less well-known facts about slicing.

Slicing
A common feature of list, tuple, str, and all sequence types in Python is the sup‐
port of slicing operations, which are more powerful than most people realize.

In this section, we describe the use of these advanced forms of slicing. Their imple‐
mentation in a user-defined class will be covered in Chapter 12, in keeping with our
philosophy of covering ready-to-use classes in this part of the book, and creating new
classes in Part III.

Why Slices and Ranges Exclude the Last Item
The Pythonic convention of excluding the last item in slices and ranges works well
with the zero-based indexing used in Python, C, and many other languages. Some
convenient features of the convention are:

• It’s easy to see the length of a slice or range when only the stop position is given:
range(3) and my_list[:3] both produce three items.

• It’s easy to compute the length of a slice or range when start and stop are given:
just subtract stop - start.

• It’s easy to split a sequence in two parts at any index x, without overlapping: sim‐
ply get my_list[:x] and my_list[x:]. For example:

>>> l = [10, 20, 30, 40, 50, 60]
>>> l[:2] # split at 2
[10, 20]
>>> l[2:]
[30, 40, 50, 60]
>>> l[:3] # split at 3
[10, 20, 30]

Slicing | 47

https://fpy.li/2-12
https://fpy.li/2-12

>>> l[3:]
[40, 50, 60]

The best arguments for this convention were written by the Dutch computer scientist
Edsger W. Dijkstra (see the last reference in “Further Reading” on page 71).

Now let’s take a close look at how Python interprets slice notation.

Slice Objects
This is no secret, but worth repeating just in case: s[a:b:c] can be used to specify a
stride or step c, causing the resulting slice to skip items. The stride can also be nega‐
tive, returning items in reverse. Three examples make this clear:

>>> s = 'bicycle'
>>> s[::3]
'bye'
>>> s[::-1]
'elcycib'
>>> s[::-2]
'eccb'

Another example was shown in Chapter 1 when we used deck[12::13] to get all the
aces in the unshuffled deck:

>>> deck[12::13]
[Card(rank='A', suit='spades'), Card(rank='A', suit='diamonds'),
Card(rank='A', suit='clubs'), Card(rank='A', suit='hearts')]

The notation a:b:c is only valid within [] when used as the indexing or subscript
operator, and it produces a slice object: slice(a, b, c). As we will see in “How Slic‐
ing Works” on page 404, to evaluate the expression seq[start:stop:step], Python
calls seq.__getitem__(slice(start, stop, step)). Even if you are not imple‐
menting your own sequence types, knowing about slice objects is useful because it
lets you assign names to slices, just like spreadsheets allow naming of cell ranges.

Suppose you need to parse flat-file data like the invoice shown in Example 2-13.
Instead of filling your code with hardcoded slices, you can name them. See how read‐
able this makes the for loop at the end of the example.

Example 2-13. Line items from a flat-file invoice

>>> invoice = """
... 0.....6.................................40........52...55........
... 1909 Pimoroni PiBrella $17.50 3 $52.50
... 1489 6mm Tactile Switch x20 $4.95 2 $9.90
... 1510 Panavise Jr. - PV-201 $28.00 1 $28.00
... 1601 PiTFT Mini Kit 320x240 $34.95 1 $34.95
... """

48 | Chapter 2: An Array of Sequences

6 In “Memory Views” on page 62 we show that specially constructed memory views can have more than one
dimension.

7 No, I did not get this backwards: the ellipsis class name is really all lowercase, and the instance is a built-in
named Ellipsis, just like bool is lowercase but its instances are True and False.

>>> SKU = slice(0, 6)
>>> DESCRIPTION = slice(6, 40)
>>> UNIT_PRICE = slice(40, 52)
>>> QUANTITY = slice(52, 55)
>>> ITEM_TOTAL = slice(55, None)
>>> line_items = invoice.split('\n')[2:]
>>> for item in line_items:
... print(item[UNIT_PRICE], item[DESCRIPTION])
...
 $17.50 Pimoroni PiBrella
 $4.95 6mm Tactile Switch x20
 $28.00 Panavise Jr. - PV-201
 $34.95 PiTFT Mini Kit 320x240

We’ll come back to slice objects when we discuss creating your own collections in
“Vector Take #2: A Sliceable Sequence” on page 403. Meanwhile, from a user perspec‐
tive, slicing includes additional features such as multidimensional slices and ellipsis
(...) notation. Read on.

Multidimensional Slicing and Ellipsis
The [] operator can also take multiple indexes or slices separated by commas. The
__getitem__ and __setitem__ special methods that handle the [] operator simply
receive the indices in a[i, j] as a tuple. In other words, to evaluate a[i, j], Python
calls a.__getitem__((i, j)).

This is used, for instance, in the external NumPy package, where items of a two-
dimensional numpy.ndarray can be fetched using the syntax a[i, j] and a
two-dimensional slice obtained with an expression like a[m:n, k:l]. Example 2-22
later in this chapter shows the use of this notation.

Except for memoryview, the built-in sequence types in Python are one-dimensional, so
they support only one index or slice, and not a tuple of them.6

The ellipsis—written with three full stops (...) and not … (Unicode U+2026)—is rec‐
ognized as a token by the Python parser. It is an alias to the Ellipsis object, the sin‐
gle instance of the ellipsis class.7 As such, it can be passed as an argument to
functions and as part of a slice specification, as in f(a, ..., z) or a[i:...].
NumPy uses ... as a shortcut when slicing arrays of many dimensions; for example,

Slicing | 49

if x is a four-dimensional array, x[i, ...] is a shortcut for x[i, :, :, :,]. See
“NumPy quickstart” to learn more about this.

At the time of this writing, I am unaware of uses of Ellipsis or multidimensional
indexes and slices in the Python standard library. If you spot one, let me know. These
syntactic features exist to support user-defined types and extensions such as NumPy.

Slices are not just useful to extract information from sequences; they can also be used
to change mutable sequences in place—that is, without rebuilding them from scratch.

Assigning to Slices
Mutable sequences can be grafted, excised, and otherwise modified in place using
slice notation on the lefthand side of an assignment statement or as the target of a del
statement. The next few examples give an idea of the power of this notation:

>>> l = list(range(10))
>>> l
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> l[2:5] = [20, 30]
>>> l
[0, 1, 20, 30, 5, 6, 7, 8, 9]
>>> del l[5:7]
>>> l
[0, 1, 20, 30, 5, 8, 9]
>>> l[3::2] = [11, 22]
>>> l
[0, 1, 20, 11, 5, 22, 9]
>>> l[2:5] = 100
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: can only assign an iterable
>>> l[2:5] = [100]
>>> l
[0, 1, 100, 22, 9]

When the target of the assignment is a slice, the righthand side must be an itera‐
ble object, even if it has just one item.

Every coder knows that concatenation is a common operation with sequences. Intro‐
ductory Python tutorials explain the use of + and * for that purpose, but there are
some subtle details on how they work, which we cover next.

Using + and * with Sequences
Python programmers expect that sequences support + and *. Usually both operands
of + must be of the same sequence type, and neither of them is modified, but a new
sequence of that same type is created as result of the concatenation.

50 | Chapter 2: An Array of Sequences

https://fpy.li/2-13

To concatenate multiple copies of the same sequence, multiply it by an integer.
Again, a new sequence is created:

>>> l = [1, 2, 3]
>>> l * 5
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> 5 * 'abcd'
'abcdabcdabcdabcdabcd'

Both + and * always create a new object, and never change their operands.

Beware of expressions like a * n when a is a sequence containing
mutable items, because the result may surprise you. For example,
trying to initialize a list of lists as my_list = [[]] * 3 will result
in a list with three references to the same inner list, which is proba‐
bly not what you want.

The next section covers the pitfalls of trying to use * to initialize a list of lists.

Building Lists of Lists
Sometimes we need to initialize a list with a certain number of nested lists—for
example, to distribute students in a list of teams or to represent squares on a game
board. The best way of doing so is with a list comprehension, as in Example 2-14.

Example 2-14. A list with three lists of length 3 can represent a tic-tac-toe board

>>> board = [['_'] * 3 for i in range(3)]
>>> board
[['_', '_', '_'], ['_', '_', '_'], ['_', '_', '_']]
>>> board[1][2] = 'X'
>>> board
[['_', '_', '_'], ['_', '_', 'X'], ['_', '_', '_']]

Create a list of three lists of three items each. Inspect the structure.

Place a mark in row 1, column 2, and check the result.

A tempting, but wrong, shortcut is doing it like Example 2-15.

Example 2-15. A list with three references to the same list is useless

>>> weird_board = [['_'] * 3] * 3
>>> weird_board
[['_', '_', '_'], ['_', '_', '_'], ['_', '_', '_']]
>>> weird_board[1][2] = 'O'

Using + and * with Sequences | 51

>>> weird_board
[['_', '_', 'O'], ['_', '_', 'O'], ['_', '_', 'O']]

The outer list is made of three references to the same inner list. While it is
unchanged, all seems right.

Placing a mark in row 1, column 2, reveals that all rows are aliases referring to
the same object.

The problem with Example 2-15 is that, in essence, it behaves like this code:

row = ['_'] * 3
board = []
for i in range(3):
 board.append(row)

The same row is appended three times to board.

On the other hand, the list comprehension from Example 2-14 is equivalent to this
code:

>>> board = []
>>> for i in range(3):
... row = ['_'] * 3
... board.append(row)
...
>>> board
[['_', '_', '_'], ['_', '_', '_'], ['_', '_', '_']]
>>> board[2][0] = 'X'
>>> board
[['_', '_', '_'], ['_', '_', '_'], ['X', '_', '_']]

Each iteration builds a new row and appends it to board.

Only row 2 is changed, as expected.

If either the problem or the solution in this section is not clear to
you, relax. Chapter 6 was written to clarify the mechanics and pit‐
falls of references and mutable objects.

So far we have discussed the use of the plain + and * operators with sequences, but
there are also the += and *= operators, which produce very different results, depend‐
ing on the mutability of the target sequence. The following section explains how that
works.

52 | Chapter 2: An Array of Sequences

Augmented Assignment with Sequences
The augmented assignment operators += and *= behave quite differently, depending
on the first operand. To simplify the discussion, we will focus on augmented addition
first (+=), but the concepts also apply to *= and to other augmented assignment
operators.

The special method that makes += work is __iadd__ (for “in-place addition”).

However, if __iadd__ is not implemented, Python falls back to calling __add__. Con‐
sider this simple expression:

>>> a += b

If a implements __iadd__, that will be called. In the case of mutable sequences (e.g.,
list, bytearray, array.array), a will be changed in place (i.e., the effect will be sim‐
ilar to a.extend(b)). However, when a does not implement __iadd__, the expression
a += b has the same effect as a = a + b: the expression a + b is evaluated first,
producing a new object, which is then bound to a. In other words, the identity of
the object bound to a may or may not change, depending on the availability of
__iadd__.

In general, for mutable sequences, it is a good bet that __iadd__ is implemented and
that += happens in place. For immutable sequences, clearly there is no way for that to
happen.

What I just wrote about += also applies to *=, which is implemented via __imul__.
The __iadd__ and __imul__ special methods are discussed in Chapter 16. Here is a
demonstration of *= with a mutable sequence and then an immutable one:

>>> l = [1, 2, 3]
>>> id(l)
4311953800
>>> l *= 2
>>> l
[1, 2, 3, 1, 2, 3]
>>> id(l)
4311953800
>>> t = (1, 2, 3)
>>> id(t)
4312681568
>>> t *= 2
>>> id(t)
4301348296

ID of the initial list.

After multiplication, the list is the same object, with new items appended.

Using + and * with Sequences | 53

8 str is an exception to this description. Because string building with += in loops is so common in real codeba‐
ses, CPython is optimized for this use case. Instances of str are allocated in memory with extra room, so that
concatenation does not require copying the whole string every time.

9 Thanks to Leonardo Rochael and Cesar Kawakami for sharing this riddle at the 2013 PythonBrasil
Conference.

10 Readers suggested that the operation in the example can be done with t[2].extend([50,60]), without
errors. I am aware of that, but my intent is to show the strange behavior of the += operator in this case.

ID of the initial tuple.

After multiplication, a new tuple was created.

Repeated concatenation of immutable sequences is inefficient, because instead of just
appending new items, the interpreter has to copy the whole target sequence to create
a new one with the new items concatenated.8

We’ve seen common use cases for +=. The next section shows an intriguing corner
case that highlights what “immutable” really means in the context of tuples.

A += Assignment Puzzler
Try to answer without using the console: what is the result of evaluating the two
expressions in Example 2-16?9

Example 2-16. A riddle

>>> t = (1, 2, [30, 40])
>>> t[2] += [50, 60]

What happens next? Choose the best answer:

A. t becomes (1, 2, [30, 40, 50, 60]).
B. TypeError is raised with the message 'tuple' object does not support item

assignment.
C. Neither.
D. Both A and B.

When I saw this, I was pretty sure the answer was B, but it’s actually D, “Both A and
B”! Example 2-17 is the actual output from a Python 3.9 console.10

54 | Chapter 2: An Array of Sequences

Example 2-17. The unexpected result: item t2 is changed and an exception is raised

>>> t = (1, 2, [30, 40])
>>> t[2] += [50, 60]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> t
(1, 2, [30, 40, 50, 60])

Online Python Tutor is an awesome online tool to visualize how Python works in
detail. Figure 2-5 is a composite of two screenshots showing the initial and final states
of the tuple t from Example 2-17.

Figure 2-5. Initial and final state of the tuple assignment puzzler (diagram generated
by Online Python Tutor).

If you look at the bytecode Python generates for the expression s[a] += b

(Example 2-18), it becomes clear how that happens.

Example 2-18. Bytecode for the expression s[a] += b

>>> dis.dis('s[a] += b')
 1 0 LOAD_NAME 0 (s)
 3 LOAD_NAME 1 (a)
 6 DUP_TOP_TWO
 7 BINARY_SUBSCR
 8 LOAD_NAME 2 (b)
 11 INPLACE_ADD
 12 ROT_THREE
 13 STORE_SUBSCR
 14 LOAD_CONST 0 (None)
 17 RETURN_VALUE

Using + and * with Sequences | 55

https://fpy.li/2-14

11 Receiver is the target of a method call, the object bound to self in the method body.

Put the value of s[a] on TOS (Top Of Stack).

Perform TOS += b. This succeeds if TOS refers to a mutable object (it’s a list, in
Example 2-17).

Assign s[a] = TOS. This fails if s is immutable (the t tuple in Example 2-17).

This example is quite a corner case—in 20 years using Python, I have never seen this
strange behavior actually bite somebody.

I take three lessons from this:

• Avoid putting mutable items in tuples.
• Augmented assignment is not an atomic operation—we just saw it throwing an

exception after doing part of its job.
• Inspecting Python bytecode is not too difficult, and can be helpful to see what is

going on under the hood.

After witnessing the subtleties of using + and * for concatenation, we can change the
subject to another essential operation with sequences: sorting.

list.sort Versus the sorted Built-In
The list.sort method sorts a list in place—that is, without making a copy. It returns
None to remind us that it changes the receiver11 and does not create a new list. This is
an important Python API convention: functions or methods that change an object in
place should return None to make it clear to the caller that the receiver was changed,
and no new object was created. Similar behavior can be seen, for example, in the ran
dom.shuffle(s) function, which shuffles the mutable sequence s in place, and
returns None.

The convention of returning None to signal in-place changes has a
drawback: we cannot cascade calls to those methods. In contrast,
methods that return new objects (e.g., all str methods) can be cas‐
caded in the fluent interface style. See Wikipedia’s “Fluent inter‐
face” entry for further description of this topic.

In contrast, the built-in function sorted creates a new list and returns it. It accepts
any iterable object as an argument, including immutable sequences and generators

56 | Chapter 2: An Array of Sequences

https://fpy.li/2-15
https://fpy.li/2-15

12 Python’s main sorting algorithm is named Timsort after its creator, Tim Peters. For a bit of Timsort trivia, see
the “Soapbox” on page 73.

(see Chapter 17). Regardless of the type of iterable given to sorted, it always returns a
newly created list.

Both list.sort and sorted take two optional, keyword-only arguments:

reverse

If True, the items are returned in descending order (i.e., by reversing the compar‐
ison of the items). The default is False.

key

A one-argument function that will be applied to each item to produce its sorting
key. For example, when sorting a list of strings, key=str.lower can be used
to perform a case-insensitive sort, and key=len will sort the strings by character
length. The default is the identity function (i.e., the items themselves are
compared).

You can also use the optional keyword parameter key with the
min() and max() built-ins and with other functions from the stan‐
dard library (e.g., itertools.groupby() and heapq.nlargest()).

Here are a few examples to clarify the use of these functions and keyword arguments.
The examples also demonstrate that Python’s sorting algorithm is stable (i.e., it pre‐
serves the relative ordering of items that compare equally):12

>>> fruits = ['grape', 'raspberry', 'apple', 'banana']
>>> sorted(fruits)
['apple', 'banana', 'grape', 'raspberry']
>>> fruits
['grape', 'raspberry', 'apple', 'banana']
>>> sorted(fruits, reverse=True)
['raspberry', 'grape', 'banana', 'apple']
>>> sorted(fruits, key=len)
['grape', 'apple', 'banana', 'raspberry']
>>> sorted(fruits, key=len, reverse=True)
['raspberry', 'banana', 'grape', 'apple']
>>> fruits
['grape', 'raspberry', 'apple', 'banana']
>>> fruits.sort()
>>> fruits
['apple', 'banana', 'grape', 'raspberry']

list.sort Versus the sorted Built-In | 57

13 The words in this example are sorted alphabetically because they are 100% made of lowercase ASCII charac‐
ters. See the warning after the example.

This produces a new list of strings sorted alphabetically.13

Inspecting the original list, we see it is unchanged.

This is the previous “alphabetical” ordering, reversed.

A new list of strings, now sorted by length. Because the sorting algorithm is
stable, “grape” and “apple,” both of length 5, are in the original order.

These are the strings sorted by length in descending order. It is not the reverse of
the previous result because the sorting is stable, so again “grape” appears before
“apple.”

So far, the ordering of the original fruits list has not changed.

This sorts the list in place, and returns None (which the console omits).

Now fruits is sorted.

By default, Python sorts strings lexicographically by character code.
That means ASCII uppercase letters will come before lowercase let‐
ters, and non-ASCII characters are unlikely to be sorted in a sensi‐
ble way. “Sorting Unicode Text” on page 148 covers proper ways of
sorting text as humans would expect.

Once your sequences are sorted, they can be very efficiently searched. A binary search
algorithm is already provided in the bisect module of the Python standard library.
That module also includes the bisect.insort function, which you can use to make
sure that your sorted sequences stay sorted. You’ll find an illustrated introduction to
the bisect module in the “Managing Ordered Sequences with Bisect” post in the flu‐
entpython.com companion website.

Much of what we have seen so far in this chapter applies to sequences in general, not
just lists or tuples. Python programmers sometimes overuse the list type because it
is so handy—I know I’ve done it. For example, if you are processing large lists of
numbers, you should consider using arrays instead. The remainder of the chapter is
devoted to alternatives to lists and tuples.

58 | Chapter 2: An Array of Sequences

https://fpy.li/bisect
http://fluentpython.com
http://fluentpython.com

14 First in, first out—the default behavior of queues.

When a List Is Not the Answer
The list type is flexible and easy to use, but depending on specific requirements,
there are better options. For example, an array saves a lot of memory when you need
to handle millions of floating-point values. On the other hand, if you are constantly
adding and removing items from opposite ends of a list, it’s good to know that a
deque (double-ended queue) is a more efficient FIFO14 data structure.

If your code frequently checks whether an item is present in a col‐
lection (e.g., item in my_collection), consider using a set for
my_collection, especially if it holds a large number of items. Sets
are optimized for fast membership checking. They are also iterable,
but they are not sequences because the ordering of set items is
unspecified. We cover them in Chapter 3.

For the remainder of this chapter, we discuss mutable sequence types that can replace
lists in many cases, starting with arrays.

Arrays
If a list only contains numbers, an array.array is a more efficient replacement.
Arrays support all mutable sequence operations (including .pop, .insert,
and .extend), as well as additional methods for fast loading and saving, such
as .frombytes and .tofile.

A Python array is as lean as a C array. As shown in Figure 2-1, an array of float
values does not hold full-fledged float instances, but only the packed bytes repre‐
senting their machine values—similar to an array of double in the C language. When
creating an array, you provide a typecode, a letter to determine the underlying C
type used to store each item in the array. For example, b is the typecode for what
C calls a signed char, an integer ranging from –128 to 127. If you create an
array('b'), then each item will be stored in a single byte and interpreted as an inte‐
ger. For large sequences of numbers, this saves a lot of memory. And Python will not
let you put any number that does not match the type for the array.

Example 2-19 shows creating, saving, and loading an array of 10 million floating-
point random numbers.

When a List Is Not the Answer | 59

Example 2-19. Creating, saving, and loading a large array of floats

>>> from array import array
>>> from random import random
>>> floats = array('d', (random() for i in range(10**7)))
>>> floats[-1]
0.07802343889111107
>>> fp = open('floats.bin', 'wb')
>>> floats.tofile(fp)
>>> fp.close()
>>> floats2 = array('d')
>>> fp = open('floats.bin', 'rb')
>>> floats2.fromfile(fp, 10**7)
>>> fp.close()
>>> floats2[-1]
0.07802343889111107
>>> floats2 == floats
True

Import the array type.

Create an array of double-precision floats (typecode 'd') from any iterable object
—in this case, a generator expression.

Inspect the last number in the array.

Save the array to a binary file.

Create an empty array of doubles.

Read 10 million numbers from the binary file.

Inspect the last number in the array.

Verify that the contents of the arrays match.

As you can see, array.tofile and array.fromfile are easy to use. If you try the
example, you’ll notice they are also very fast. A quick experiment shows that it takes
about 0.1 seconds for array.fromfile to load 10 million double-precision floats
from a binary file created with array.tofile. That is nearly 60 times faster than
reading the numbers from a text file, which also involves parsing each line with the
float built-in. Saving with array.tofile is about seven times faster than writing one
float per line in a text file. In addition, the size of the binary file with 10 million dou‐
bles is 80,000,000 bytes (8 bytes per double, zero overhead), while the text file has
181,515,739 bytes for the same data.

60 | Chapter 2: An Array of Sequences

For the specific case of numeric arrays representing binary data, such as raster
images, Python has the bytes and bytearray types discussed in Chapter 4.

We wrap up this section on arrays with Table 2-3, comparing the features of list
and array.array.

Table 2-3. Methods and attributes found in list or array (deprecated array methods and
those also implemented by object are omitted for brevity)

list array

s.__add__(s2) ● ● s + s2—concatenation

s.__iadd__(s2) ● ● s += s2—in-place concatenation

s.append(e) ● ● Append one element after last

s.byteswap() ● Swap bytes of all items in array for endianness conversion

s.clear() ● Delete all items

s.__contains__(e) ● ● e in s

s.copy() ● Shallow copy of the list

s.__copy__() ● Support for copy.copy

s.count(e) ● ● Count occurrences of an element

s.__deepcopy__() ● Optimized support for copy.deepcopy

s.__delitem__(p) ● ● Remove item at position p

s.extend(it) ● ● Append items from iterable it

s.frombytes(b) ● Append items from byte sequence interpreted as packed machine values

s.fromfile(f, n) ● Append n items from binary file f interpreted as packed machine values

s.fromlist(l) ● Append items from list; if one causes TypeError, none are appended

s.__getitem__(p) ● ● s[p]—get item or slice at position

s.index(e) ● ● Find position of first occurrence of e

s.insert(p, e) ● ● Insert element e before the item at position p

s.itemsize ● Length in bytes of each array item

s.__iter__() ● ● Get iterator

s.__len__() ● ● len(s)—number of items

s.__mul__(n) ● ● s * n—repeated concatenation

s.__imul__(n) ● ● s *= n—in-place repeated concatenation

s.__rmul__(n) ● ● n * s—reversed repeated concatenationa

s.pop([p]) ● ● Remove and return item at position p (default: last)

s.remove(e) ● ● Remove first occurrence of element e by value

s.reverse() ● ● Reverse the order of the items in place

s.__reversed__() ● Get iterator to scan items from last to first

s.__setitem__(p, e) ● ● s[p] = e—put e in position p, overwriting existing item or slice

When a List Is Not the Answer | 61

list array

s.sort([key], [reverse]) ● Sort items in place with optional keyword arguments key and
reverse

s.tobytes() ● Return items as packed machine values in a bytes object

s.tofile(f) ● Save items as packed machine values to binary file f

s.tolist() ● Return items as numeric objects in a list

s.typecode ● One-character string identifying the C type of the items
a Reversed operators are explained in Chapter 16.

As of Python 3.10, the array type does not have an in-place sort
method like list.sort(). If you need to sort an array, use the
built-in sorted function to rebuild the array:

a = array.array(a.typecode, sorted(a))

To keep a sorted array sorted while adding items to it, use the
bisect.insort function.

If you do a lot of work with arrays and don’t know about memoryview, you’re missing
out. See the next topic.

Memory Views
The built-in memoryview class is a shared-memory sequence type that lets you handle
slices of arrays without copying bytes. It was inspired by the NumPy library (which
we’ll discuss shortly in “NumPy” on page 64). Travis Oliphant, lead author of NumPy,
answers the question, “When should a memoryview be used?” like this:

A memoryview is essentially a generalized NumPy array structure in Python itself
(without the math). It allows you to share memory between data-structures (things like
PIL images, SQLite databases, NumPy arrays, etc.) without first copying. This is very
important for large data sets.

Using notation similar to the array module, the memoryview.cast method lets you
change the way multiple bytes are read or written as units without moving bits
around. memoryview.cast returns yet another memoryview object, always sharing the
same memory.

Example 2-20 shows how to create alternate views on the same array of 6 bytes, to
operate on it as a 2×3 matrix or a 3×2 matrix.

Example 2-20. Handling 6 bytes of memory as 1×6, 2×3, and 3×2 views

>>> from array import array
>>> octets = array('B', range(6))

62 | Chapter 2: An Array of Sequences

https://fpy.li/2-16
https://fpy.li/2-17

>>> m1 = memoryview(octets)
>>> m1.tolist()
[0, 1, 2, 3, 4, 5]
>>> m2 = m1.cast('B', [2, 3])
>>> m2.tolist()
[[0, 1, 2], [3, 4, 5]]
>>> m3 = m1.cast('B', [3, 2])
>>> m3.tolist()
[[0, 1], [2, 3], [4, 5]]
>>> m2[1,1] = 22
>>> m3[1,1] = 33
>>> octets
array('B', [0, 1, 2, 33, 22, 5])

Build array of 6 bytes (typecode 'B').

Build memoryview from that array, then export it as a list.

Build new memoryview from that previous one, but with 2 rows and 3 columns.

Yet another memoryview, now with 3 rows and 2 columns.

Overwrite byte in m2 at row 1, column 1 with 22.

Overwrite byte in m3 at row 1, column 1 with 33.

Display original array, proving that the memory was shared among octets, m1,
m2, and m3.

The awesome power of memoryview can also be used to corrupt. Example 2-21 shows
how to change a single byte of an item in an array of 16-bit integers.

Example 2-21. Changing the value of a 16-bit integer array item by poking one of its
bytes

>>> numbers = array.array('h', [-2, -1, 0, 1, 2])
>>> memv = memoryview(numbers)
>>> len(memv)
5
>>> memv[0]
-2
>>> memv_oct = memv.cast('B')
>>> memv_oct.tolist()
[254, 255, 255, 255, 0, 0, 1, 0, 2, 0]
>>> memv_oct[5] = 4
>>> numbers
array('h', [-2, -1, 1024, 1, 2])

When a List Is Not the Answer | 63

Build memoryview from array of 5 16-bit signed integers (typecode 'h').

memv sees the same 5 items in the array.

Create memv_oct by casting the elements of memv to bytes (typecode 'B').

Export elements of memv_oct as a list of 10 bytes, for inspection.

Assign value 4 to byte offset 5.

Note the change to numbers: a 4 in the most significant byte of a 2-byte unsigned
integer is 1024.

You’ll find an example of inspecting memoryview with the struct
package at fluentpython.com: “Parsing binary records with struct”.

Meanwhile, if you are doing advanced numeric processing in arrays, you should be
using the NumPy libraries. We’ll take a brief look at them right away.

NumPy
Throughout this book, I make a point of highlighting what is already in the Python
standard library so you can make the most of it. But NumPy is so awesome that a
detour is warranted.

For advanced array and matrix operations, NumPy is the reason why Python became
mainstream in scientific computing applications. NumPy implements multi-
dimensional, homogeneous arrays and matrix types that hold not only numbers but
also user-defined records, and provides efficient element-wise operations.

SciPy is a library, written on top of NumPy, offering many scientific computing algo‐
rithms from linear algebra, numerical calculus, and statistics. SciPy is fast and reliable
because it leverages the widely used C and Fortran codebase from the Netlib Reposi‐
tory. In other words, SciPy gives scientists the best of both worlds: an interactive
prompt and high-level Python APIs, together with industrial-strength number-
crunching functions optimized in C and Fortran.

As a very brief NumPy demo, Example 2-22 shows some basic operations with two-
dimensional arrays.

64 | Chapter 2: An Array of Sequences

http://fluentpython.com
https://fpy.li/2-18
https://fpy.li/2-19
https://fpy.li/2-19

Example 2-22. Basic operations with rows and columns in a numpy.ndarray

>>> import numpy as np
>>> a = np.arange(12)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
>>> type(a)
<class 'numpy.ndarray'>
>>> a.shape
(12,)
>>> a.shape = 3, 4
>>> a
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
>>> a[2]
array([8, 9, 10, 11])
>>> a[2, 1]
9
>>> a[:, 1]
array([1, 5, 9])
>>> a.transpose()
array([[0, 4, 8],
 [1, 5, 9],
 [2, 6, 10],
 [3, 7, 11]])

Import NumPy, after installing (it’s not in the Python standard library). Conven‐
tionally, numpy is imported as np.

Build and inspect a numpy.ndarray with integers 0 to 11.

Inspect the dimensions of the array: this is a one-dimensional, 12-element array.

Change the shape of the array, adding one dimension, then inspecting the result.

Get row at index 2.

Get element at index 2, 1.

Get column at index 1.

Create a new array by transposing (swapping columns with rows).

NumPy also supports high-level operations for loading, saving, and operating on all
elements of a numpy.ndarray:

>>> import numpy
>>> floats = numpy.loadtxt('floats-10M-lines.txt')

When a List Is Not the Answer | 65

>>> floats[-3:]
array([3016362.69195522, 535281.10514262, 4566560.44373946])
>>> floats *= .5
>>> floats[-3:]
array([1508181.34597761, 267640.55257131, 2283280.22186973])
>>> from time import perf_counter as pc
>>> t0 = pc(); floats /= 3; pc() - t0
0.03690556302899495
>>> numpy.save('floats-10M', floats)
>>> floats2 = numpy.load('floats-10M.npy', 'r+')
>>> floats2 *= 6
>>> floats2[-3:]
memmap([3016362.69195522, 535281.10514262, 4566560.44373946])

Load 10 million floating-point numbers from a text file.

Use sequence slicing notation to inspect the last three numbers.

Multiply every element in the floats array by .5 and inspect the last three
elements again.

Import the high-resolution performance measurement timer (available since
Python 3.3).

Divide every element by 3; the elapsed time for 10 million floats is less than 40
milliseconds.

Save the array in a .npy binary file.

Load the data as a memory-mapped file into another array; this allows efficient
processing of slices of the array even if it does not fit entirely in memory.

Inspect the last three elements after multiplying every element by 6.

This was just an appetizer.

NumPy and SciPy are formidable libraries, and are the foundation of other awesome
tools such as the Pandas—which implements efficient array types that can hold non‐
numeric data and provides import/export functions for many different formats,
like .csv, .xls, SQL dumps, HDF5, etc.—and scikit-learn, currently the most widely
used Machine Learning toolset. Most NumPy and SciPy functions are implemented
in C or C++, and can leverage all CPU cores because they release Python’s GIL
(Global Interpreter Lock). The Dask project supports parallelizing NumPy, Pandas,
and scikit-learn processing across clusters of machines. These packages deserve entire
books about them. This is not one of those books. But no overview of Python sequen‐
ces would be complete without at least a quick look at NumPy arrays.

66 | Chapter 2: An Array of Sequences

https://fpy.li/2-20
https://fpy.li/2-21
https://fpy.li/dask

Having looked at flat sequences—standard arrays and NumPy arrays—we now turn
to a completely different set of replacements for the plain old list: queues.

Deques and Other Queues
The .append and .pop methods make a list usable as a stack or a queue (if you
use .append and .pop(0), you get FIFO behavior). But inserting and removing from
the head of a list (the 0-index end) is costly because the entire list must be shifted in
memory.

The class collections.deque is a thread-safe double-ended queue designed for fast
inserting and removing from both ends. It is also the way to go if you need to keep a
list of “last seen items” or something of that nature, because a deque can be bounded
—i.e., created with a fixed maximum length. If a bounded deque is full, when you add
a new item, it discards an item from the opposite end. Example 2-23 shows some typ‐
ical operations performed on a deque.

Example 2-23. Working with a deque

>>> from collections import deque
>>> dq = deque(range(10), maxlen=10)
>>> dq
deque([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], maxlen=10)
>>> dq.rotate(3)
>>> dq
deque([7, 8, 9, 0, 1, 2, 3, 4, 5, 6], maxlen=10)
>>> dq.rotate(-4)
>>> dq
deque([1, 2, 3, 4, 5, 6, 7, 8, 9, 0], maxlen=10)
>>> dq.appendleft(-1)
>>> dq
deque([-1, 1, 2, 3, 4, 5, 6, 7, 8, 9], maxlen=10)
>>> dq.extend([11, 22, 33])
>>> dq
deque([3, 4, 5, 6, 7, 8, 9, 11, 22, 33], maxlen=10)
>>> dq.extendleft([10, 20, 30, 40])
>>> dq
deque([40, 30, 20, 10, 3, 4, 5, 6, 7, 8], maxlen=10)

The optional maxlen argument sets the maximum number of items allowed in
this instance of deque; this sets a read-only maxlen instance attribute.

Rotating with n > 0 takes items from the right end and prepends them to the
left; when n < 0 items are taken from left and appended to the right.

When a List Is Not the Answer | 67

Appending to a deque that is full (len(d) == d.maxlen) discards items from the
other end; note in the next line that the 0 is dropped.

Adding three items to the right pushes out the leftmost -1, 1, and 2.

Note that extendleft(iter) works by appending each successive item of the
iter argument to the left of the deque, therefore the final position of the items is
reversed.

Table 2-4 compares the methods that are specific to list and deque (removing those
that also appear in object).

Note that deque implements most of the list methods, and adds a few that are spe‐
cific to its design, like popleft and rotate. But there is a hidden cost: removing
items from the middle of a deque is not as fast. It is really optimized for appending
and popping from the ends.

The append and popleft operations are atomic, so deque is safe to use as a FIFO
queue in multithreaded applications without the need for locks.

Table 2-4. Methods implemented in list or deque (those that are also implemented by
object are omitted for brevity)

list deque

s.__add__(s2) ● s + s2—concatenation

s.__iadd__(s2) ● ● s += s2—in-place concatenation

s.append(e) ● ● Append one element to the right (after last)

s.appendleft(e) ● Append one element to the left (before first)

s.clear() ● ● Delete all items

s.__contains__(e) ● e in s

s.copy() ● Shallow copy of the list

s.__copy__() ● Support for copy.copy (shallow copy)

s.count(e) ● ● Count occurrences of an element

s.__delitem__(p) ● ● Remove item at position p

s.extend(i) ● ● Append items from iterable i to the right

s.extendleft(i) ● Append items from iterable i to the left

s.__getitem__(p) ● ● s[p]—get item or slice at position

s.index(e) ● Find position of first occurrence of e

s.insert(p, e) ● Insert element e before the item at position p

s.__iter__() ● ● Get iterator

s.__len__() ● ● len(s)—number of items

68 | Chapter 2: An Array of Sequences

list deque

s.__mul__(n) ● s * n—repeated concatenation

s.__imul__(n) ● s *= n—in-place repeated concatenation

s.__rmul__(n) ● n * s—reversed repeated concatenationa

s.pop() ● ● Remove and return last itemb

s.popleft() ● Remove and return first item

s.remove(e) ● ● Remove first occurrence of element e by value

s.reverse() ● ● Reverse the order of the items in place

s.__reversed__() ● ● Get iterator to scan items from last to first

s.rotate(n) ● Move n items from one end to the other

s.__setitem__(p, e) ● ● s[p] = e—put e in position p, overwriting existing item or slice

s.sort([key], [reverse]) ● Sort items in place with optional keyword arguments key and
reverse

a Reversed operators are explained in Chapter 16.
b a_list.pop(p) allows removing from position p, but deque does not support that option.

Besides deque, other Python standard library packages implement queues:

queue

This provides the synchronized (i.e., thread-safe) classes SimpleQueue, Queue,
LifoQueue, and PriorityQueue. These can be used for safe communication
between threads. All except SimpleQueue can be bounded by providing a max
size argument greater than 0 to the constructor. However, they don’t discard
items to make room as deque does. Instead, when the queue is full, the insertion
of a new item blocks—i.e., it waits until some other thread makes room by taking
an item from the queue, which is useful to throttle the number of live threads.

multiprocessing

Implements its own unbounded SimpleQueue and bounded Queue, very similar
to those in the queue package, but designed for interprocess communication. A
specialized multiprocessing.JoinableQueue is provided for task management.

asyncio

Provides Queue, LifoQueue, PriorityQueue, and JoinableQueue with APIs
inspired by the classes in the queue and multiprocessing modules, but adapted
for managing tasks in asynchronous programming.

heapq

In contrast to the previous three modules, heapq does not implement a queue
class, but provides functions like heappush and heappop that let you use a muta‐
ble sequence as a heap queue or priority queue.

When a List Is Not the Answer | 69

This ends our overview of alternatives to the list type, and also our exploration of
sequence types in general—except for the particulars of str and binary sequences,
which have their own chapter (Chapter 4).

Chapter Summary
Mastering the standard library sequence types is a prerequisite for writing concise,
effective, and idiomatic Python code.

Python sequences are often categorized as mutable or immutable, but it is also useful
to consider a different axis: flat sequences and container sequences. The former are
more compact, faster, and easier to use, but are limited to storing atomic data such as
numbers, characters, and bytes. Container sequences are more flexible, but may sur‐
prise you when they hold mutable objects, so you need to be careful to use them cor‐
rectly with nested data structures.

Unfortunately, Python has no foolproof immutable container sequence type: even
“immutable” tuples can have their values changed when they contain mutable items
like lists or user-defined objects.

List comprehensions and generator expressions are powerful notations to build and
initialize sequences. If you are not yet comfortable with them, take the time to master
their basic usage. It is not hard, and soon you will be hooked.

Tuples in Python play two roles: as records with unnamed fields and as immutable
lists. When using a tuple as an immutable list, remember that a tuple value is only
guaranteed to be fixed if all the items in it are also immutable. Calling hash(t) on a
tuple is a quick way to assert that its value is fixed. A TypeError will be raised if t
contains mutable items.

When a tuple is used as a record, tuple unpacking is the safest, most readable way of
extracting the fields of the tuple. Beyond tuples, * works with lists and iterables in
many contexts, and some of its use cases appeared in Python 3.5 with PEP 448—
Additional Unpacking Generalizations. Python 3.10 introduced pattern matching
with match/case, supporting more powerful unpacking, known as destructuring.

Sequence slicing is a favorite Python syntax feature, and it is even more powerful
than many realize. Multidimensional slicing and ellipsis (...) notation, as used in
NumPy, may also be supported by user-defined sequences. Assigning to slices is a
very expressive way of editing mutable sequences.

Repeated concatenation as in seq * n is convenient and, with care, can be used to
initialize lists of lists containing immutable items. Augmented assignment with +=
and *= behaves differently for mutable and immutable sequences. In the latter case,
these operators necessarily build new sequences. But if the target sequence is

70 | Chapter 2: An Array of Sequences

https://fpy.li/pep448
https://fpy.li/pep448

mutable, it is usually changed in place—but not always, depending on how the
sequence is implemented.

The sort method and the sorted built-in function are easy to use and flexible, thanks
to the optional key argument: a function to calculate the ordering criterion. By the
way, key can also be used with the min and max built-in functions.

Beyond lists and tuples, the Python standard library provides array.array. Although
NumPy and SciPy are not part of the standard library, if you do any kind of numeri‐
cal processing on large sets of data, studying even a small part of these libraries can
take you a long way.

We closed by visiting the versatile and thread-safe collections.deque, comparing its
API with that of list in Table 2-4 and mentioning other queue implementations in
the standard library.

Further Reading
Chapter 1, “Data Structures,” of the Python Cookbook, 3rd ed. (O’Reilly) by David
Beazley and Brian K. Jones, has many recipes focusing on sequences, including
“Recipe 1.11. Naming a Slice,” from which I learned the trick of assigning slices to
variables to improve readability, illustrated in our Example 2-13.

The second edition of the Python Cookbook was written for Python 2.4, but much of
its code works with Python 3, and a lot of the recipes in Chapters 5 and 6 deal with
sequences. The book was edited by Alex Martelli, Anna Ravenscroft, and David
Ascher, and it includes contributions by dozens of Pythonistas. The third edition was
rewritten from scratch, and focuses more on the semantics of the language—particu‐
larly what has changed in Python 3—while the older volume emphasizes pragmatics
(i.e., how to apply the language to real-world problems). Even though some of the
second edition solutions are no longer the best approach, I honestly think it is worth‐
while to have both editions of the Python Cookbook on hand.

The official Python “Sorting HOW TO” has several examples of advanced tricks for
using sorted and list.sort.

PEP 3132—Extended Iterable Unpacking is the canonical source to read about the
new use of *extra syntax on the lefthand side of parallel assignments. If you’d like a
glimpse of Python evolving, “Missing *-unpacking generalizations” is a bug tracker
issue proposing enhancements to the iterable unpacking notation. PEP 448—Addi‐
tional Unpacking Generalizations resulted from the discussions in that issue.

Further Reading | 71

https://fpy.li/pycook3
https://fpy.li/2-22
https://fpy.li/2-2
https://fpy.li/2-24
https://fpy.li/pep448
https://fpy.li/pep448

As I mentioned in “Pattern Matching with Sequences” on page 38, Carol Willing’s
“Structural Pattern Matching” section of “What’s New In Python 3.10” is a great
introduction to this major new feature in about 1,400 words (that’s less than 5 pages
when Firefox makes a PDF from the HTML). PEP 636—Structural Pattern Matching:
Tutorial is also good, but longer. The same PEP 636 includes “Appendix A—Quick
Intro”. It is shorter than Willing’s intro because it omits high-level considerations
about why pattern matching is good for you. If you need more arguments to con‐
vince yourself or others that pattern matching is good for Python, read the 22-page
PEP 635—Structural Pattern Matching: Motivation and Rationale.

Eli Bendersky’s blog post “Less copies in Python with the buffer protocol and memo‐
ryviews” includes a short tutorial on memoryview.

There are numerous books covering NumPy in the market, and many don’t mention
“NumPy” in the title. Two examples are the open access Python Data Science Hand‐
book by Jake VanderPlas, and the second edition of Wes McKinney’s Python for Data
Analysis.

“NumPy is all about vectorization.” That is the opening sentence of Nicolas P. Rou‐
gier’s open access book From Python to NumPy. Vectorized operations apply mathe‐
matical functions to all elements of an array without an explicit loop written in
Python. They can operate in parallel, using special vector instructions in modern
CPUs, leveraging multiple cores or delegating to the GPU, depending on the library.
The first example in Rougier’s book shows a speedup of 500 times after refactoring a
nice Pythonic class using a generator method, into a lean and mean function calling a
couple of NumPy vector functions.

To learn how to use deque (and other collections), see the examples and practical rec‐
ipes in “Container datatypes” in the Python documentation.

The best defense of the Python convention of excluding the last item in ranges and
slices was written by Edsger W. Dijkstra himself, in a short memo titled “Why Num‐
bering Should Start at Zero”. The subject of the memo is mathematical notation, but
it’s relevant to Python because Dijkstra explains with rigor and humor why a
sequence like 2, 3, …, 12 should always be expressed as 2 ≤ i < 13. All other reason‐
able conventions are refuted, as is the idea of letting each user choose a convention.
The title refers to zero-based indexing, but the memo is really about why it is desira‐
ble that 'ABCDE'[1:3] means 'BC' and not 'BCD' and why it makes perfect sense to
write range(2, 13) to produce 2, 3, 4, …, 12. By the way, the memo is a handwritten
note, but it’s beautiful and totally readable. Dijkstra’s handwriting is so clear that
someone created a font out of his notes.

72 | Chapter 2: An Array of Sequences

https://fpy.li/2-6
https://fpy.li/2-7
https://fpy.li/pep636
https://fpy.li/pep636
https://fpy.li/2-27
https://fpy.li/2-27
https://fpy.li/pep635
https://fpy.li/2-28
https://fpy.li/2-28
https://fpy.li/2-29
https://fpy.li/2-29
https://fpy.li/2-30
https://fpy.li/2-30
https://fpy.li/2-31
https://fpy.li/collec
https://fpy.li/2-32
https://fpy.li/2-32
https://fpy.li/2-33

Soapbox

The Nature of Tuples

In 2012, I presented a poster about the ABC language at PyCon US. Before creating
Python, Guido van Rossum had worked on the ABC interpreter, so he came to see
my poster. Among other things, we talked about the ABC compounds, which are
clearly the predecessors of Python tuples. Compounds also support parallel assign‐
ment and are used as composite keys in dictionaries (or tables, in ABC parlance).
However, compounds are not sequences. They are not iterable and you cannot
retrieve a field by index, much less slice them. You either handle the compound as
whole or extract the individual fields using parallel assignment, that’s all.

I told Guido that these limitations make the main purpose of compounds very clear:
they are just records without field names. His response: “Making tuples behave as
sequences was a hack.”

This illustrates the pragmatic approach that made Python more practical and more
successful than ABC. From a language implementer perspective, making tuples
behave as sequences costs little. As a result, the main use case for tuples as records is
not so obvious, but we gained immutable lists—even if their type is not as clearly
named as frozenlist.

Flat Versus Container Sequences

To highlight the different memory models of the sequence types, I used the terms
container sequence and flat sequence. The “container” word is from the “Data Model”
documentation:

Some objects contain references to other objects; these are called containers.

I used the term “container sequence” to be specific, because there are containers in
Python that are not sequences, like dict and set. Container sequences can be nested
because they may contain objects of any type, including their own type.

On the other hand, flat sequences are sequence types that cannot be nested because
they only hold simple atomic types like integers, floats, or characters.

I adopted the term flat sequence because I needed something to contrast with “con‐
tainer sequence.”

Despite the previous use of the word “containers” in the official documentation, there
is an abstract class in collections.abc called Container. That ABC has just one
method, __contains__—the special method behind the in operator. This means that
strings and arrays, which are not containers in the traditional sense, are virtual sub‐
classes of Container because they implement __contains__. This is just one more
example of humans using a word to mean different things. In this book I’ll write
“container” with lowercase letters to mean “an object that contains references to

Further Reading | 73

https://fpy.li/2-34
https://fpy.li/2-34

other objects,” and Container with a capitalized initial in a single-spaced font to refer
to collections.abc.Container.

Mixed-Bag Lists

Introductory Python texts emphasize that lists can contain objects of mixed types, but
in practice that feature is not very useful: we put items in a list to process them later,
which implies that all items should support at least some operation in common (i.e.,
they should all “quack” whether or not they are genetically 100% ducks). For exam‐
ple, you can’t sort a list in Python 3 unless the items in it are comparable:

>>> l = [28, 14, '28', 5, '9', '1', 0, 6, '23', 19]
>>> sorted(l)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unorderable types: str() < int()

Unlike lists, tuples often hold items of different types. That’s natural: if each item in a
tuple is a field, then each field may have a different type.

key Is Brilliant

The optional key argument of list.sort, sorted, max, and min is a great idea. Other
languages force you to provide a two-argument comparison function like the depre‐
cated cmp(a, b) function in Python 2. Using key is both simpler and more efficient.
It’s simpler because you just define a one-argument function that retrieves or calcu‐
lates whatever criterion you want to use to sort your objects; this is easier than writing
a two-argument function to return –1, 0, 1. It is also more efficient because the key
function is invoked only once per item, while the two-argument comparison is called
every time the sorting algorithm needs to compare two items. Of course, Python also
has to compare the keys while sorting, but that comparison is done in optimized C
code and not in a Python function that you wrote.

By the way, using key we can sort a mixed bag of numbers and number-like strings.
We just need to decide whether we want to treat all items as integers or strings:

>>> l = [28, 14, '28', 5, '9', '1', 0, 6, '23', 19]
>>> sorted(l, key=int)
[0, '1', 5, 6, '9', 14, 19, '23', 28, '28']
>>> sorted(l, key=str)
[0, '1', 14, 19, '23', 28, '28', 5, 6, '9']

Oracle, Google, and the Timbot Conspiracy

The sorting algorithm used in sorted and list.sort is Timsort, an adaptive algo‐
rithm that switches from insertion sort to merge sort strategies, depending on how
ordered the data is. This is efficient because real-world data tends to have runs of sor‐
ted items. There is a Wikipedia article about it.

74 | Chapter 2: An Array of Sequences

https://fpy.li/2-35

Timsort was first used in CPython in 2002. Since 2009, Timsort is also used to sort
arrays in both standard Java and Android, a fact that became widely known when
Oracle used some of the code related to Timsort as evidence of Google infringement
of Sun’s intellectual property. For example, see this order by Judge William Alsup
from 2012. In 2021, the US Supreme Court ruled Google’s use of Java code as “fair
use.”

Timsort was invented by Tim Peters, a Python core developer so prolific that he is
believed to be an AI, the Timbot. You can read about that conspiracy theory in
“Python Humor”. Tim also wrote “The Zen of Python”: import this.

Further Reading | 75

https://fpy.li/2-36
https://fpy.li/2-37

CHAPTER 3

Dictionaries and Sets

Python is basically dicts wrapped in loads of syntactic sugar.
—Lalo Martins, early digital nomad and Pythonista

We use dictionaries in all our Python programs. If not directly in our code, then indi‐
rectly because the dict type is a fundamental part of Python’s implementation. Class
and instance attributes, module namespaces, and function keyword arguments are
some of the core Python constructs represented by dictionaries in memory. The
__builtins__.__dict__ stores all built-in types, objects, and functions.

Because of their crucial role, Python dicts are highly optimized—and continue to get
improvements. Hash tables are the engines behind Python’s high-performance dicts.

Other built-in types based on hash tables are set and frozenset. These offer richer
APIs and operators than the sets you may have encountered in other popular lan‐
guages. In particular, Python sets implement all the fundamental operations from set
theory, like union, intersection, subset tests, etc. With them, we can express algo‐
rithms in a more declarative way, avoiding lots of nested loops and conditionals.

Here is a brief outline of this chapter:

• Modern syntax to build and handle dicts and mappings, including enhanced
unpacking and pattern matching

• Common methods of mapping types
• Special handling for missing keys
• Variations of dict in the standard library
• The set and frozenset types
• Implications of hash tables in the behavior of sets and dictionaries

77

What’s New in This Chapter
Most changes in this second edition cover new features related to mapping types:

• “Modern dict Syntax” on page 78 covers enhanced unpacking syntax and different
ways of merging mappings—including the | and |= operators supported by
dicts since Python 3.9.

• “Pattern Matching with Mappings” on page 81 illustrates handling mappings with
match/case, since Python 3.10.

• “collections.OrderedDict” on page 95 now focuses on the small but still relevant
differences between dict and OrderedDict—considering that dict keeps the key
insertion order since Python 3.6.

• New sections on the view objects returned by dict.keys, dict.items, and
dict.values: “Dictionary Views” on page 101 and “Set Operations on dict Views”
on page 110.

The underlying implementation of dict and set still relies on hash tables, but the
dict code has two important optimizations that save memory and preserve the inser‐
tion order of the keys in dict. “Practical Consequences of How dict Works” on page
102 and “Practical Consequences of How Sets Work” on page 107 summarize what you
need to know to use them well.

After adding more than 200 pages in this second edition, I moved
the optional section “Internals of sets and dicts” to the fluentpy‐
thon.com companion website. The updated and expanded 18-page
post includes explanations and diagrams about:

• The hash table algorithm and data structures, starting with its
use in set, which is simpler to understand.

• The memory optimization that preserves key insertion order
in dict instances (since Python 3.6).

• The key-sharing layout for dictionaries holding instance
attributes—the __dict__ of user-defined objects (optimiza‐
tion implemented in Python 3.3).

Modern dict Syntax
The next sections describe advanced syntax features to build, unpack, and process
mappings. Some of these features are not new in the language, but may be new to
you. Others require Python 3.9 (like the | operator) or Python 3.10 (like match/
case). Let’s start with one of the best and oldest of these features.

78 | Chapter 3: Dictionaries and Sets

https://fpy.li/hashint
http://fluentpython.com
http://fluentpython.com
https://fpy.li/hashint
https://fpy.li/hashint

dict Comprehensions
Since Python 2.7, the syntax of listcomps and genexps was adapted to dict compre‐
hensions (and set comprehensions as well, which we’ll soon visit). A dictcomp (dict
comprehension) builds a dict instance by taking key:value pairs from any iterable.
Example 3-1 shows the use of dict comprehensions to build two dictionaries from
the same list of tuples.

Example 3-1. Examples of dict comprehensions

>>> dial_codes = [
... (880, 'Bangladesh'),
... (55, 'Brazil'),
... (86, 'China'),
... (91, 'India'),
... (62, 'Indonesia'),
... (81, 'Japan'),
... (234, 'Nigeria'),
... (92, 'Pakistan'),
... (7, 'Russia'),
... (1, 'United States'),
...]
>>> country_dial = {country: code for code, country in dial_codes}
>>> country_dial
{'Bangladesh': 880, 'Brazil': 55, 'China': 86, 'India': 91, 'Indonesia': 62,
'Japan': 81, 'Nigeria': 234, 'Pakistan': 92, 'Russia': 7, 'United States': 1}
>>> {code: country.upper()
... for country, code in sorted(country_dial.items())
... if code < 70}
{55: 'BRAZIL', 62: 'INDONESIA', 7: 'RUSSIA', 1: 'UNITED STATES'}

An iterable of key-value pairs like dial_codes can be passed directly to the dict
constructor, but…

…here we swap the pairs: country is the key, and code is the value.

Sorting country_dial by name, reversing the pairs again, uppercasing values,
and filtering items with code < 70.

If you’re used to listcomps, dictcomps are a natural next step. If you aren’t, the spread
of the comprehension syntax means it’s now more profitable than ever to become
fluent in it.

Modern dict Syntax | 79

Unpacking Mappings
PEP 448—Additional Unpacking Generalizations enhanced the support of mapping
unpackings in two ways, since Python 3.5.

First, we can apply ** to more than one argument in a function call. This works when
keys are all strings and unique across all arguments (because duplicate keyword argu‐
ments are forbidden):

>>> def dump(**kwargs):
... return kwargs
...
>>> dump(**{'x': 1}, y=2, **{'z': 3})
{'x': 1, 'y': 2, 'z': 3}

Second, ** can be used inside a dict literal—also multiple times:

>>> {'a': 0, **{'x': 1}, 'y': 2, **{'z': 3, 'x': 4}}
{'a': 0, 'x': 4, 'y': 2, 'z': 3}

In this case, duplicate keys are allowed. Later occurrences overwrite previous ones—
see the value mapped to x in the example.

This syntax can also be used to merge mappings, but there are other ways. Please read
on.

Merging Mappings with |
Python 3.9 supports using | and |= to merge mappings. This makes sense, since these
are also the set union operators.

The | operator creates a new mapping:

>>> d1 = {'a': 1, 'b': 3}
>>> d2 = {'a': 2, 'b': 4, 'c': 6}
>>> d1 | d2
{'a': 2, 'b': 4, 'c': 6}

Usually the type of the new mapping will be the same as the type of the left operand
—d1 in the example—but it can be the type of the second operand if user-defined
types are involved, according to the operator overloading rules we explore in
Chapter 16.

To update an existing mapping in place, use |=. Continuing from the previous exam‐
ple, d1 was not changed, but now it is:

>>> d1
{'a': 1, 'b': 3}
>>> d1 |= d2
>>> d1
{'a': 2, 'b': 4, 'c': 6}

80 | Chapter 3: Dictionaries and Sets

https://fpy.li/pep448

1 A virtual subclass is any class registered by calling the .register() method of an ABC, as explained in “A
Virtual Subclass of an ABC” on page 460. A type implemented via Python/C API is also eligible if a specific
marker bit is set. See Py_TPFLAGS_MAPPING.

If you need to maintain code to run on Python 3.8 or earlier, the
“Motivation” section of PEP 584—Add Union Operators To dict
provides a good summary of other ways to merge mappings.

Now let’s see how pattern matching applies to mappings.

Pattern Matching with Mappings
The match/case statement supports subjects that are mapping objects. Patterns for
mappings look like dict literals, but they can match instances of any actual or virtual
subclass of collections.abc.Mapping.1

In Chapter 2 we focused on sequence patterns only, but different types of patterns
can be combined and nested. Thanks to destructuring, pattern matching is a power‐
ful tool to process records structured like nested mappings and sequences, which we
often need to read from JSON APIs and databases with semi-structured schemas, like
MongoDB, EdgeDB, or PostgreSQL. Example 3-2 demonstrates that. The simple type
hints in get_creators make it clear that it takes a dict and returns a list.

Example 3-2. creator.py: get_creators() extracts names of creators from media
records

def get_creators(record: dict) -> list:
 match record:
 case {'type': 'book', 'api': 2, 'authors': [*names]}:
 return names
 case {'type': 'book', 'api': 1, 'author': name}:
 return [name]
 case {'type': 'book'}:
 raise ValueError(f"Invalid 'book' record: {record!r}")
 case {'type': 'movie', 'director': name}:
 return [name]
 case _:
 raise ValueError(f'Invalid record: {record!r}')

Pattern Matching with Mappings | 81

https://fpy.li/3-2
https://fpy.li/3-1
https://fpy.li/pep584

Match any mapping with 'type': 'book', 'api' :2, and an 'authors' key
mapped to a sequence. Return the items in the sequence, as a new list.

Match any mapping with 'type': 'book', 'api' :1, and an 'author' key
mapped to any object. Return the object inside a list.

Any other mapping with 'type': 'book' is invalid, raise ValueError.

Match any mapping with 'type': 'movie' and a 'director' key mapped to a
single object. Return the object inside a list.

Any other subject is invalid, raise ValueError.

Example 3-2 shows some useful practices for handling semi-structured data such as
JSON records:

• Include a field describing the kind of record (e.g., 'type': 'movie')
• Include a field identifying the schema version (e.g., 'api': 2') to allow for

future evolution of public APIs
• Have case clauses to handle invalid records of a specific type (e.g., 'book'), as

well as a catch-all

Now let’s see how get_creators handles some concrete doctests:

>>> b1 = dict(api=1, author='Douglas Hofstadter',
... type='book', title='Gödel, Escher, Bach')
>>> get_creators(b1)
['Douglas Hofstadter']
>>> from collections import OrderedDict
>>> b2 = OrderedDict(api=2, type='book',
... title='Python in a Nutshell',
... authors='Martelli Ravenscroft Holden'.split())
>>> get_creators(b2)
['Martelli', 'Ravenscroft', 'Holden']
>>> get_creators({'type': 'book', 'pages': 770})
Traceback (most recent call last):
 ...
ValueError: Invalid 'book' record: {'type': 'book', 'pages': 770}
>>> get_creators('Spam, spam, spam')
Traceback (most recent call last):
 ...
ValueError: Invalid record: 'Spam, spam, spam'

Note that the order of the keys in the patterns is irrelevant, even if the subject is an
OrderedDict as b2.

82 | Chapter 3: Dictionaries and Sets

In contrast with sequence patterns, mapping patterns succeed on partial matches. In
the doctests, the b1 and b2 subjects include a 'title' key that does not appear in any
'book' pattern, yet they match.

There is no need to use **extra to match extra key-value pairs, but if you want to
capture them as a dict, you can prefix one variable with **. It must be the last in the
pattern, and **_ is forbidden because it would be redundant. A simple example:

>>> food = dict(category='ice cream', flavor='vanilla', cost=199)
>>> match food:
... case {'category': 'ice cream', **details}:
... print(f'Ice cream details: {details}')
...
Ice cream details: {'flavor': 'vanilla', 'cost': 199}

In “Automatic Handling of Missing Keys” on page 90 we’ll study defaultdict and
other mappings where key lookups via __getitem__ (i.e., d[key]) succeed because
missing items are created on the fly. In the context of pattern matching, a match suc‐
ceeds only if the subject already has the required keys at the top of the match
statement.

The automatic handling of missing keys is not triggered because
pattern matching always uses the d.get(key, sentinel) method
—where the default sentinel is a special marker value that cannot
occur in user data.

Moving on from syntax and structure, let’s study the API of mappings.

Standard API of Mapping Types
The collections.abc module provides the Mapping and MutableMapping ABCs
describing the interfaces of dict and similar types. See Figure 3-1.

The main value of the ABCs is documenting and formalizing the standard interfaces
for mappings, and serving as criteria for isinstance tests in code that needs to sup‐
port mappings in a broad sense:

>>> my_dict = {}
>>> isinstance(my_dict, abc.Mapping)
True
>>> isinstance(my_dict, abc.MutableMapping)
True

Standard API of Mapping Types | 83

2 The Python Glossary entry for “hashable” uses the term “hash value” instead of hash code. I prefer hash code
because that is a concept often discussed in the context of mappings, where items are made of keys and val‐
ues, so it may be confusing to mention the hash code as a value. In this book, I only use hash code.

Using isinstance with an ABC is often better than checking
whether a function argument is of the concrete dict type, because
then alternative mapping types can be used. We’ll discuss this in
detail in Chapter 13.

Figure 3-1. Simplified UML class diagram for the MutableMapping and its superclasses
from collections.abc (inheritance arrows point from subclasses to superclasses;
names in italic are abstract classes and abstract methods).

To implement a custom mapping, it’s easier to extend collections.UserDict, or to
wrap a dict by composition, instead of subclassing these ABCs. The collec
tions.UserDict class and all concrete mapping classes in the standard library encap‐
sulate the basic dict in their implementation, which in turn is built on a hash table.
Therefore, they all share the limitation that the keys must be hashable (the values
need not be hashable, only the keys). If you need a refresher, the next section
explains.

What Is Hashable
Here is part of the definition of hashable adapted from the Python Glossary:

An object is hashable if it has a hash code which never changes during its lifetime (it
needs a __hash__() method), and can be compared to other objects (it needs an
__eq__() method). Hashable objects which compare equal must have the same hash
code.2

Numeric types and flat immutable types str and bytes are all hashable. Container
types are hashable if they are immutable and all contained objects are also hashable.
A frozenset is always hashable, because every element it contains must be hashable

84 | Chapter 3: Dictionaries and Sets

https://fpy.li/3-3
https://fpy.li/3-3

3 See PEP 456—Secure and interchangeable hash algorithm to learn about the security implications and solu‐
tions adopted.

by definition. A tuple is hashable only if all its items are hashable. See tuples tt, tl,
and tf:

>>> tt = (1, 2, (30, 40))
>>> hash(tt)
8027212646858338501
>>> tl = (1, 2, [30, 40])
>>> hash(tl)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
>>> tf = (1, 2, frozenset([30, 40]))
>>> hash(tf)
-4118419923444501110

The hash code of an object may be different depending on the version of Python, the
machine architecture, and because of a salt added to the hash computation for secu‐
rity reasons.3 The hash code of a correctly implemented object is guaranteed to be
constant only within one Python process.

User-defined types are hashable by default because their hash code is their id(), and
the __eq__() method inherited from the object class simply compares the object
IDs. If an object implements a custom __eq__() that takes into account its internal
state, it will be hashable only if its __hash__() always returns the same hash code. In
practice, this requires that __eq__() and __hash__() only take into account instance
attributes that never change during the life of the object.

Now let’s review the API of the most commonly used mapping types in Python: dict,
defaultdict, and OrderedDict.

Overview of Common Mapping Methods
The basic API for mappings is quite rich. Table 3-1 shows the methods implemented
by dict and two popular variations: defaultdict and OrderedDict, both defined in
the collections module.

Standard API of Mapping Types | 85

https://fpy.li/pep456

Table 3-1. Methods of the mapping types dict, collections.defaultdict, and collec
tions.OrderedDict (common object methods omitted for brevity); optional arguments are
enclosed in […]

dict defaultdict OrderedDict

d.clear() ● ● ● Remove all items

d.__contains__(k) ● ● ● k in d

d.copy() ● ● ● Shallow copy

d.__copy__() ● Support for copy.copy(d)

d.default_factory ● Callable invoked by __missing__
to set missing valuesa

d.__delitem__(k) ● ● ● del d[k]—remove item with
key k

d.fromkeys(it, [ini
tial])

● ● ● New mapping from keys in iterable,
with optional initial value (defaults
to None)

d.get(k, [default]) ● ● ● Get item with key k, return
default or None if missing

d.__getitem__(k) ● ● ● d[k]—get item with key k

d.items() ● ● ● Get view over items—(key,
value) pairs

d.__iter__() ● ● ● Get iterator over keys

d.keys() ● ● ● Get view over keys

d.__len__() ● ● ● len(d)—number of items

d.__missing__(k) ● Called when __getitem__ cannot
find the key

d.move_to_end(k,
[last])

● Move k first or last position (last is
True by default)

d.__or__(other) ● ● ● Support for d1 | d2 to create new
dict merging d1 and d2 (Python
≥ 3.9)

d.__ior__(other) ● ● ● Support for d1 |= d2 to update
d1 with d2 (Python ≥ 3.9)

d.pop(k, [default]) ● ● ● Remove and return value at k, or
default or None if missing

d.popitem() ● ● ● Remove and return the last inserted
item as (key, value) b

d.__reversed__() ● ● ● Support for reverse(d)—returns
iterator for keys from last to first
inserted.

d.__ror__(other) ● ● ● Support for other | dd—
reversed union operator (Python ≥
3.9)c

86 | Chapter 3: Dictionaries and Sets

dict defaultdict OrderedDict

d.setdefault(k,
[default])

● ● ● If k in d, return d[k]; else set
d[k] = default and return it

d.__setitem__(k, v) ● ● ● d[k] = v—put v at k

d.update(m,
[**kwargs])

● ● ● Update d with items from mapping
or iterable of (key, value) pairs

d.values() ● ● ● Get view over values
a default_factory is not a method, but a callable attribute set by the end user when a defaultdict is instantiated.
b OrderedDict.popitem(last=False) removes the first item inserted (FIFO). The last keyword argument is not
supported in dict or defaultdict as recently as Python 3.10b3.
c Reversed operators are explained in Chapter 16.

The way d.update(m) handles its first argument m is a prime example of duck typing:
it first checks whether m has a keys method and, if it does, assumes it is a mapping.
Otherwise, update() falls back to iterating over m, assuming its items are (key,
value) pairs. The constructor for most Python mappings uses the logic of update()
internally, which means they can be initialized from other mappings or from any
iterable object producing (key, value) pairs.

A subtle mapping method is setdefault(). It avoids redundant key lookups when
we need to update the value of an item in place. The next section shows how to use it.

Inserting or Updating Mutable Values
In line with Python’s fail-fast philosophy, dict access with d[k] raises an error when
k is not an existing key. Pythonistas know that d.get(k, default) is an alternative
to d[k] whenever a default value is more convenient than handling KeyError. How‐
ever, when you retrieve a mutable value and want to update it, there is a better way.

Consider a script to index text, producing a mapping where each key is a word, and
the value is a list of positions where that word occurs, as shown in Example 3-3.

Example 3-3. Partial output from Example 3-4 processing the “Zen of Python”;
each line shows a word and a list of occurrences coded as pairs:
(line_number, column_number)

$ python3 index0.py zen.txt
a [(19, 48), (20, 53)]
Although [(11, 1), (16, 1), (18, 1)]
ambiguity [(14, 16)]
and [(15, 23)]
are [(21, 12)]
aren [(10, 15)]
at [(16, 38)]
bad [(19, 50)]

Standard API of Mapping Types | 87

4 The original script appears in slide 41 of Martelli’s “Re-learning Python” presentation. His script is actually a
demonstration of dict.setdefault, as shown in our Example 3-5.

be [(15, 14), (16, 27), (20, 50)]
beats [(11, 23)]
Beautiful [(3, 1)]
better [(3, 14), (4, 13), (5, 11), (6, 12), (7, 9), (8, 11), (17, 8), (18, 25)]
...

Example 3-4 is a suboptimal script written to show one case where dict.get is not
the best way to handle a missing key. I adapted it from an example by Alex Martelli.4

Example 3-4. index0.py uses dict.get to fetch and update a list of word occurrences
from the index (a better solution is in Example 3-5)

"""Build an index mapping word -> list of occurrences"""

import re
import sys

WORD_RE = re.compile(r'\w+')

index = {}
with open(sys.argv[1], encoding='utf-8') as fp:
 for line_no, line in enumerate(fp, 1):
 for match in WORD_RE.finditer(line):
 word = match.group()
 column_no = match.start() + 1
 location = (line_no, column_no)
 # this is ugly; coded like this to make a point
 occurrences = index.get(word, [])
 occurrences.append(location)
 index[word] = occurrences

display in alphabetical order
for word in sorted(index, key=str.upper):
 print(word, index[word])

Get the list of occurrences for word, or [] if not found.

Append new location to occurrences.

Put changed occurrences into index dict; this entails a second search through
the index.

88 | Chapter 3: Dictionaries and Sets

https://fpy.li/3-5

5 This is an example of using a method as a first-class function, the subject of Chapter 7.

In the key= argument of sorted, I am not calling str.upper, just passing a refer‐
ence to that method so the sorted function can use it to normalize the words for
sorting.5

The three lines dealing with occurrences in Example 3-4 can be replaced by a single
line using dict.setdefault. Example 3-5 is closer to Alex Martelli’s code.

Example 3-5. index.py uses dict.setdefault to fetch and update a list of word
occurrences from the index in a single line; contrast with Example 3-4

"""Build an index mapping word -> list of occurrences"""

import re
import sys

WORD_RE = re.compile(r'\w+')

index = {}
with open(sys.argv[1], encoding='utf-8') as fp:
 for line_no, line in enumerate(fp, 1):
 for match in WORD_RE.finditer(line):
 word = match.group()
 column_no = match.start() + 1
 location = (line_no, column_no)
 index.setdefault(word, []).append(location)

display in alphabetical order
for word in sorted(index, key=str.upper):
 print(word, index[word])

Get the list of occurrences for word, or set it to [] if not found; setdefault
returns the value, so it can be updated without requiring a second search.

In other words, the end result of this line…

my_dict.setdefault(key, []).append(new_value)

…is the same as running…

if key not in my_dict:
 my_dict[key] = []
my_dict[key].append(new_value)

…except that the latter code performs at least two searches for key—three if it’s not
found—while setdefault does it all with a single lookup.

Standard API of Mapping Types | 89

A related issue, handling missing keys on any lookup (and not only when inserting),
is the subject of the next section.

Automatic Handling of Missing Keys
Sometimes it is convenient to have mappings that return some made-up value when a
missing key is searched. There are two main approaches to this: one is to use a
defaultdict instead of a plain dict. The other is to subclass dict or any other map‐
ping type and add a __missing__ method. Both solutions are covered next.

defaultdict: Another Take on Missing Keys
A collections.defaultdict instance creates items with a default value on demand
whenever a missing key is searched using d[k] syntax. Example 3-6 uses default
dict to provide another elegant solution to the word index task from Example 3-5.

Here is how it works: when instantiating a defaultdict, you provide a callable to
produce a default value whenever __getitem__ is passed a nonexistent key argument.

For example, given a defaultdict created as dd = defaultdict(list), if 'new-key'
is not in dd, the expression dd['new-key'] does the following steps:

1. Calls list() to create a new list.
2. Inserts the list into dd using 'new-key' as key.
3. Returns a reference to that list.

The callable that produces the default values is held in an instance attribute named
default_factory.

Example 3-6. index_default.py: using defaultdict instead of the setdefault method

"""Build an index mapping word -> list of occurrences"""

import collections
import re
import sys

WORD_RE = re.compile(r'\w+')

index = collections.defaultdict(list)
with open(sys.argv[1], encoding='utf-8') as fp:
 for line_no, line in enumerate(fp, 1):
 for match in WORD_RE.finditer(line):
 word = match.group()
 column_no = match.start() + 1
 location = (line_no, column_no)

90 | Chapter 3: Dictionaries and Sets

6 One such library is Pingo.io, no longer under active development.

 index[word].append(location)

display in alphabetical order
for word in sorted(index, key=str.upper):
 print(word, index[word])

Create a defaultdict with the list constructor as default_factory.

If word is not initially in the index, the default_factory is called to produce the
missing value, which in this case is an empty list that is then assigned to
index[word] and returned, so the .append(location) operation always suc‐
ceeds.

If no default_factory is provided, the usual KeyError is raised for missing keys.

The default_factory of a defaultdict is only invoked to provide
default values for __getitem__ calls, and not for the other meth‐
ods. For example, if dd is a defaultdict, and k is a missing key,
dd[k] will call the default_factory to create a default value, but
dd.get(k) still returns None, and k in dd is False.

The mechanism that makes defaultdict work by calling default_factory is the
__missing__ special method, a feature that we discuss next.

The __missing__ Method
Underlying the way mappings deal with missing keys is the aptly named __missing__
method. This method is not defined in the base dict class, but dict is aware of it: if
you subclass dict and provide a __missing__ method, the standard dict.__geti
tem__ will call it whenever a key is not found, instead of raising KeyError.

Suppose you’d like a mapping where keys are converted to str when looked up. A
concrete use case is a device library for IoT,6 where a programmable board with
general-purpose I/O pins (e.g., a Raspberry Pi or an Arduino) is represented by a
Board class with a my_board.pins attribute, which is a mapping of physical pin iden‐
tifiers to pin software objects. The physical pin identifier may be just a number or a
string like "A0" or "P9_12". For consistency, it is desirable that all keys in board.pins
are strings, but it is also convenient looking up a pin by number, as in my_ardu
ino.pin[13], so that beginners are not tripped when they want to blink the LED on
pin 13 of their Arduinos. Example 3-7 shows how such a mapping would work.

Automatic Handling of Missing Keys | 91

https://fpy.li/3-6

Example 3-7. When searching for a nonstring key, StrKeyDict0 converts it to str
when it is not found

Tests for item retrieval using `d[key]` notation::

 >>> d = StrKeyDict0([('2', 'two'), ('4', 'four')])
 >>> d['2']
 'two'
 >>> d[4]
 'four'
 >>> d[1]
 Traceback (most recent call last):
 ...
 KeyError: '1'

Tests for item retrieval using `d.get(key)` notation::

 >>> d.get('2')
 'two'
 >>> d.get(4)
 'four'
 >>> d.get(1, 'N/A')
 'N/A'

Tests for the `in` operator::

 >>> 2 in d
 True
 >>> 1 in d
 False

Example 3-8 implements a class StrKeyDict0 that passes the preceding doctests.

A better way to create a user-defined mapping type is to subclass
collections.UserDict instead of dict (as we will do in
Example 3-9). Here we subclass dict just to show that __miss
ing__ is supported by the built-in dict.__getitem__ method.

Example 3-8. StrKeyDict0 converts nonstring keys to str on lookup (see tests in
Example 3-7)

class StrKeyDict0(dict):

 def __missing__(self, key):
 if isinstance(key, str):
 raise KeyError(key)
 return self[str(key)]

92 | Chapter 3: Dictionaries and Sets

 def get(self, key, default=None):
 try:
 return self[key]
 except KeyError:
 return default

 def __contains__(self, key):
 return key in self.keys() or str(key) in self.keys()

StrKeyDict0 inherits from dict.

Check whether key is already a str. If it is, and it’s missing, raise KeyError.

Build str from key and look it up.

The get method delegates to __getitem__ by using the self[key] notation; that
gives the opportunity for our __missing__ to act.

If a KeyError was raised, __missing__ already failed, so we return the default.

Search for unmodified key (the instance may contain non-str keys), then for a
str built from the key.

Take a moment to consider why the test isinstance(key, str) is necessary in the
__missing__ implementation.

Without that test, our __missing__ method would work OK for any key k—str or
not str—whenever str(k) produced an existing key. But if str(k) is not an existing
key, we’d have an infinite recursion. In the last line of __missing__, self[str(key)]
would call __getitem__, passing that str key, which in turn would call __missing__
again.

The __contains__ method is also needed for consistent behavior in this example,
because the operation k in d calls it, but the method inherited from dict does not
fall back to invoking __missing__. There is a subtle detail in our implementation of
__contains__: we do not check for the key in the usual Pythonic way—k in my_dict
—because str(key) in self would recursively call __contains__. We avoid this by
explicitly looking up the key in self.keys().

A search like k in my_dict.keys() is efficient in Python 3 even for very large map‐
pings because dict.keys() returns a view, which is similar to a set, as we’ll see in
“Set Operations on dict Views” on page 110. However, remember that k in my_dict
does the same job, and is faster because it avoids the attribute lookup to find
the .keys method.

Automatic Handling of Missing Keys | 93

I had a specific reason to use self.keys() in the __contains__ method in
Example 3-8. The check for the unmodified key—key in self.keys()—is necessary
for correctness because StrKeyDict0 does not enforce that all keys in the dictionary
must be of type str. Our only goal with this simple example is to make searching
“friendlier” and not enforce types.

User-defined classes derived from standard library mappings may
or may not use __missing__ as a fallback in their implementations
of __getitem__, get, or __contains__, as explained in the next
section.

Inconsistent Usage of __missing__ in the Standard Library
Consider the following scenarios, and how the missing key lookups are affected:

dict subclass
A subclass of dict implementing only __missing__ and no other method. In this
case, __missing__ may be called only on d[k], which will use the __getitem__
inherited from dict.

collections.UserDict subclass
Likewise, a subclass of UserDict implementing only __missing__ and no other
method. The get method inherited from UserDict calls __getitem__. This
means __missing__ may be called to handle lookups with d[k] and d.get(k).

abc.Mapping subclass with the simplest possible __getitem__
A minimal subclass of abc.Mapping implementing __missing__ and the required
abstract methods, including an implementation of __getitem__ that does not
call __missing__. The __missing__ method is never triggered in this class.

abc.Mapping subclass with __getitem__ calling __missing__
A minimal subclass of abc.Mapping implementing __missing__ and the required
abstract methods, including an implementation of __getitem__ that calls __miss
ing__. The __missing__ method is triggered in this class for missing key lookups
made with d[k], d.get(k), and k in d.

See missing.py in the example code repository for demonstrations of the scenarios
described here.

The four scenarios just described assume minimal implementations. If your subclass
implements __getitem__, get, and __contains__, then you can make those methods
use __missing__ or not, depending on your needs. The point of this section is to
show that you must be careful when subclassing standard library mappings to use
__missing__, because the base classes support different behaviors by default.

94 | Chapter 3: Dictionaries and Sets

https://fpy.li/3-7

Don’t forget that the behavior of setdefault and update is also affected by key
lookup. And finally, depending on the logic of your __missing__, you may need to
implement special logic in __setitem__, to avoid inconsistent or surprising behavior.
We’ll see an example of this in “Subclassing UserDict Instead of dict” on page 97.

So far we have covered the dict and defaultdict mapping types, but the standard
library comes with other mapping implementations, which we discuss next.

Variations of dict
In this section is an overview of mapping types included in the standard library,
besides defaultdict, already covered in “defaultdict: Another Take on Missing
Keys” on page 90.

collections.OrderedDict
Now that the built-in dict also keeps the keys ordered since Python 3.6, the most
common reason to use OrderedDict is writing code that is backward compatible with
earlier Python versions. Having said that, Python’s documentation lists some remain‐
ing differences between dict and OrderedDict, which I quote here—only reordering
the items for relevance in daily use:

• The equality operation for OrderedDict checks for matching order.
• The popitem() method of OrderedDict has a different signature. It accepts an

optional argument to specify which item is popped.
• OrderedDict has a move_to_end() method to efficiently reposition an element to

an endpoint.
• The regular dict was designed to be very good at mapping operations. Tracking

insertion order was secondary.
• OrderedDict was designed to be good at reordering operations. Space efficiency,

iteration speed, and the performance of update operations were secondary.
• Algorithmically, OrderedDict can handle frequent reordering operations better

than dict. This makes it suitable for tracking recent accesses (for example, in an
LRU cache).

collections.ChainMap
A ChainMap instance holds a list of mappings that can be searched as one. The lookup
is performed on each input mapping in the order it appears in the constructor call,
and succeeds as soon as the key is found in one of those mappings. For example:

Variations of dict | 95

>>> d1 = dict(a=1, b=3)
>>> d2 = dict(a=2, b=4, c=6)
>>> from collections import ChainMap
>>> chain = ChainMap(d1, d2)
>>> chain['a']
1
>>> chain['c']
6

The ChainMap instance does not copy the input mappings, but holds references to
them. Updates or insertions to a ChainMap only affect the first input mapping. Con‐
tinuing from the previous example:

>>> chain['c'] = -1
>>> d1
{'a': 1, 'b': 3, 'c': -1}
>>> d2
{'a': 2, 'b': 4, 'c': 6}

ChainMap is useful to implement interpreters for languages with nested scopes, where
each mapping represents a scope context, from the innermost enclosing scope to the
outermost scope. The “ChainMap objects” section of the collections docs has sev‐
eral examples of ChainMap usage, including this snippet inspired by the basic rules of
variable lookup in Python:

import builtins
pylookup = ChainMap(locals(), globals(), vars(builtins))

Example 18-14 shows a ChainMap subclass used to implement an interpreter for a
subset of the Scheme programming language.

collections.Counter
A mapping that holds an integer count for each key. Updating an existing key adds to
its count. This can be used to count instances of hashable objects or as a multiset (dis‐
cussed later in this section). Counter implements the + and - operators to combine
tallies, and other useful methods such as most_common([n]), which returns an
ordered list of tuples with the n most common items and their counts; see the docu‐
mentation. Here is Counter used to count letters in words:

>>> ct = collections.Counter('abracadabra')
>>> ct
Counter({'a': 5, 'b': 2, 'r': 2, 'c': 1, 'd': 1})
>>> ct.update('aaaaazzz')
>>> ct
Counter({'a': 10, 'z': 3, 'b': 2, 'r': 2, 'c': 1, 'd': 1})
>>> ct.most_common(3)
[('a', 10), ('z', 3), ('b', 2)]

96 | Chapter 3: Dictionaries and Sets

https://fpy.li/3-8
https://fpy.li/3-9
https://fpy.li/3-9

Note that the 'b' and 'r' keys are tied in third place, but ct.most_common(3) shows
only three counts.

To use collections.Counter as a multiset, pretend each key is an element in the set,
and the count is the number of occurrences of that element in the set.

shelve.Shelf
The shelve module in the standard library provides persistent storage for a mapping
of string keys to Python objects serialized in the pickle binary format. The curious
name of shelve makes sense when you realize that pickle jars are stored on shelves.

The shelve.open module-level function returns a shelve.Shelf instance—a simple
key-value DBM database backed by the dbm module, with these characteristics:

• shelve.Shelf subclasses abc.MutableMapping, so it provides the essential meth‐
ods we expect of a mapping type.

• In addition, shelve.Shelf provides a few other I/O management methods, like
sync and close.

• A Shelf instance is a context manager, so you can use a with block to make sure
it is closed after use.

• Keys and values are saved whenever a new value is assigned to a key.
• The keys must be strings.
• The values must be objects that the pickle module can serialize.

The documentation for the shelve, dbm, and pickle modules provides more details
and some caveats.

Python’s pickle is easy to use in the simplest cases, but has several
drawbacks. Read Ned Batchelder’s “Pickle’s nine flaws” before
adopting any solution involving pickle. In his post, Ned mentions
other serialization formats to consider.

OrderedDict, ChainMap, Counter, and Shelf are ready to use but can also be custom‐
ized by subclassing. In contrast, UserDict is intended only as a base class to be
extended.

Subclassing UserDict Instead of dict
It’s better to create a new mapping type by extending collections.UserDict rather
than dict. We realize that when we try to extend our StrKeyDict0 from Example 3-8
to make sure that any keys added to the mapping are stored as str.

Variations of dict | 97

https://fpy.li/3-10
https://fpy.li/3-11
https://fpy.li/3-12
https://fpy.li/3-13

7 The exact problem with subclassing dict and other built-ins is covered in “Subclassing Built-In Types Is
Tricky” on page 490.

The main reason why it’s better to subclass UserDict rather than dict is that the
built-in has some implementation shortcuts that end up forcing us to override meth‐
ods that we can just inherit from UserDict with no problems.7

Note that UserDict does not inherit from dict, but uses composition: it has an inter‐
nal dict instance, called data, which holds the actual items. This avoids undesired
recursion when coding special methods like __setitem__, and simplifies the coding
of __contains__, compared to Example 3-8.

Thanks to UserDict, StrKeyDict (Example 3-9) is more concise than StrKeyDict0
(Example 3-8), but it does more: it stores all keys as str, avoiding unpleasant sur‐
prises if the instance is built or updated with data containing nonstring keys.

Example 3-9. StrKeyDict always converts nonstring keys to str on insertion, update,
and lookup

import collections

class StrKeyDict(collections.UserDict):

 def __missing__(self, key):
 if isinstance(key, str):
 raise KeyError(key)
 return self[str(key)]

 def __contains__(self, key):
 return str(key) in self.data

 def __setitem__(self, key, item):
 self.data[str(key)] = item

StrKeyDict extends UserDict.

__missing__ is exactly as in Example 3-8.

__contains__ is simpler: we can assume all stored keys are str, and we can
check on self.data instead of invoking self.keys() as we did in StrKeyDict0.

__setitem__ converts any key to a str. This method is easier to overwrite when
we can delegate to the self.data attribute.

98 | Chapter 3: Dictionaries and Sets

Because UserDict extends abc.MutableMapping, the remaining methods that make
StrKeyDict a full-fledged mapping are inherited from UserDict, MutableMapping, or
Mapping. The latter have several useful concrete methods, in spite of being abstract
base classes (ABCs). The following methods are worth noting:

MutableMapping.update

This powerful method can be called directly but is also used by __init__ to load
the instance from other mappings, from iterables of (key, value) pairs, and
keyword arguments. Because it uses self[key] = value to add items, it ends up
calling our implementation of __setitem__.

Mapping.get

In StrKeyDict0 (Example 3-8), we had to code our own get to return the same
results as __getitem__, but in Example 3-9 we inherited Mapping.get, which is
implemented exactly like StrKeyDict0.get (see the Python source code).

Antoine Pitrou authored PEP 455—Adding a key-transforming
dictionary to collections and a patch to enhance the collections
module with a TransformDict, that is more general than StrKey
Dict and preserves the keys as they are provided, before the trans‐
formation is applied. PEP 455 was rejected in May 2015—see
Raymond Hettinger’s rejection message. To experiment with Trans
formDict, I extracted Pitrou’s patch from issue18986 into a stand‐
alone module (03-dict-set/transformdict.py in the Fluent Python
second edition code repository).

We know there are immutable sequence types, but how about an immutable map‐
ping? Well, there isn’t a real one in the standard library, but a stand-in is available.
That’s next.

Immutable Mappings
The mapping types provided by the standard library are all mutable, but you may
need to prevent users from changing a mapping by accident. A concrete use case can
be found, again, in a hardware programming library like Pingo, mentioned in “The
__missing__ Method” on page 91: the board.pins mapping represents the physical
GPIO pins on the device. As such, it’s useful to prevent inadvertent updates to
board.pins because the hardware can’t be changed via software, so any change in the
mapping would make it inconsistent with the physical reality of the device.

The types module provides a wrapper class called MappingProxyType, which, given a
mapping, returns a mappingproxy instance that is a read-only but dynamic proxy for
the original mapping. This means that updates to the original mapping can be seen in

Immutable Mappings | 99

https://fpy.li/3-14
https://fpy.li/pep455
https://fpy.li/pep455
https://fpy.li/3-15
https://fpy.li/3-16
https://fpy.li/3-17
https://fpy.li/code
https://fpy.li/code

the mappingproxy, but changes cannot be made through it. See Example 3-10 for a
brief demonstration.

Example 3-10. MappingProxyType builds a read-only mappingproxy instance from a
dict

>>> from types import MappingProxyType
>>> d = {1: 'A'}
>>> d_proxy = MappingProxyType(d)
>>> d_proxy
mappingproxy({1: 'A'})
>>> d_proxy[1]
'A'
>>> d_proxy[2] = 'x'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'mappingproxy' object does not support item assignment
>>> d[2] = 'B'
>>> d_proxy
mappingproxy({1: 'A', 2: 'B'})
>>> d_proxy[2]
'B'
>>>

Items in d can be seen through d_proxy.

Changes cannot be made through d_proxy.

d_proxy is dynamic: any change in d is reflected.

Here is how this could be used in practice in the hardware programming scenario:
the constructor in a concrete Board subclass would fill a private mapping with the pin
objects, and expose it to clients of the API via a public .pins attribute implemented
as a mappingproxy. That way the clients would not be able to add, remove, or change
pins by accident.

Next, we’ll cover views—which allow high-performance operations on a dict,
without unnecessary copying of data.

100 | Chapter 3: Dictionaries and Sets

Dictionary Views
The dict instance methods .keys(), .values(), and .items() return instances of
classes called dict_keys, dict_values, and dict_items, respectively. These dictio‐
nary views are read-only projections of the internal data structures used in the dict
implementation. They avoid the memory overhead of the equivalent Python 2 meth‐
ods that returned lists duplicating data already in the target dict, and they also
replace the old methods that returned iterators.

Example 3-11 shows some basic operations supported by all dictionary views.

Example 3-11. The .values() method returns a view of the values in a dict

>>> d = dict(a=10, b=20, c=30)
>>> values = d.values()
>>> values
dict_values([10, 20, 30])
>>> len(values)
3
>>> list(values)
[10, 20, 30]
>>> reversed(values)
<dict_reversevalueiterator object at 0x10e9e7310>
>>> values[0]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'dict_values' object is not subscriptable

The repr of a view object shows its content.

We can query the len of a view.

Views are iterable, so it’s easy to create lists from them.

Views implement __reversed__, returning a custom iterator.

We can’t use [] to get individual items from a view.

A view object is a dynamic proxy. If the source dict is updated, you can immediately
see the changes through an existing view. Continuing from Example 3-11:

>>> d['z'] = 99
>>> d
{'a': 10, 'b': 20, 'c': 30, 'z': 99}
>>> values
dict_values([10, 20, 30, 99])

Dictionary Views | 101

8 That’s how tuples are stored.

The classes dict_keys, dict_values, and dict_items are internal: they are not avail‐
able via __builtins__ or any standard library module, and even if you get a reference
to one of them, you can’t use it to create a view from scratch in Python code:

>>> values_class = type({}.values())
>>> v = values_class()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: cannot create 'dict_values' instances

The dict_values class is the simplest dictionary view—it implements only the
__len__, __iter__, and __reversed__ special methods. In addition to these meth‐
ods, dict_keys and dict_items implement several set methods, almost as many as
the frozenset class. After we cover sets, we’ll have more to say about dict_keys and
dict_items in “Set Operations on dict Views” on page 110.

Now let’s see some rules and tips informed by the way dict is implemented under
the hood.

Practical Consequences of How dict Works
The hash table implementation of Python’s dict is very efficient, but it’s important to
understand the practical effects of this design:

• Keys must be hashable objects. They must implement proper __hash__ and
__eq__ methods as described in “What Is Hashable” on page 84.

• Item access by key is very fast. A dict may have millions of keys, but Python can
locate a key directly by computing the hash code of the key and deriving an index
offset into the hash table, with the possible overhead of a small number of tries to
find a matching entry.

• Key ordering is preserved as a side effect of a more compact memory layout for
dict in CPython 3.6, which became an official language feature in 3.7.

• Despite its new compact layout, dicts inevitably have a significant memory over‐
head. The most compact internal data structure for a container would be an
array of pointers to the items.8 Compared to that, a hash table needs to store
more data per entry, and Python needs to keep at least one-third of the hash table
rows empty to remain efficient.

• To save memory, avoid creating instance attributes outside of the __init__
method.

102 | Chapter 3: Dictionaries and Sets

9 Unless the class has a __slots__ attribute, as explained in “Saving Memory with __slots__” on page 384.

That last tip about instance attributes comes from the fact that Python’s default
behavior is to store instance attributes in a special __dict__ attribute, which is a dict
attached to each instance.9 Since PEP 412—Key-Sharing Dictionary was implemented
in Python 3.3, instances of a class can share a common hash table, stored with the
class. That common hash table is shared by the __dict__ of each new instance that
has the same attributes names as the first instance of that class when __init__
returns. Each instance __dict__ can then hold only its own attribute values as a sim‐
ple array of pointers. Adding an instance attribute after __init__ forces Python to
create a new hash table just for the __dict__ of that one instance (which was the
default behavior for all instances before Python 3.3). According to PEP 412, this opti‐
mization reduces memory use by 10% to 20% for object-oriented programs.

The details of the compact layout and key-sharing optimizations are rather complex.
For more, please read “Internals of sets and dicts” at fluentpython.com.

Now let’s dive into sets.

Set Theory
Sets are not new in Python, but are still somewhat underused. The set type and its
immutable sibling frozenset first appeared as modules in the Python 2.3 standard
library, and were promoted to built-ins in Python 2.6.

In this book, I use the word “set” to refer both to set and frozen
set. When talking specifically about the set class, I use constant
width font: set.

A set is a collection of unique objects. A basic use case is removing duplication:

>>> l = ['spam', 'spam', 'eggs', 'spam', 'bacon', 'eggs']
>>> set(l)
{'eggs', 'spam', 'bacon'}
>>> list(set(l))
['eggs', 'spam', 'bacon']

Set Theory | 103

https://fpy.li/pep412
https://fpy.li/hashint
http://fluentpython.com

If you want to remove duplicates but also preserve the order of the
first occurrence of each item, you can now use a plain dict to do it,
like this:

>>> dict.fromkeys(l).keys()
dict_keys(['spam', 'eggs', 'bacon'])
>>> list(dict.fromkeys(l).keys())
['spam', 'eggs', 'bacon']

Set elements must be hashable. The set type is not hashable, so you can’t build a set
with nested set instances. But frozenset is hashable, so you can have frozenset
elements inside a set.

In addition to enforcing uniqueness, the set types implement many set operations as
infix operators, so, given two sets a and b, a | b returns their union, a & b computes
the intersection, a - b the difference, and a ^ b the symmetric difference. Smart use
of set operations can reduce both the line count and the execution time of Python
programs, at the same time making code easier to read and reason about—by remov‐
ing loops and conditional logic.

For example, imagine you have a large set of email addresses (the haystack) and a
smaller set of addresses (the needles) and you need to count how many needles
occur in the haystack. Thanks to set intersection (the & operator) you can code that
in a simple line (see Example 3-12).

Example 3-12. Count occurrences of needles in a haystack, both of type set

found = len(needles & haystack)

Without the intersection operator, you’d have to write Example 3-13 to accomplish
the same task as Example 3-12.

Example 3-13. Count occurrences of needles in a haystack (same end result as
Example 3-12)

found = 0
for n in needles:
 if n in haystack:
 found += 1

Example 3-12 runs slightly faster than Example 3-13. On the other hand,
Example 3-13 works for any iterable objects needles and haystack, while
Example 3-12 requires that both be sets. But, if you don’t have sets on hand, you can
always build them on the fly, as shown in Example 3-14.

104 | Chapter 3: Dictionaries and Sets

Example 3-14. Count occurrences of needles in a haystack; these lines work for any
iterable types

found = len(set(needles) & set(haystack))

another way:
found = len(set(needles).intersection(haystack))

Of course, there is an extra cost involved in building the sets in Example 3-14, but if
either the needles or the haystack is already a set, the alternatives in Example 3-14
may be cheaper than Example 3-13.

Any one of the preceding examples are capable of searching 1,000 elements in a hay
stack of 10,000,000 items in about 0.3 milliseconds—that’s close to 0.3 microseconds
per element.

Besides the extremely fast membership test (thanks to the underlying hash table), the
set and frozenset built-in types provide a rich API to create new sets or, in the case
of set, to change existing ones. We will discuss the operations shortly, but first a note
about syntax.

Set Literals
The syntax of set literals—{1}, {1, 2}, etc.—looks exactly like the math notation,
with one important exception: there’s no literal notation for the empty set, so we
must remember to write set().

Syntax Quirk

Don’t forget that to create an empty set, you should use the con‐
structor without an argument: set(). If you write {}, you’re creat‐
ing an empty dict—this hasn’t changed in Python 3.

In Python 3, the standard string representation of sets always uses the {…} notation,
except for the empty set:

>>> s = {1}
>>> type(s)
<class 'set'>
>>> s
{1}
>>> s.pop()
1
>>> s
set()

Set Theory | 105

10 This may be interesting, but is not super important. The speed up will happen only when a set literal is evalu‐
ated, and that happens at most once per Python process—when a module is initially compiled. If you’re curi‐
ous, import the dis function from the dis module and use it to disassemble the bytecodes for a set literal—
e.g., dis('{1}')—and a set call—dis('set([1])')

Literal set syntax like {1, 2, 3} is both faster and more readable than calling the
constructor (e.g., set([1, 2, 3])). The latter form is slower because, to evaluate it,
Python has to look up the set name to fetch the constructor, then build a list, and
finally pass it to the constructor. In contrast, to process a literal like {1, 2, 3},
Python runs a specialized BUILD_SET bytecode.10

There is no special syntax to represent frozenset literals—they must be created by
calling the constructor. The standard string representation in Python 3 looks like a
frozenset constructor call. Note the output in the console session:

>>> frozenset(range(10))
frozenset({0, 1, 2, 3, 4, 5, 6, 7, 8, 9})

Speaking of syntax, the idea of listcomps was adapted to build sets as well.

Set Comprehensions
Set comprehensions (setcomps) were added way back in Python 2.7, together with the
dictcomps that we saw in “dict Comprehensions” on page 79. Example 3-15 shows
how.

Example 3-15. Build a set of Latin-1 characters that have the word “SIGN” in their
Unicode names

>>> from unicodedata import name
>>> {chr(i) for i in range(32, 256) if 'SIGN' in name(chr(i),'')}
{'§', '=', '¢', '#', '¤', '<', '¥', 'µ', '×', '$', '¶', '£', '©',
'°', '+', '÷', '±', '>', '¬', '®', '%'}

Import name function from unicodedata to obtain character names.

Build set of characters with codes from 32 to 255 that have the word 'SIGN' in
their names.

The order of the output changes for each Python process, because of the salted hash
mentioned in “What Is Hashable” on page 84.

Syntax matters aside, let’s now consider the behavior of sets.

106 | Chapter 3: Dictionaries and Sets

Practical Consequences of How Sets Work
The set and frozenset types are both implemented with a hash table. This has these
effects:

• Set elements must be hashable objects. They must implement proper __hash__
and __eq__ methods as described in “What Is Hashable” on page 84.

• Membership testing is very efficient. A set may have millions of elements, but an
element can be located directly by computing its hash code and deriving an index
offset, with the possible overhead of a small number of tries to find a matching
element or exhaust the search.

• Sets have a significant memory overhead, compared to a low-level array pointers
to its elements—which would be more compact but also much slower to search
beyond a handful of elements.

• Element ordering depends on insertion order, but not in a useful or reliable way.
If two elements are different but have the same hash code, their position depends
on which element is added first.

• Adding elements to a set may change the order of existing elements. That’s
because the algorithm becomes less efficient if the hash table is more than two-
thirds full, so Python may need to move and resize the table as it grows. When
this happens, elements are reinserted and their relative ordering may change.

See “Internals of sets and dicts” at fluentpython.com for details.

Let’s now review the rich assortment of operations provided by sets.

Set Operations
Figure 3-2 gives an overview of the methods you can use on mutable and immutable
sets. Many of them are special methods that overload operators, such as & and >=.
Table 3-2 shows the math set operators that have corresponding operators or meth‐
ods in Python. Note that some operators and methods perform in-place changes on
the target set (e.g., &=, difference_update, etc.). Such operations make no sense in
the ideal world of mathematical sets, and are not implemented in frozenset.

Practical Consequences of How Sets Work | 107

https://fpy.li/hashint
http://fluentpython.com

The infix operators in Table 3-2 require that both operands be sets,
but all other methods take one or more iterable arguments. For
example, to produce the union of four collections, a, b, c, and d,
you can call a.union(b, c, d), where a must be a set, but b, c,
and d can be iterables of any type that produce hashable items. If
you need to create a new set with the union of four iterables,
instead of updating an existing set, you can write {*a, *b, *c,
*d} since Python 3.5 thanks to PEP 448—Additional Unpacking
Generalizations.

Figure 3-2. Simplified UML class diagram for MutableSet and its superclasses from
collections.abc (names in italic are abstract classes and abstract methods; reverse
operator methods omitted for brevity).

Table 3-2. Mathematical set operations: these methods either produce a new set or update
the target set in place, if it’s mutable

Math
symbol

Python
operator

Method Description

S ∩ Z s & z s.__and__(z) Intersection of s and z

z & s s.__rand__(z) Reversed & operator

s.intersection(it, …) Intersection of s and all sets built from
iterables it, etc.

s &= z s.__iand__(z) s updated with intersection of s and z

s.intersection_update(it, …) s updated with intersection of s and all
sets built from iterables it, etc.

S ∪ Z s | z s.__or__(z) Union of s and z

z | s s.__ror__(z) Reversed |

s.union(it, …) Union of s and all sets built from iterables
it, etc.

108 | Chapter 3: Dictionaries and Sets

https://fpy.li/pep448
https://fpy.li/pep448

Math
symbol

Python
operator

Method Description

s |= z s.__ior__(z) s updated with union of s and z

s.update(it, …) s updated with union of s and all sets built
from iterables it, etc.

S \ Z s - z s.__sub__(z) Relative complement or difference between
s and z

z - s s.__rsub__(z) Reversed - operator

s.difference(it, …) Difference between s and all sets built
from iterables it, etc.

s -= z s.__isub__(z) s updated with difference between s and
z

s.difference_update(it, …) s updated with difference between s and
all sets built from iterables it, etc.

S ∆ Z s ^ z s.__xor__(z) Symmetric difference (the complement of
the intersection s & z)

z ^ s s.__rxor__(z) Reversed ^ operator

s.symmetric_difference(it) Complement of s & set(it)

s ^= z s.__ixor__(z) s updated with symmetric difference of s
and z

s.symmetric_differ
ence_update(it, …)

s updated with symmetric difference of s
and all sets built from iterables it, etc.

Table 3-3 lists set predicates: operators and methods that return True or False.

Table 3-3. Set comparison operators and methods that return a bool

Math symbol Python operator Method Description
S ∩ Z = ∅ s.isdisjoint(z) s and z are disjoint (no elements in common)

e ∈ S e in s s.__contains__(e) Element e is a member of s

S ⊆ Z s <= z s.__le__(z) s is a subset of the z set

s.issubset(it) s is a subset of the set built from the iterable it

S ⊂ Z s < z s.__lt__(z) s is a proper subset of the z set

S ⊇ Z s >= z s.__ge__(z) s is a superset of the z set

s.issuperset(it) s is a superset of the set built from the iterable it

S ⊃ Z s > z s.__gt__(z) s is a proper superset of the z set

In addition to the operators and methods derived from math set theory, the set types
implement other methods of practical use, summarized in Table 3-4.

Practical Consequences of How Sets Work | 109

Table 3-4. Additional set methods

set frozenset

s.add(e) ● Add element e to s

s.clear() ● Remove all elements of s

s.copy() ● ● Shallow copy of s

s.discard(e) ● Remove element e from s if it is present

s.__iter__() ● ● Get iterator over s

s.__len__() ● ● len(s)

s.pop() ● Remove and return an element from s, raising KeyError if s is empty

s.remove(e) ● Remove element e from s, raising KeyError if e not in s

This completes our overview of the features of sets. As promised in “Dictionary
Views” on page 101, we’ll now see how two of the dictionary view types behave very
much like a frozenset.

Set Operations on dict Views
Table 3-5 shows that the view objects returned by the dict methods .keys()
and .items() are remarkably similar to frozenset.

Table 3-5. Methods implemented by frozenset, dict_keys, and dict_items

frozenset dict_keys dict_items Description

s.__and__(z) ● ● ● s & z (intersection of s and z)

s.__rand__(z) ● ● ● Reversed & operator

s.__contains__() ● ● ● e in s

s.copy() ● Shallow copy of s

s.difference(it, …) ● Difference between s and iterables it, etc.

s.intersection(it, …) ● Intersection of s and iterables it, etc.

s.isdisjoint(z) ● ● ● s and z are disjoint (no elements in common)

s.issubset(it) ● s is a subset of iterable it

s.issuperset(it) ● s is a superset of iterable it

s.__iter__() ● ● ● Get iterator over s

s.__len__() ● ● ● len(s)

s.__or__(z) ● ● ● s | z (union of s and z)

s.__ror__() ● ● ● Reversed | operator

s.__reversed__() ● ● Get iterator over s in reverse order

s.__rsub__(z) ● ● ● Reversed - operator

s.__sub__(z) ● ● ● s - z (difference between s and z)

110 | Chapter 3: Dictionaries and Sets

frozenset dict_keys dict_items Description

s.symmetric_differ
ence(it)

● Complement of s & set(it)

s.union(it, …) ● Union of s and iterables it, etc.

s.__xor__() ● ● ● s ^ z (symmetric difference of s and z)

s.__rxor__() ● ● ● Reversed ^ operator

In particular, dict_keys and dict_items implement the special methods to support
the powerful set operators & (intersection), | (union), - (difference), and ^ (symmet‐
ric difference).

For example, using & is easy to get the keys that appear in two dictionaries:

>>> d1 = dict(a=1, b=2, c=3, d=4)
>>> d2 = dict(b=20, d=40, e=50)
>>> d1.keys() & d2.keys()
{'b', 'd'}

Note that the return value of & is a set. Even better: the set operators in dictionary
views are compatible with set instances. Check this out:

>>> s = {'a', 'e', 'i'}
>>> d1.keys() & s
{'a'}
>>> d1.keys() | s
{'a', 'c', 'b', 'd', 'i', 'e'}

A dict_items view only works as a set if all values in the dict are
hashable. Attempting set operations on a dict_items view with an
unhashable value raises TypeError: unhashable type 'T', with T
as the type of the offending value.
On the other hand, a dict_keys view can always be used as a set,
because every key is hashable—by definition.

Using set operators with views will save a lot of loops and ifs when inspecting the
contents of dictionaries in your code. Let Python’s efficient implementation in C
work for you!

With this, we can wrap up this chapter.

Set Operations on dict Views | 111

Chapter Summary
Dictionaries are a keystone of Python. Over the years, the familiar {k1: v1, k2: v2}
literal syntax was enhanced to support unpacking with **, pattern matching, as well
as dict comprehensions.

Beyond the basic dict, the standard library offers handy, ready-to-use specialized
mappings like defaultdict, ChainMap, and Counter, all defined in the collections
module. With the new dict implementation, OrderedDict is not as useful as before,
but should remain in the standard library for backward compatibility—and has spe‐
cific characteristics that dict doesn’t have, such as taking into account key ordering
in == comparisons. Also in the collections module is the UserDict, an easy to use
base class to create custom mappings.

Two powerful methods available in most mappings are setdefault and update. The
setdefault method can update items holding mutable values—for example, in a
dict of list values—avoiding a second search for the same key. The update method
allows bulk insertion or overwriting of items from any other mapping, from iterables
providing (key, value) pairs, and from keyword arguments. Mapping constructors
also use update internally, allowing instances to be initialized from mappings, itera‐
bles, or keyword arguments. Since Python 3.9, we can also use the |= operator to
update a mapping, and the | operator to create a new one from the union of two
mappings.

A clever hook in the mapping API is the __missing__ method, which lets you cus‐
tomize what happens when a key is not found when using the d[k] syntax that
invokes __getitem__.

The collections.abc module provides the Mapping and MutableMapping abstract
base classes as standard interfaces, useful for runtime type checking. The Mapping
ProxyType from the types module creates an immutable façade for a mapping
you want to protect from accidental change. There are also ABCs for Set and
MutableSet.

Dictionary views were a great addition in Python 3, eliminating the memory over‐
head of the Python 2 .keys(), .values(), and .items() methods that built lists
duplicating data in the target dict instance. In addition, the dict_keys and
dict_items classes support the most useful operators and methods of frozenset.

112 | Chapter 3: Dictionaries and Sets

Further Reading
In The Python Standard Library documentation, “collections—Container datatypes”,
includes examples and practical recipes with several mapping types. The Python
source code for the module Lib/collections/__init__.py is a great reference for anyone
who wants to create a new mapping type or grok the logic of the existing ones. Chap‐
ter 1 of the Python Cookbook, 3rd ed. (O’Reilly) by David Beazley and Brian K. Jones
has 20 handy and insightful recipes with data structures—the majority using dict in
clever ways.

Greg Gandenberger advocates for the continued use of collections.OrderedDict,
on the grounds that “explicit is better than implicit,” backward compatibility, and the
fact that some tools and libraries assume the ordering of dict keys is irrelevant—his
post: “Python Dictionaries Are Now Ordered. Keep Using OrderedDict”.

PEP 3106—Revamping dict.keys(), .values() and .items() is where Guido van Rossum
presented the dictionary views feature for Python 3. In the abstract, he wrote that the
idea came from the Java Collections Framework.

PyPy was the first Python interpreter to implement Raymond Hettinger’s proposal of
compact dicts, and they blogged about it in “Faster, more memory efficient and more
ordered dictionaries on PyPy”, acknowledging that a similar layout was adopted in
PHP 7, described in PHP’s new hashtable implementation. It’s always great when cre‐
ators cite prior art.

At PyCon 2017, Brandon Rhodes presented “The Dictionary Even Mightier”, a sequel
to his classic animated presentation “The Mighty Dictionary”—including animated
hash collisions! Another up-to-date, but more in-depth video on the internals of
Python’s dict is “Modern Dictionaries” by Raymond Hettinger, where he tells that
after initially failing to sell compact dicts to the CPython core devs, he lobbied the
PyPy team, they adopted it, the idea gained traction, and was finally contributed to
CPython 3.6 by INADA Naoki. For all details, check out the extensive comments in
the CPython code for Objects/dictobject.c and the design document Objects/dict‐
notes.txt.

The rationale for adding sets to Python is documented in PEP 218—Adding a Built-
In Set Object Type. When PEP 218 was approved, no special literal syntax was adop‐
ted for sets. The set literals were created for Python 3 and backported to Python 2.7,
along with dict and set comprehensions. At PyCon 2019, I presented “Set Practice:
learning from Python’s set types” describing use cases of sets in real programs, cover‐
ing their API design, and the implementation of uintset, a set class for integer ele‐
ments using a bit vector instead of a hash table, inspired by an example in Chapter 6
of the excellent The Go Programming Language, by Alan Donovan and Brian Ker‐
nighan (Addison-Wesley).

Further Reading | 113

https://fpy.li/collec
https://fpy.li/pycook3
https://fpy.li/3-18
https://fpy.li/pep3106
https://fpy.li/3-19
https://fpy.li/3-20
https://fpy.li/3-20
https://fpy.li/3-21
https://fpy.li/3-22
https://fpy.li/3-23
https://fpy.li/3-24
https://fpy.li/3-25
https://fpy.li/3-26
https://fpy.li/3-27
https://fpy.li/3-27
https://fpy.li/pep218
https://fpy.li/pep218
https://fpy.li/3-29
https://fpy.li/3-29
https://fpy.li/3-30
http://gopl.io

IEEE’s Spectrum magazine has a story about Hans Peter Luhn, a prolific inventor
who patented a punched card deck to select cocktail recipes depending on ingredi‐
ents available, among other diverse inventions including…hash tables! See “Hans
Peter Luhn and the Birth of the Hashing Algorithm”.

Soapbox

Syntactic Sugar

My friend Geraldo Cohen once remarked that Python is “simple and correct.”

Programming language purists like to dismiss syntax as unimportant.

Syntactic sugar causes cancer of the semicolon.
—Alan Perlis

Syntax is the user interface of a programming language, so it does matter in practice.

Before finding Python, I did some web programming using Perl and PHP. The syntax
for mappings in these languages is very useful, and I badly miss it whenever I have to
use Java or C.

A good literal syntax for mappings is very convenient for configuration, table-driven
implementations, and to hold data for prototyping and testing. That’s one lesson the
designers of Go learned from dynamic languages. The lack of a good way to express
structured data in code pushed the Java community to adopt the verbose and overly
complex XML as a data format.

JSON was proposed as “The Fat-Free Alternative to XML” and became a huge suc‐
cess, replacing XML in many contexts. A concise syntax for lists and dictionaries
makes an excellent data interchange format.

PHP and Ruby imitated the hash syntax from Perl, using => to link keys to values.
JavaScript uses : like Python. Why use two characters when one is readable enough?

JSON came from JavaScript, but it also happens to be an almost exact subset of
Python syntax. JSON is compatible with Python except for the spelling of the values
true, false, and null.

Armin Ronacher tweeted that he likes to hack Python’s global namespace to add
JSON-compatible aliases for Python’s True, False, and None so he can paste JSON
directly in the console. The basic idea:

114 | Chapter 3: Dictionaries and Sets

https://fpy.li/3-31
https://fpy.li/3-31
https://fpy.li/3-32
https://fpy.li/3-33

>>> true, false, null = True, False, None
>>> fruit = {
... "type": "banana",
... "avg_weight": 123.2,
... "edible_peel": false,
... "species": ["acuminata", "balbisiana", "paradisiaca"],
... "issues": null,
... }
>>> fruit
{'type': 'banana', 'avg_weight': 123.2, 'edible_peel': False,
'species': ['acuminata', 'balbisiana', 'paradisiaca'], 'issues': None}

The syntax everybody now uses for exchanging data is Python’s dict and list syn‐
tax. Now we have the nice syntax with the convenience of preserved insertion order.

Simple and correct.

Further Reading | 115

1 Slide 12 of PyCon 2014 talk “Character Encoding and Unicode in Python” (slides, video).

CHAPTER 4

Unicode Text Versus Bytes

Humans use text. Computers speak bytes.
—Esther Nam and Travis Fischer, “Character Encoding and Unicode in Python”1

Python 3 introduced a sharp distinction between strings of human text and sequen‐
ces of raw bytes. Implicit conversion of byte sequences to Unicode text is a thing of
the past. This chapter deals with Unicode strings, binary sequences, and the encod‐
ings used to convert between them.

Depending on the kind of work you do with Python, you may think that understand‐
ing Unicode is not important. That’s unlikely, but anyway there is no escaping the
str versus byte divide. As a bonus, you’ll find that the specialized binary sequence
types provide features that the “all-purpose” Python 2 str type did not have.

In this chapter, we will visit the following topics:

• Characters, code points, and byte representations
• Unique features of binary sequences: bytes, bytearray, and memoryview
• Encodings for full Unicode and legacy character sets
• Avoiding and dealing with encoding errors
• Best practices when handling text files
• The default encoding trap and standard I/O issues
• Safe Unicode text comparisons with normalization

117

https://fpy.li/4-1
https://fpy.li/4-2

• Utility functions for normalization, case folding, and brute-force diacritic
removal

• Proper sorting of Unicode text with locale and the pyuca library
• Character metadata in the Unicode database
• Dual-mode APIs that handle str and bytes

What’s New in This Chapter
Support for Unicode in Python 3 has been comprehensive and stable, so the most
notable addition is “Finding Characters by Name” on page 151, describing a utility for
searching the Unicode database—a great way to find circled digits and smiling cats
from the command line.

One minor change worth mentioning is the Unicode support on Windows, which is
better and simpler since Python 3.6, as we’ll see in “Beware of Encoding Defaults” on
page 134.

Let’s start with the not-so-new, but fundamental concepts of characters, code points,
and bytes.

For the second edition, I expanded the section about the struct
module and published it online at “Parsing binary records with
struct”, in the fluentpython.com companion website.
There you will also find “Building Multi-character Emojis”,
describing how to make country flags, rainbow flags, people with
different skin tones, and diverse family icons by combining Uni‐
code characters.

Character Issues
The concept of “string” is simple enough: a string is a sequence of characters. The
problem lies in the definition of “character.”

In 2021, the best definition of “character” we have is a Unicode character. Accord‐
ingly, the items we get out of a Python 3 str are Unicode characters, just like the
items of a unicode object in Python 2—and not the raw bytes we got from a Python 2
str.

The Unicode standard explicitly separates the identity of characters from specific
byte representations:

118 | Chapter 4: Unicode Text Versus Bytes

https://fpy.li/4-3
https://fpy.li/4-3
http://fluentpython.com
https://fpy.li/4-4

• The identity of a character—its code point—is a number from 0 to 1,114,111
(base 10), shown in the Unicode standard as 4 to 6 hex digits with a “U+” prefix,
from U+0000 to U+10FFFF. For example, the code point for the letter A is U
+0041, the Euro sign is U+20AC, and the musical symbol G clef is assigned to
code point U+1D11E. About 13% of the valid code points have characters
assigned to them in Unicode 13.0.0, the standard used in Python 3.10.0b4.

• The actual bytes that represent a character depend on the encoding in use. An
encoding is an algorithm that converts code points to byte sequences and vice
versa. The code point for the letter A (U+0041) is encoded as the single byte \x41
in the UTF-8 encoding, or as the bytes \x41\x00 in UTF-16LE encoding. As
another example, UTF-8 requires three bytes—\xe2\x82\xac—to encode the
Euro sign (U+20AC), but in UTF-16LE the same code point is encoded as two
bytes: \xac\x20.

Converting from code points to bytes is encoding; converting from bytes to code
points is decoding. See Example 4-1.

Example 4-1. Encoding and decoding

>>> s = 'café'
>>> len(s)
4
>>> b = s.encode('utf8')
>>> b
b'caf\xc3\xa9'
>>> len(b)
5
>>> b.decode('utf8')
'café'

The str 'café' has four Unicode characters.

Encode str to bytes using UTF-8 encoding.

bytes literals have a b prefix.

bytes b has five bytes (the code point for “é” is encoded as two bytes in UTF-8).

Decode bytes to str using UTF-8 encoding.

Character Issues | 119

2 Python 2.6 and 2.7 also had bytes, but it was just an alias to the str type.

If you need a memory aid to help distinguish .decode()

from .encode(), convince yourself that byte sequences can be
cryptic machine core dumps, while Unicode str objects are
“human” text. Therefore, it makes sense that we decode bytes to
str to get human-readable text, and we encode str to bytes for
storage or transmission.

Although the Python 3 str is pretty much the Python 2 unicode type with a new
name, the Python 3 bytes is not simply the old str renamed, and there is also the
closely related bytearray type. So it is worthwhile to take a look at the binary
sequence types before advancing to encoding/decoding issues.

Byte Essentials
The new binary sequence types are unlike the Python 2 str in many regards. The first
thing to know is that there are two basic built-in types for binary sequences: the
immutable bytes type introduced in Python 3 and the mutable bytearray, added
way back in Python 2.6.2 The Python documentation sometimes uses the generic
term “byte string” to refer to both bytes and bytearray. I avoid that confusing term.

Each item in bytes or bytearray is an integer from 0 to 255, and not a one-character
string like in the Python 2 str. However, a slice of a binary sequence always produces
a binary sequence of the same type—including slices of length 1. See Example 4-2.

Example 4-2. A five-byte sequence as bytes and as bytearray

>>> cafe = bytes('café', encoding='utf_8')
>>> cafe
b'caf\xc3\xa9'
>>> cafe[0]
99
>>> cafe[:1]
b'c'
>>> cafe_arr = bytearray(cafe)
>>> cafe_arr
bytearray(b'caf\xc3\xa9')
>>> cafe_arr[-1:]
bytearray(b'\xa9')

bytes can be built from a str, given an encoding.

Each item is an integer in range(256).

120 | Chapter 4: Unicode Text Versus Bytes

3 Trivia: the ASCII “single quote” character that Python uses by default as the string delimiter is actually named
APOSTROPHE in the Unicode standard. The real single quotes are asymmetric: left is U+2018 and right is
U+2019.

Slices of bytes are also bytes—even slices of a single byte.

There is no literal syntax for bytearray: they are shown as bytearray() with a
bytes literal as argument.

A slice of bytearray is also a bytearray.

The fact that my_bytes[0] retrieves an int but my_bytes[:1]
returns a bytes sequence of length 1 is only surprising because we
are used to Python’s str type, where s[0] == s[:1]. For all other
sequence types in Python, 1 item is not the same as a slice of
length 1.

Although binary sequences are really sequences of integers, their literal notation
reflects the fact that ASCII text is often embedded in them. Therefore, four different
displays are used, depending on each byte value:

• For bytes with decimal codes 32 to 126—from space to ~ (tilde)—the ASCII char‐
acter itself is used.

• For bytes corresponding to tab, newline, carriage return, and \, the escape
sequences \t, \n, \r, and \\ are used.

• If both string delimiters ' and " appear in the byte sequence, the whole sequence
is delimited by ', and any ' inside are escaped as \'.3

• For other byte values, a hexadecimal escape sequence is used (e.g., \x00 is the
null byte).

That is why in Example 4-2 you see b'caf\xc3\xa9': the first three bytes b'caf' are
in the printable ASCII range, the last two are not.

Both bytes and bytearray support every str method except those that do format‐
ting (format, format_map) and those that depend on Unicode data, including case
fold, isdecimal, isidentifier, isnumeric, isprintable, and encode. This means
that you can use familiar string methods like endswith, replace, strip, translate,
upper, and dozens of others with binary sequences—only using bytes and not str
arguments. In addition, the regular expression functions in the re module also work

Byte Essentials | 121

4 It did not work in Python 3.0 to 3.4, causing much pain to developers dealing with binary data. The reversal is
documented in PEP 461—Adding % formatting to bytes and bytearray.

on binary sequences, if the regex is compiled from a binary sequence instead of a str.
Since Python 3.5, the % operator works with binary sequences again.4

Binary sequences have a class method that str doesn’t have, called fromhex, which
builds a binary sequence by parsing pairs of hex digits optionally separated by spaces:

>>> bytes.fromhex('31 4B CE A9')
b'1K\xce\xa9'

The other ways of building bytes or bytearray instances are calling their construc‐
tors with:

• A str and an encoding keyword argument
• An iterable providing items with values from 0 to 255
• An object that implements the buffer protocol (e.g., bytes, bytearray, memory
view, array.array) that copies the bytes from the source object to the newly cre‐
ated binary sequence

Until Python 3.5, it was also possible to call bytes or bytearray
with a single integer to create a binary sequence of that size initial‐
ized with null bytes. This signature was deprecated in Python 3.5
and removed in Python 3.6. See PEP 467—Minor API improve‐
ments for binary sequences.

Building a binary sequence from a buffer-like object is a low-level operation that may
involve type casting. See a demonstration in Example 4-3.

Example 4-3. Initializing bytes from the raw data of an array

>>> import array
>>> numbers = array.array('h', [-2, -1, 0, 1, 2])
>>> octets = bytes(numbers)
>>> octets
b'\xfe\xff\xff\xff\x00\x00\x01\x00\x02\x00'

Typecode 'h' creates an array of short integers (16 bits).

octets holds a copy of the bytes that make up numbers.

These are the 10 bytes that represent the 5 short integers.

122 | Chapter 4: Unicode Text Versus Bytes

https://fpy.li/pep461
https://fpy.li/pep467
https://fpy.li/pep467

Creating a bytes or bytearray object from any buffer-like source will always copy
the bytes. In contrast, memoryview objects let you share memory between binary data
structures, as we saw in “Memory Views” on page 62.

After this basic exploration of binary sequence types in Python, let’s see how they are
converted to/from strings.

Basic Encoders/Decoders
The Python distribution bundles more than 100 codecs (encoder/decoders) for text to
byte conversion and vice versa. Each codec has a name, like 'utf_8', and often
aliases, such as 'utf8', 'utf-8', and 'U8', which you can use as the encoding argu‐
ment in functions like open(), str.encode(), bytes.decode(), and so on.
Example 4-4 shows the same text encoded as three different byte sequences.

Example 4-4. The string “El Niño” encoded with three codecs producing very different
byte sequences

>>> for codec in ['latin_1', 'utf_8', 'utf_16']:
... print(codec, 'El Niño'.encode(codec), sep='\t')
...
latin_1 b'El Ni\xf1o'
utf_8 b'El Ni\xc3\xb1o'
utf_16 b'\xff\xfeE\x00l\x00 \x00N\x00i\x00\xf1\x00o\x00'

Figure 4-1 demonstrates a variety of codecs generating bytes from characters like the
letter “A” through the G-clef musical symbol. Note that the last three encodings are
variable-length, multibyte encodings.

Figure 4-1. Twelve characters, their code points, and their byte representation (in hex)
in 7 different encodings (asterisks indicate that the character cannot be represented in
that encoding).

Basic Encoders/Decoders | 123

All those asterisks in Figure 4-1 make clear that some encodings, like ASCII and even
the multibyte GB2312, cannot represent every Unicode character. The UTF encod‐
ings, however, are designed to handle every Unicode code point.

The encodings shown in Figure 4-1 were chosen as a representative sample:

latin1 a.k.a. iso8859_1
Important because it is the basis for other encodings, such as cp1252 and Uni‐
code itself (note how the latin1 byte values appear in the cp1252 bytes and even
in the code points).

cp1252

A useful latin1 superset created by Microsoft, adding useful symbols like curly
quotes and € (euro); some Windows apps call it “ANSI,” but it was never a real
ANSI standard.

cp437

The original character set of the IBM PC, with box drawing characters. Incom‐
patible with latin1, which appeared later.

gb2312

Legacy standard to encode the simplified Chinese ideographs used in mainland
China; one of several widely deployed multibyte encodings for Asian languages.

utf-8

The most common 8-bit encoding on the web, by far, as of July 2021, “W3Techs:
Usage statistics of character encodings for websites” claims that 97% of sites use
UTF-8, up from 81.4% when I wrote this paragraph in the first edition of this
book in September 2014.

utf-16le

One form of the UTF 16-bit encoding scheme; all UTF-16 encodings support
code points beyond U+FFFF through escape sequences called “surrogate pairs.”

UTF-16 superseded the original 16-bit Unicode 1.0 encoding—
UCS-2—way back in 1996. UCS-2 is still used in many systems
despite being deprecated since the last century because it only sup‐
ports code points up to U+FFFF. As of 2021, more than 57% of the
allocated code points are above U+FFFF, including the all-
important emojis.

With this overview of common encodings now complete, we move to handling issues
in encoding and decoding operations.

124 | Chapter 4: Unicode Text Versus Bytes

https://fpy.li/4-5
https://fpy.li/4-5

Understanding Encode/Decode Problems
Although there is a generic UnicodeError exception, the error reported by Python is
usually more specific: either a UnicodeEncodeError (when converting str to binary
sequences) or a UnicodeDecodeError (when reading binary sequences into str).
Loading Python modules may also raise SyntaxError when the source encoding is
unexpected. We’ll show how to handle all of these errors in the next sections.

The first thing to note when you get a Unicode error is the exact
type of the exception. Is it a UnicodeEncodeError, a UnicodeDeco
deError, or some other error (e.g., SyntaxError) that mentions an
encoding problem? To solve the problem, you have to understand
it first.

Coping with UnicodeEncodeError
Most non-UTF codecs handle only a small subset of the Unicode characters. When
converting text to bytes, if a character is not defined in the target encoding, Unico
deEncodeError will be raised, unless special handling is provided by passing an
errors argument to the encoding method or function. The behavior of the error han‐
dlers is shown in Example 4-5.

Example 4-5. Encoding to bytes: success and error handling

>>> city = 'São Paulo'
>>> city.encode('utf_8')
b'S\xc3\xa3o Paulo'
>>> city.encode('utf_16')
b'\xff\xfeS\x00\xe3\x00o\x00 \x00P\x00a\x00u\x00l\x00o\x00'
>>> city.encode('iso8859_1')
b'S\xe3o Paulo'
>>> city.encode('cp437')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/.../lib/python3.4/encodings/cp437.py", line 12, in encode
 return codecs.charmap_encode(input,errors,encoding_map)
UnicodeEncodeError: 'charmap' codec can't encode character '\xe3' in
position 1: character maps to <undefined>
>>> city.encode('cp437', errors='ignore')
b'So Paulo'
>>> city.encode('cp437', errors='replace')
b'S?o Paulo'
>>> city.encode('cp437', errors='xmlcharrefreplace')
b'São Paulo'

Understanding Encode/Decode Problems | 125

The UTF encodings handle any str.

iso8859_1 also works for the 'São Paulo' string.

cp437 can’t encode the 'ã' (“a” with tilde). The default error handler
—'strict'—raises UnicodeEncodeError.

The error='ignore' handler skips characters that cannot be encoded; this is
usually a very bad idea, leading to silent data loss.

When encoding, error='replace' substitutes unencodable characters with '?';
data is also lost, but users will get a clue that something is amiss.

'xmlcharrefreplace' replaces unencodable characters with an XML entity. If
you can’t use UTF, and you can’t afford to lose data, this is the only option.

The codecs error handling is extensible. You may register extra
strings for the errors argument by passing a name and an error
handling function to the codecs.register_error function. See the
codecs.register_error documentation.

ASCII is a common subset to all the encodings that I know about, therefore encoding
should always work if the text is made exclusively of ASCII characters. Python 3.7
added a new boolean method str.isascii() to check whether your Unicode text is
100% pure ASCII. If it is, you should be able to encode it to bytes in any encoding
without raising UnicodeEncodeError.

Coping with UnicodeDecodeError
Not every byte holds a valid ASCII character, and not every byte sequence is valid
UTF-8 or UTF-16; therefore, when you assume one of these encodings while convert‐
ing a binary sequence to text, you will get a UnicodeDecodeError if unexpected bytes
are found.

On the other hand, many legacy 8-bit encodings like 'cp1252', 'iso8859_1', and
'koi8_r' are able to decode any stream of bytes, including random noise, without
reporting errors. Therefore, if your program assumes the wrong 8-bit encoding, it
will silently decode garbage.

126 | Chapter 4: Unicode Text Versus Bytes

https://fpy.li/4-6
https://fpy.li/4-6
https://fpy.li/4-7

Garbled characters are known as gremlins or mojibake (文字化け
—Japanese for “transformed text”).

Example 4-6 illustrates how using the wrong codec may produce gremlins or a
UnicodeDecodeError.

Example 4-6. Decoding from str to bytes: success and error handling

>>> octets = b'Montr\xe9al'
>>> octets.decode('cp1252')
'Montréal'
>>> octets.decode('iso8859_7')
'Montrιal'
>>> octets.decode('koi8_r')
'MontrИal'
>>> octets.decode('utf_8')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xe9 in position 5:
invalid continuation byte
>>> octets.decode('utf_8', errors='replace')
'Montr�al'

The word “Montréal” encoded as latin1; '\xe9' is the byte for “é”.

Decoding with Windows 1252 works because it is a superset of latin1.

ISO-8859-7 is intended for Greek, so the '\xe9' byte is misinterpreted, and no
error is issued.

KOI8-R is for Russian. Now '\xe9' stands for the Cyrillic letter “И”.

The 'utf_8' codec detects that octets is not valid UTF-8, and raises UnicodeDe
codeError.

Using 'replace' error handling, the \xe9 is replaced by “�” (code point
U+FFFD), the official Unicode REPLACEMENT CHARACTER intended to represent
unknown characters.

Understanding Encode/Decode Problems | 127

SyntaxError When Loading Modules with Unexpected Encoding
UTF-8 is the default source encoding for Python 3, just as ASCII was the default for
Python 2. If you load a .py module containing non-UTF-8 data and no encoding dec‐
laration, you get a message like this:

SyntaxError: Non-UTF-8 code starting with '\xe1' in file ola.py on line
 1, but no encoding declared; see https://python.org/dev/peps/pep-0263/
 for details

Because UTF-8 is widely deployed in GNU/Linux and macOS systems, a likely sce‐
nario is opening a .py file created on Windows with cp1252. Note that this error hap‐
pens even in Python for Windows, because the default encoding for Python 3 source
is UTF-8 across all platforms.

To fix this problem, add a magic coding comment at the top of the file, as shown in
Example 4-7.

Example 4-7. ola.py: “Hello, World!” in Portuguese

coding: cp1252

print('Olá, Mundo!')

Now that Python 3 source code is no longer limited to ASCII and
defaults to the excellent UTF-8 encoding, the best “fix” for source
code in legacy encodings like 'cp1252' is to convert them to
UTF-8 already, and not bother with the coding comments. If your
editor does not support UTF-8, it’s time to switch.

Suppose you have a text file, be it source code or poetry, but you don’t know its
encoding. How do you detect the actual encoding? Answers in the next section.

How to Discover the Encoding of a Byte Sequence
How do you find the encoding of a byte sequence? Short answer: you can’t. You must
be told.

Some communication protocols and file formats, like HTTP and XML, contain head‐
ers that explicitly tell us how the content is encoded. You can be sure that some byte
streams are not ASCII because they contain byte values over 127, and the way UTF-8
and UTF-16 are built also limits the possible byte sequences.

128 | Chapter 4: Unicode Text Versus Bytes

Leo’s Hack for Guessing UTF-8 Decoding
(The next paragraphs come from a note left by tech reviewer Leonardo Rochael in the
draft of this book.)

The way UTF-8 was designed, it’s almost impossible for a random sequence of bytes,
or even a nonrandom sequence of bytes coming from a non-UTF-8 encoding, to be
decoded accidentally as garbage in UTF-8, instead of raising UnicodeDecodeError.

The reasons for this are that UTF-8 escape sequences never use ASCII characters, and
these escape sequences have bit patterns that make it very hard for random data to be
valid UTF-8 by accident.

So if you can decode some bytes containing codes > 127 as UTF-8, it’s probably
UTF-8.

In dealing with Brazilian online services, some of which were attached to legacy back‐
ends, I’ve had, on occasion, to implement a decoding strategy of trying to decode via
UTF-8 and treat a UnicodeDecodeError by decoding via cp1252. It was ugly but
effective.

However, considering that human languages also have their rules and restrictions,
once you assume that a stream of bytes is human plain text, it may be possible to sniff
out its encoding using heuristics and statistics. For example, if b'\x00' bytes are
common, it is probably a 16- or 32-bit encoding, and not an 8-bit scheme, because
null characters in plain text are bugs. When the byte sequence b'\x20\x00' appears
often, it is more likely to be the space character (U+0020) in a UTF-16LE encoding,
rather than the obscure U+2000 EN QUAD character—whatever that is.

That is how the package “Chardet—The Universal Character Encoding Detector”
works to guess one of more than 30 supported encodings. Chardet is a Python library
that you can use in your programs, but also includes a command-line utility, charde
tect. Here is what it reports on the source file for this chapter:

$ chardetect 04-text-byte.asciidoc
04-text-byte.asciidoc: utf-8 with confidence 0.99

Although binary sequences of encoded text usually don’t carry explicit hints of their
encoding, the UTF formats may prepend a byte order mark to the textual content.
That is explained next.

BOM: A Useful Gremlin
In Example 4-4, you may have noticed a couple of extra bytes at the beginning of a
UTF-16 encoded sequence. Here they are again:

Understanding Encode/Decode Problems | 129

https://fpy.li/4-8

>>> u16 = 'El Niño'.encode('utf_16')
>>> u16
b'\xff\xfeE\x00l\x00 \x00N\x00i\x00\xf1\x00o\x00'

The bytes are b'\xff\xfe'. That is a BOM—byte-order mark—denoting the “little-
endian” byte ordering of the Intel CPU where the encoding was performed.

On a little-endian machine, for each code point the least significant byte comes first:
the letter 'E', code point U+0045 (decimal 69), is encoded in byte offsets 2 and 3 as
69 and 0:

>>> list(u16)
[255, 254, 69, 0, 108, 0, 32, 0, 78, 0, 105, 0, 241, 0, 111, 0]

On a big-endian CPU, the encoding would be reversed; 'E' would be encoded as 0
and 69.

To avoid confusion, the UTF-16 encoding prepends the text to be encoded with the
special invisible character ZERO WIDTH NO-BREAK SPACE (U+FEFF). On a little-
endian system, that is encoded as b'\xff\xfe' (decimal 255, 254). Because, by
design, there is no U+FFFE character in Unicode, the byte sequence b'\xff\xfe'
must mean the ZERO WIDTH NO-BREAK SPACE on a little-endian encoding, so the
codec knows which byte ordering to use.

There is a variant of UTF-16—UTF-16LE—that is explicitly little-endian, and
another one explicitly big-endian, UTF-16BE. If you use them, a BOM is not
generated:

>>> u16le = 'El Niño'.encode('utf_16le')
>>> list(u16le)
[69, 0, 108, 0, 32, 0, 78, 0, 105, 0, 241, 0, 111, 0]
>>> u16be = 'El Niño'.encode('utf_16be')
>>> list(u16be)
[0, 69, 0, 108, 0, 32, 0, 78, 0, 105, 0, 241, 0, 111]

If present, the BOM is supposed to be filtered by the UTF-16 codec, so that you only
get the actual text contents of the file without the leading ZERO WIDTH NO-BREAK
SPACE. The Unicode standard says that if a file is UTF-16 and has no BOM, it should
be assumed to be UTF-16BE (big-endian). However, the Intel x86 architecture is
little-endian, so there is plenty of little-endian UTF-16 with no BOM in the wild.

This whole issue of endianness only affects encodings that use words of more than
one byte, like UTF-16 and UTF-32. One big advantage of UTF-8 is that it produces
the same byte sequence regardless of machine endianness, so no BOM is needed.
Nevertheless, some Windows applications (notably Notepad) add the BOM to UTF-8
files anyway—and Excel depends on the BOM to detect a UTF-8 file, otherwise it
assumes the content is encoded with a Windows code page. This UTF-8 encoding
with BOM is called UTF-8-SIG in Python’s codec registry. The character U+FEFF

130 | Chapter 4: Unicode Text Versus Bytes

5 I first saw the term “Unicode sandwich” in Ned Batchelder’s excellent “Pragmatic Unicode” talk at US PyCon
2012.

encoded in UTF-8-SIG is the three-byte sequence b'\xef\xbb\xbf'. So if a file starts
with those three bytes, it is likely to be a UTF-8 file with a BOM.

Caleb’s Tip about UTF-8-SIG

Caleb Hattingh—one of the tech reviewers—suggests always using
the UTF-8-SIG codec when reading UTF-8 files. This is harmless
because UTF-8-SIG reads files with or without a BOM correctly,
and does not return the BOM itself. When writing, I recommend
using UTF-8 for general interoperability. For example, Python
scripts can be made executable in Unix systems if they start with
the comment: #!/usr/bin/env python3. The first two bytes of the
file must be b'#!' for that to work, but the BOM breaks that con‐
vention. If you have a specific requirement to export data to apps
that need the BOM, use UTF-8-SIG but be aware that Python’s
codecs documentation says: “In UTF-8, the use of the BOM is dis‐
couraged and should generally be avoided.”

We now move on to handling text files in Python 3.

Handling Text Files
The best practice for handling text I/O is the “Unicode sandwich” (Figure 4-2).5 This
means that bytes should be decoded to str as early as possible on input (e.g., when
opening a file for reading). The “filling” of the sandwich is the business logic of your
program, where text handling is done exclusively on str objects. You should never be
encoding or decoding in the middle of other processing. On output, the str are enco‐
ded to bytes as late as possible. Most web frameworks work like that, and we rarely
touch bytes when using them. In Django, for example, your views should output
Unicode str; Django itself takes care of encoding the response to bytes, using UTF-8
by default.

Python 3 makes it easier to follow the advice of the Unicode sandwich, because the
open() built-in does the necessary decoding when reading and encoding when
writing files in text mode, so all you get from my_file.read() and pass to
my_file.write(text) are str objects.

Therefore, using text files is apparently simple. But if you rely on default encodings,
you will get bitten.

Handling Text Files | 131

https://fpy.li/4-10
https://fpy.li/4-9

Figure 4-2. Unicode sandwich: current best practice for text processing.

Consider the console session in Example 4-8. Can you spot the bug?

Example 4-8. A platform encoding issue (if you try this on your machine, you may or
may not see the problem)

>>> open('cafe.txt', 'w', encoding='utf_8').write('café')
4
>>> open('cafe.txt').read()
'cafÃ©'

The bug: I specified UTF-8 encoding when writing the file but failed to do so when
reading it, so Python assumed Windows default file encoding—code page 1252—and
the trailing bytes in the file were decoded as characters 'Ã©' instead of 'é'.

I ran Example 4-8 on Python 3.8.1, 64 bits, on Windows 10 (build 18363). The same
statements running on recent GNU/Linux or macOS work perfectly well because
their default encoding is UTF-8, giving the false impression that everything is fine. If
the encoding argument was omitted when opening the file to write, the locale default
encoding would be used, and we’d read the file correctly using the same encoding.
But then this script would generate files with different byte contents depending on
the platform or even depending on locale settings in the same platform, creating
compatibility problems.

Code that has to run on multiple machines or on multiple occa‐
sions should never depend on encoding defaults. Always pass an
explicit encoding= argument when opening text files, because the
default may change from one machine to the next, or from one day
to the next.

132 | Chapter 4: Unicode Text Versus Bytes

A curious detail in Example 4-8 is that the write function in the first statement
reports that four characters were written, but in the next line five characters are read.
Example 4-9 is an extended version of Example 4-8, explaining that and other details.

Example 4-9. Closer inspection of Example 4-8 running on Windows reveals the bug
and how to fix it

>>> fp = open('cafe.txt', 'w', encoding='utf_8')
>>> fp
<_io.TextIOWrapper name='cafe.txt' mode='w' encoding='utf_8'>
>>> fp.write('café')
4
>>> fp.close()
>>> import os
>>> os.stat('cafe.txt').st_size
5
>>> fp2 = open('cafe.txt')
>>> fp2
<_io.TextIOWrapper name='cafe.txt' mode='r' encoding='cp1252'>
>>> fp2.encoding
'cp1252'
>>> fp2.read()
'cafÃ©'
>>> fp3 = open('cafe.txt', encoding='utf_8')
>>> fp3
<_io.TextIOWrapper name='cafe.txt' mode='r' encoding='utf_8'>
>>> fp3.read()
'café'
>>> fp4 = open('cafe.txt', 'rb')
>>> fp4
<_io.BufferedReader name='cafe.txt'>
>>> fp4.read()
b'caf\xc3\xa9'

By default, open uses text mode and returns a TextIOWrapper object with a spe‐
cific encoding.

The write method on a TextIOWrapper returns the number of Unicode charac‐
ters written.

os.stat says the file has 5 bytes; UTF-8 encodes 'é' as 2 bytes, 0xc3 and 0xa9.

Opening a text file with no explicit encoding returns a TextIOWrapper with the
encoding set to a default from the locale.

A TextIOWrapper object has an encoding attribute that you can inspect: cp1252
in this case.

Handling Text Files | 133

In the Windows cp1252 encoding, the byte 0xc3 is an “Ã” (A with tilde), and
0xa9 is the copyright sign.

Opening the same file with the correct encoding.

The expected result: the same four Unicode characters for 'café'.

The 'rb' flag opens a file for reading in binary mode.

The returned object is a BufferedReader and not a TextIOWrapper.

Reading that returns bytes, as expected.

Do not open text files in binary mode unless you need to analyze
the file contents to determine the encoding—even then, you should
be using Chardet instead of reinventing the wheel (see “How to
Discover the Encoding of a Byte Sequence” on page 128). Ordinary
code should only use binary mode to open binary files, like raster
images.

The problem in Example 4-9 has to do with relying on a default setting while opening
a text file. There are several sources for such defaults, as the next section shows.

Beware of Encoding Defaults
Several settings affect the encoding defaults for I/O in Python. See the default_encod‐
ings.py script in Example 4-10.

Example 4-10. Exploring encoding defaults

import locale
import sys

expressions = """
 locale.getpreferredencoding()
 type(my_file)
 my_file.encoding
 sys.stdout.isatty()
 sys.stdout.encoding
 sys.stdin.isatty()
 sys.stdin.encoding
 sys.stderr.isatty()
 sys.stderr.encoding
 sys.getdefaultencoding()
 sys.getfilesystemencoding()
 """

134 | Chapter 4: Unicode Text Versus Bytes

my_file = open('dummy', 'w')

for expression in expressions.split():
 value = eval(expression)
 print(f'{expression:>30} -> {value!r}')

The output of Example 4-10 on GNU/Linux (Ubuntu 14.04 to 19.10) and macOS
(10.9 to 10.14) is identical, showing that UTF-8 is used everywhere in these systems:

$ python3 default_encodings.py
 locale.getpreferredencoding() -> 'UTF-8'
 type(my_file) -> <class '_io.TextIOWrapper'>
 my_file.encoding -> 'UTF-8'
 sys.stdout.isatty() -> True
 sys.stdout.encoding -> 'utf-8'
 sys.stdin.isatty() -> True
 sys.stdin.encoding -> 'utf-8'
 sys.stderr.isatty() -> True
 sys.stderr.encoding -> 'utf-8'
 sys.getdefaultencoding() -> 'utf-8'
 sys.getfilesystemencoding() -> 'utf-8'

On Windows, however, the output is Example 4-11.

Example 4-11. Default encodings on Windows 10 PowerShell (output is the same on
cmd.exe)

> chcp
Active code page: 437
> python default_encodings.py
 locale.getpreferredencoding() -> 'cp1252'
 type(my_file) -> <class '_io.TextIOWrapper'>
 my_file.encoding -> 'cp1252'
 sys.stdout.isatty() -> True
 sys.stdout.encoding -> 'utf-8'
 sys.stdin.isatty() -> True
 sys.stdin.encoding -> 'utf-8'
 sys.stderr.isatty() -> True
 sys.stderr.encoding -> 'utf-8'
 sys.getdefaultencoding() -> 'utf-8'
 sys.getfilesystemencoding() -> 'utf-8'

chcp shows the active code page for the console: 437.

Running default_encodings.py with output to console.

locale.getpreferredencoding() is the most important setting.

Text files use locale.getpreferredencoding() by default.

Handling Text Files | 135

6 Source: “Windows Command-Line: Unicode and UTF-8 Output Text Buffer”.

The output is going to the console, so sys.stdout.isatty() is True.

Now, sys.stdout.encoding is not the same as the console code page reported by
chcp!

Unicode support in Windows itself, and in Python for Windows, got better since I
wrote the first edition of this book. Example 4-11 used to report four different encod‐
ings in Python 3.4 on Windows 7. The encodings for stdout, stdin, and stderr used
to be the same as the active code page reported by the chcp command, but now
they’re all utf-8 thanks to PEP 528—Change Windows console encoding to UTF-8
implemented in Python 3.6, and Unicode support in PowerShell in cmd.exe (since
Windows 1809 from October 2018).6 It’s weird that chcp and sys.stdout.encoding
say different things when stdout is writing to the console, but it’s great that now we
can print Unicode strings without encoding errors on Windows—unless the user
redirects output to a file, as we’ll soon see. That does not mean all your favorite emo‐
jis will appear in the console: that also depends on the font the console is using.

Another change was PEP 529—Change Windows filesystem encoding to UTF-8, also
implemented in Python 3.6, which changed the filesystem encoding (used to repre‐
sent names of directories and files) from Microsoft’s proprietary MBCS to UTF-8.

However, if the output of Example 4-10 is redirected to a file, like this:

Z:\>python default_encodings.py > encodings.log

then, the value of sys.stdout.isatty() becomes False, and sys.stdout.encoding
is set by locale.getpreferredencoding(), 'cp1252' in that machine—but
sys.stdin.encoding and sys.stderr.encoding remain utf-8.

In Example 4-12 I use the '\N{}' escape for Unicode literals,
where we write the official name of the character inside the \N{}.
It’s rather verbose, but explicit and safe: Python raises SyntaxError
if the name doesn’t exist—much better than writing a hex number
that could be wrong, but you’ll only find out much later. You’d
probably want to write a comment explaining the character codes
anyway, so the verbosity of \N{} is easy to accept.

This means that a script like Example 4-12 works when printing to the console, but
may break when output is redirected to a file.

136 | Chapter 4: Unicode Text Versus Bytes

https://fpy.li/4-11
https://fpy.li/pep528
https://fpy.li/pep529

Example 4-12. stdout_check.py

import sys
from unicodedata import name

print(sys.version)
print()
print('sys.stdout.isatty():', sys.stdout.isatty())
print('sys.stdout.encoding:', sys.stdout.encoding)
print()

test_chars = [
 '\N{HORIZONTAL ELLIPSIS}', # exists in cp1252, not in cp437
 '\N{INFINITY}', # exists in cp437, not in cp1252
 '\N{CIRCLED NUMBER FORTY TWO}', # not in cp437 or in cp1252
]

for char in test_chars:
 print(f'Trying to output {name(char)}:')
 print(char)

Example 4-12 displays the result of sys.stdout.isatty(), the value of sys.
stdout.encoding, and these three characters:

• '…' HORIZONTAL ELLIPSIS—exists in CP 1252 but not in CP 437.
• '∞' INFINITY—exists in CP 437 but not in CP 1252.
• '㊷' CIRCLED NUMBER FORTY TWO—doesn’t exist in CP 1252 or CP 437.

When I run stdout_check.py on PowerShell or cmd.exe, it works as captured in
Figure 4-3.

Figure 4-3. Running stdout_check.py on PowerShell.

Handling Text Files | 137

Despite chcp reporting the active code as 437, sys.stdout.encoding is UTF-8, so the
HORIZONTAL ELLIPSIS and INFINITY both output correctly. The CIRCLED NUMBER
FORTY TWO is replaced by a rectangle, but no error is raised. Presumably it is recog‐
nized as a valid character, but the console font doesn’t have the glyph to display it.

However, when I redirect the output of stdout_check.py to a file, I get Figure 4-4.

Figure 4-4. Running stdout_check.py on PowerShell, redirecting output.

The first problem demonstrated by Figure 4-4 is the UnicodeEncodeError mention‐
ing character '\u221e', because sys.stdout.encoding is 'cp1252'—a code page
that doesn’t have the INFINITY character.

Reading out.txt with the type command—or a Windows editor like VS Code or Sub‐
lime Text—shows that instead of HORIZONTAL ELLIPSIS, I got 'à' (LATIN SMALL
LETTER A WITH GRAVE). As it turns out, the byte value 0x85 in CP 1252 means '…',
but in CP 437 the same byte value represents 'à'. So it seems the active code page
does matter, not in a sensible or useful way, but as partial explanation of a bad Uni‐
code experience.

I used a laptop configured for the US market, running Windows 10
OEM to run these experiments. Windows versions localized for
other countries may have different encoding configurations. For
example, in Brazil the Windows console uses code page 850 by
default—not 437.

To wrap up this maddening issue of default encodings, let’s give a final look at the
different encodings in Example 4-11:

138 | Chapter 4: Unicode Text Versus Bytes

• If you omit the encoding argument when opening a file, the default is given by
locale.getpreferredencoding() ('cp1252' in Example 4-11).

• The encoding of sys.stdout|stdin|stderr used to be set by the PYTHONIOENCOD
ING environment variable before Python 3.6—now that variable is ignored,
unless PYTHONLEGACYWINDOWSSTDIO is set to a nonempty string. Otherwise, the
encoding for standard I/O is UTF-8 for interactive I/O, or defined by
locale.getpreferredencoding() if the output/input is redirected to/from a file.

• sys.getdefaultencoding() is used internally by Python in implicit conversions
of binary data to/from str. Changing this setting is not supported.

• sys.getfilesystemencoding() is used to encode/decode filenames (not file
contents). It is used when open() gets a str argument for the filename; if the file‐
name is given as a bytes argument, it is passed unchanged to the OS API.

On GNU/Linux and macOS, all of these encodings are set to
UTF-8 by default, and have been for several years, so I/O handles
all Unicode characters. On Windows, not only are different encod‐
ings used in the same system, but they are usually code pages like
'cp850' or 'cp1252' that support only ASCII, with 127 additional
characters that are not the same from one encoding to the other.
Therefore, Windows users are far more likely to face encoding
errors unless they are extra careful.

To summarize, the most important encoding setting is that returned by locale.get
preferredencoding(): it is the default for opening text files and for sys.stdout/
stdin/stderr when they are redirected to files. However, the documentation reads
(in part):

locale.getpreferredencoding(do_setlocale=True)

Return the encoding used for text data, according to user preferences. User pref‐
erences are expressed differently on different systems, and might not be available
programmatically on some systems, so this function only returns a guess. […]

Therefore, the best advice about encoding defaults is: do not rely on them.

You will avoid a lot of pain if you follow the advice of the Unicode sandwich and
always are explicit about the encodings in your programs. Unfortunately, Unicode is
painful even if you get your bytes correctly converted to str. The next two sections
cover subjects that are simple in ASCII-land, but get quite complex on planet Uni‐
code: text normalization (i.e., converting text to a uniform representation for
comparisons) and sorting.

Handling Text Files | 139

https://fpy.li/4-12
https://fpy.li/4-12
https://fpy.li/4-13
https://fpy.li/4-14

Normalizing Unicode for Reliable Comparisons
String comparisons are complicated by the fact that Unicode has combining charac‐
ters: diacritics and other marks that attach to the preceding character, appearing as
one when printed.

For example, the word “café” may be composed in two ways, using four or five code
points, but the result looks exactly the same:

>>> s1 = 'café'
>>> s2 = 'cafe\N{COMBINING ACUTE ACCENT}'
>>> s1, s2
('café', 'café')
>>> len(s1), len(s2)
(4, 5)
>>> s1 == s2
False

Placing COMBINING ACUTE ACCENT (U+0301) after “e” renders “é”. In the Unicode
standard, sequences like 'é' and 'e\u0301' are called “canonical equivalents,” and
applications are supposed to treat them as the same. But Python sees two different
sequences of code points, and considers them not equal.

The solution is unicodedata.normalize(). The first argument to that function is one
of four strings: 'NFC', 'NFD', 'NFKC', and 'NFKD'. Let’s start with the first two.

Normalization Form C (NFC) composes the code points to produce the shortest
equivalent string, while NFD decomposes, expanding composed characters into base
characters and separate combining characters. Both of these normalizations make
comparisons work as expected, as the next example shows:

>>> from unicodedata import normalize
>>> s1 = 'café'
>>> s2 = 'cafe\N{COMBINING ACUTE ACCENT}'
>>> len(s1), len(s2)
(4, 5)
>>> len(normalize('NFC', s1)), len(normalize('NFC', s2))
(4, 4)
>>> len(normalize('NFD', s1)), len(normalize('NFD', s2))
(5, 5)
>>> normalize('NFC', s1) == normalize('NFC', s2)
True
>>> normalize('NFD', s1) == normalize('NFD', s2)
True

Keyboard drivers usually generate composed characters, so text typed by users will be
in NFC by default. However, to be safe, it may be good to normalize strings with
normalize('NFC', user_text) before saving. NFC is also the normalization form
recommended by the W3C in “Character Model for the World Wide Web: String
Matching and Searching”.

140 | Chapter 4: Unicode Text Versus Bytes

https://fpy.li/4-15
https://fpy.li/4-15

7 Curiously, the micro sign is considered a “compatibility character,” but the ohm symbol is not. The end result
is that NFC doesn’t touch the micro sign but changes the ohm symbol to capital omega, while NFKC and
NFKD change both the ohm and the micro into Greek characters.

Some single characters are normalized by NFC into another single character. The
symbol for the ohm (Ω) unit of electrical resistance is normalized to the Greek upper‐
case omega. They are visually identical, but they compare as unequal, so it is essential
to normalize to avoid surprises:

>>> from unicodedata import normalize, name
>>> ohm = '\u2126'
>>> name(ohm)
'OHM SIGN'
>>> ohm_c = normalize('NFC', ohm)
>>> name(ohm_c)
'GREEK CAPITAL LETTER OMEGA'
>>> ohm == ohm_c
False
>>> normalize('NFC', ohm) == normalize('NFC', ohm_c)
True

The other two normalization forms are NFKC and NFKD, where the letter K stands
for “compatibility.” These are stronger forms of normalization, affecting the so-called
“compatibility characters.” Although one goal of Unicode is to have a single “canoni‐
cal” code point for each character, some characters appear more than once for
compatibility with preexisting standards. For example, the MICRO SIGN, µ (U+00B5),
was added to Unicode to support round-trip conversion to latin1, which includes it,
even though the same character is part of the Greek alphabet with code point U+03BC
(GREEK SMALL LETTER MU). So, the micro sign is considered a “compatibility
character.”

In the NFKC and NFKD forms, each compatibility character is replaced by a “com‐
patibility decomposition” of one or more characters that are considered a “preferred”
representation, even if there is some formatting loss—ideally, the formatting should
be the responsibility of external markup, not part of Unicode. To exemplify, the
compatibility decomposition of the one-half fraction '½' (U+00BD) is the sequence of
three characters '1/2', and the compatibility decomposition of the micro sign 'µ' (U
+00B5) is the lowercase mu 'μ' (U+03BC).7

Here is how the NFKC works in practice:

>>> from unicodedata import normalize, name
>>> half = '\N{VULGAR FRACTION ONE HALF}'
>>> print(half)
½
>>> normalize('NFKC', half)
'1⁄2'

Normalizing Unicode for Reliable Comparisons | 141

>>> for char in normalize('NFKC', half):
... print(char, name(char), sep='\t')
...
1 DIGIT ONE
⁄ FRACTION SLASH
2 DIGIT TWO
>>> four_squared = '4²'
>>> normalize('NFKC', four_squared)
'42'
>>> micro = 'µ'
>>> micro_kc = normalize('NFKC', micro)
>>> micro, micro_kc
('µ', 'μ')
>>> ord(micro), ord(micro_kc)
(181, 956)
>>> name(micro), name(micro_kc)
('MICRO SIGN', 'GREEK SMALL LETTER MU')

Although '1⁄2' is a reasonable substitute for '½', and the micro sign is really a low‐
ercase Greek mu, converting '4²' to '42' changes the meaning. An application
could store '4²' as '4²', but the normalize function knows nothing
about formatting. Therefore, NFKC or NFKD may lose or distort information,
but they can produce convenient intermediate representations for searching and
indexing.

Unfortunately, with Unicode everything is always more complicated than it first
seems. For the VULGAR FRACTION ONE HALF, the NFKC normalization produced 1
and 2 joined by FRACTION SLASH, instead of SOLIDUS, a.k.a. “slash”—the familiar
character with ASCII code decimal 47. Therefore, searching for the three-character
ASCII sequence '1/2' would not find the normalized Unicode sequence.

NFKC and NFKD normalization cause data loss and should be
applied only in special cases like search and indexing, and not for
permanent storage of text.

When preparing text for searching or indexing, another operation is useful: case fold‐
ing, our next subject.

Case Folding
Case folding is essentially converting all text to lowercase, with some additional
transformations. It is supported by the str.casefold() method.

For any string s containing only latin1 characters, s.casefold() produces the same
result as s.lower(), with only two exceptions—the micro sign 'µ' is changed to the

142 | Chapter 4: Unicode Text Versus Bytes

Greek lowercase mu (which looks the same in most fonts) and the German Eszett or
“sharp s” (ß) becomes “ss”:

>>> micro = 'µ'
>>> name(micro)
'MICRO SIGN'
>>> micro_cf = micro.casefold()
>>> name(micro_cf)
'GREEK SMALL LETTER MU'
>>> micro, micro_cf
('µ', 'μ')
>>> eszett = 'ß'
>>> name(eszett)
'LATIN SMALL LETTER SHARP S'
>>> eszett_cf = eszett.casefold()
>>> eszett, eszett_cf
('ß', 'ss')

There are nearly 300 code points for which str.casefold() and str.lower() return
different results.

As usual with anything related to Unicode, case folding is a hard issue with plenty of
linguistic special cases, but the Python core team made an effort to provide a solution
that hopefully works for most users.

In the next couple of sections, we’ll put our normalization knowledge to use develop‐
ing utility functions.

Utility Functions for Normalized Text Matching
As we’ve seen, NFC and NFD are safe to use and allow sensible comparisons between
Unicode strings. NFC is the best normalized form for most applications. str.case
fold() is the way to go for case-insensitive comparisons.

If you work with text in many languages, a pair of functions like nfc_equal and
fold_equal in Example 4-13 are useful additions to your toolbox.

Example 4-13. normeq.py: normalized Unicode string comparison

"""
Utility functions for normalized Unicode string comparison.

Using Normal Form C, case sensitive:

 >>> s1 = 'café'
 >>> s2 = 'cafe\u0301'
 >>> s1 == s2
 False
 >>> nfc_equal(s1, s2)
 True

Normalizing Unicode for Reliable Comparisons | 143

 >>> nfc_equal('A', 'a')
 False

Using Normal Form C with case folding:

 >>> s3 = 'Straße'
 >>> s4 = 'strasse'
 >>> s3 == s4
 False
 >>> nfc_equal(s3, s4)
 False
 >>> fold_equal(s3, s4)
 True
 >>> fold_equal(s1, s2)
 True
 >>> fold_equal('A', 'a')
 True

"""

from unicodedata import normalize

def nfc_equal(str1, str2):
 return normalize('NFC', str1) == normalize('NFC', str2)

def fold_equal(str1, str2):
 return (normalize('NFC', str1).casefold() ==
 normalize('NFC', str2).casefold())

Beyond Unicode normalization and case folding—which are both part of the Uni‐
code standard—sometimes it makes sense to apply deeper transformations, like
changing 'café' into 'cafe'. We’ll see when and how in the next section.

Extreme “Normalization”: Taking Out Diacritics
The Google Search secret sauce involves many tricks, but one of them apparently is
ignoring diacritics (e.g., accents, cedillas, etc.), at least in some contexts. Removing
diacritics is not a proper form of normalization because it often changes the meaning
of words and may produce false positives when searching. But it helps coping with
some facts of life: people sometimes are lazy or ignorant about the correct use of dia‐
critics, and spelling rules change over time, meaning that accents come and go in liv‐
ing languages.

Outside of searching, getting rid of diacritics also makes for more readable URLs, at
least in Latin-based languages. Take a look at the URL for the Wikipedia article about
the city of São Paulo:

https://en.wikipedia.org/wiki/S%C3%A3o_Paulo

144 | Chapter 4: Unicode Text Versus Bytes

The %C3%A3 part is the URL-escaped, UTF-8 rendering of the single letter “ã” (“a”
with tilde). The following is much easier to recognize, even if it is not the right
spelling:

https://en.wikipedia.org/wiki/Sao_Paulo

To remove all diacritics from a str, you can use a function like Example 4-14.

Example 4-14. simplify.py: function to remove all combining marks

import unicodedata
import string

def shave_marks(txt):
 """Remove all diacritic marks"""
 norm_txt = unicodedata.normalize('NFD', txt)
 shaved = ''.join(c for c in norm_txt
 if not unicodedata.combining(c))
 return unicodedata.normalize('NFC', shaved)

Decompose all characters into base characters and combining marks.

Filter out all combining marks.

Recompose all characters.

Example 4-15 shows a couple of uses of shave_marks.

Example 4-15. Two examples using shave_marks from Example 4-14

>>> order = '“Herr Voß: • ½ cup of Œtker™ caffè latte • bowl of açaí.”'
>>> shave_marks(order)
'“Herr Voß: • ½ cup of Œtker™ caffe latte • bowl of acai.”'
>>> Greek = 'Ζέφυρος, Zéfiro'
>>> shave_marks(Greek)
'Ζεφυρος, Zefiro'

Only the letters “è”, “ç”, and “í” were replaced.

Both “έ” and “é” were replaced.

The function shave_marks from Example 4-14 works all right, but maybe it goes too
far. Often the reason to remove diacritics is to change Latin text to pure ASCII, but
shave_marks also changes non-Latin characters—like Greek letters—which will never
become ASCII just by losing their accents. So it makes sense to analyze each base

Normalizing Unicode for Reliable Comparisons | 145

character and to remove attached marks only if the base character is a letter from the
Latin alphabet. This is what Example 4-16 does.

Example 4-16. Function to remove combining marks from Latin characters (import
statements are omitted as this is part of the simplify.py module from Example 4-14)

def shave_marks_latin(txt):
 """Remove all diacritic marks from Latin base characters"""
 norm_txt = unicodedata.normalize('NFD', txt)
 latin_base = False
 preserve = []
 for c in norm_txt:
 if unicodedata.combining(c) and latin_base:
 continue # ignore diacritic on Latin base char
 preserve.append(c)
 # if it isn't a combining char, it's a new base char
 if not unicodedata.combining(c):
 latin_base = c in string.ascii_letters
 shaved = ''.join(preserve)
 return unicodedata.normalize('NFC', shaved)

Decompose all characters into base characters and combining marks.

Skip over combining marks when base character is Latin.

Otherwise, keep current character.

Detect new base character and determine if it’s Latin.

Recompose all characters.

An even more radical step would be to replace common symbols in Western texts
(e.g., curly quotes, em dashes, bullets, etc.) into ASCII equivalents. This is what the
function asciize does in Example 4-17.

Example 4-17. Transform some Western typographical symbols into ASCII (this
snippet is also part of simplify.py from Example 4-14)

single_map = str.maketrans("""‚ƒ„ˆ‹‘’“”•–—˜›""",
 """'f"^<''""---~>""")

multi_map = str.maketrans({
 '€': 'EUR',
 '…': '...',
 'Æ': 'AE',
 'æ': 'ae',
 'Œ': 'OE',
 'œ': 'oe',

146 | Chapter 4: Unicode Text Versus Bytes

 '™': '(TM)',
 '‰': '<per mille>',
 '†': '**',
 '‡': '***',
})

multi_map.update(single_map)

def dewinize(txt):
 """Replace Win1252 symbols with ASCII chars or sequences"""
 return txt.translate(multi_map)

def asciize(txt):
 no_marks = shave_marks_latin(dewinize(txt))
 no_marks = no_marks.replace('ß', 'ss')
 return unicodedata.normalize('NFKC', no_marks)

Build mapping table for char-to-char replacement.

Build mapping table for char-to-string replacement.

Merge mapping tables.

dewinize does not affect ASCII or latin1 text, only the Microsoft additions to
latin1 in cp1252.

Apply dewinize and remove diacritical marks.

Replace the Eszett with “ss” (we are not using case fold here because we want to
preserve the case).

Apply NFKC normalization to compose characters with their compatibility code
points.

Example 4-18 shows asciize in use.

Example 4-18. Two examples using asciize from Example 4-17

>>> order = '“Herr Voß: • ½ cup of Œtker™ caffè latte • bowl of açaí.”'
>>> dewinize(order)
'"Herr Voß: - ½ cup of OEtker(TM) caffè latte - bowl of açaí."'
>>> asciize(order)
'"Herr Voss: - 1⁄2 cup of OEtker(TM) caffe latte - bowl of acai."'

Normalizing Unicode for Reliable Comparisons | 147

8 Diacritics affect sorting only in the rare case when they are the only difference between two words—in that
case, the word with a diacritic is sorted after the plain word.

dewinize replaces curly quotes, bullets, and ™ (trademark symbol).

asciize applies dewinize, drops diacritics, and replaces the 'ß'.

Different languages have their own rules for removing diacritics.
For example, Germans change the 'ü' into 'ue'. Our asciize
function is not as refined, so it may or not be suitable for your lan‐
guage. It works acceptably for Portuguese, though.

To summarize, the functions in simplify.py go way beyond standard normalization
and perform deep surgery on the text, with a good chance of changing its meaning.
Only you can decide whether to go so far, knowing the target language, your users,
and how the transformed text will be used.

This wraps up our discussion of normalizing Unicode text.

Now let’s sort out Unicode sorting.

Sorting Unicode Text
Python sorts sequences of any type by comparing the items in each sequence one by
one. For strings, this means comparing the code points. Unfortunately, this produces
unacceptable results for anyone who uses non-ASCII characters.

Consider sorting a list of fruits grown in Brazil:

>>> fruits = ['caju', 'atemoia', 'cajá', 'açaí', 'acerola']
>>> sorted(fruits)
['acerola', 'atemoia', 'açaí', 'caju', 'cajá']

Sorting rules vary for different locales, but in Portuguese and many languages that
use the Latin alphabet, accents and cedillas rarely make a difference when sorting.8 So
“cajá” is sorted as “caja,” and must come before “caju.”

The sorted fruits list should be:

['açaí', 'acerola', 'atemoia', 'cajá', 'caju']

The standard way to sort non-ASCII text in Python is to use the locale.strxfrm
function which, according to the locale module docs, “transforms a string to one
that can be used in locale-aware comparisons.”

148 | Chapter 4: Unicode Text Versus Bytes

https://fpy.li/4-16

9 Again, I could not find a solution, but did find other people reporting the same problem. Alex Martelli, one of
the tech reviewers, had no problem using setlocale and locale.strxfrm on his Macintosh with macOS
10.9. In summary: your mileage may vary.

To enable locale.strxfrm, you must first set a suitable locale for your application,
and pray that the OS supports it. The sequence of commands in Example 4-19 may
work for you.

Example 4-19. locale_sort.py: using the locale.strxfrm function as the sort key

import locale
my_locale = locale.setlocale(locale.LC_COLLATE, 'pt_BR.UTF-8')
print(my_locale)
fruits = ['caju', 'atemoia', 'cajá', 'açaí', 'acerola']
sorted_fruits = sorted(fruits, key=locale.strxfrm)
print(sorted_fruits)

Running Example 4-19 on GNU/Linux (Ubuntu 19.10) with the pt_BR.UTF-8 locale
installed, I get the correct result:

'pt_BR.UTF-8'
['açaí', 'acerola', 'atemoia', 'cajá', 'caju']

So you need to call setlocale(LC_COLLATE, «your_locale») before using
locale.strxfrm as the key when sorting.

There are some caveats, though:

• Because locale settings are global, calling setlocale in a library is not recom‐
mended. Your application or framework should set the locale when the process
starts, and should not change it afterward.

• The locale must be installed on the OS, otherwise setlocale raises a
locale.Error: unsupported locale setting exception.

• You must know how to spell the locale name.
• The locale must be correctly implemented by the makers of the OS. I was suc‐

cessful on Ubuntu 19.10, but not on macOS 10.14. On macOS, the call setlo
cale(LC_COLLATE, 'pt_BR.UTF-8') returns the string 'pt_BR.UTF-8' with no
complaints. But sorted(fruits, key=locale.strxfrm) produced the same
incorrect result as sorted(fruits) did. I also tried the fr_FR, es_ES, and de_DE
locales on macOS, but locale.strxfrm never did its job.9

So the standard library solution to internationalized sorting works, but seems to be
well supported only on GNU/Linux (perhaps also on Windows, if you are an expert).
Even then, it depends on locale settings, creating deployment headaches.

Sorting Unicode Text | 149

Fortunately, there is a simpler solution: the pyuca library, available on PyPI.

Sorting with the Unicode Collation Algorithm
James Tauber, prolific Django contributor, must have felt the pain and created pyuca,
a pure-Python implementation of the Unicode Collation Algorithm (UCA).
Example 4-20 shows how easy it is to use.

Example 4-20. Using the pyuca.Collator.sort_key method

>>> import pyuca
>>> coll = pyuca.Collator()
>>> fruits = ['caju', 'atemoia', 'cajá', 'açaí', 'acerola']
>>> sorted_fruits = sorted(fruits, key=coll.sort_key)
>>> sorted_fruits
['açaí', 'acerola', 'atemoia', 'cajá', 'caju']

This is simple and works on GNU/Linux, macOS, and Windows, at least with my
small sample.

pyuca does not take the locale into account. If you need to customize the sorting, you
can provide the path to a custom collation table to the Collator() constructor. Out
of the box, it uses allkeys.txt, which is bundled with the project. That’s just a copy of
the Default Unicode Collation Element Table from Unicode.org.

PyICU: Miro’s Recommendation for Unicode Sorting

(Tech reviewer Miroslav Šedivý is a polyglot and an expert on Uni‐
code. This is what he wrote about pyuca.)
pyuca has one sorting algorithm that does not respect the sorting
order in individual languages. For instance, Ä in German is
between A and B, while in Swedish it comes after Z. Have a look at
PyICU that works like locale without changing the locale of the
process. It is also needed if you want to change the case of iİ/ıI in
Turkish. PyICU includes an extension that must be compiled, so it
may be harder to install in some systems than pyuca, which is just
Python.

By the way, that collation table is one of the many data files that comprise the Uni‐
code database, our next subject.

The Unicode Database
The Unicode standard provides an entire database—in the form of several structured
text files—that includes not only the table mapping code points to character names,

150 | Chapter 4: Unicode Text Versus Bytes

https://fpy.li/4-17
https://fpy.li/4-18
https://fpy.li/4-19
https://fpy.li/4-20

10 That’s an image—not a code listing—because emojis are not well supported by O’Reilly’s digital publishing
toolchain as I write this.

but also metadata about the individual characters and how they are related. For
example, the Unicode database records whether a character is printable, is a letter, is
a decimal digit, or is some other numeric symbol. That’s how the str methods isal
pha, isprintable, isdecimal, and isnumeric work. str.casefold also uses infor‐
mation from a Unicode table.

The unicodedata.category(char) function returns the two-letter
category of char from the Unicode database. The higher-level str
methods are easier to use. For example, label.isalpha() returns
True if every character in label belongs to one of these categories:
Lm, Lt, Lu, Ll, or Lo. To learn what those codes mean, see “General
Category” in the English Wikipedia’s “Unicode character property”
article.

Finding Characters by Name
The unicodedata module has functions to retrieve character metadata, including uni
codedata.name(), which returns a character’s official name in the standard.
Figure 4-5 demonstrates that function.10

Figure 4-5. Exploring unicodedata.name() in the Python console.

You can use the name() function to build apps that let users search for characters by
name. Figure 4-6 demonstrates the cf.py command-line script that takes one or more
words as arguments, and lists the characters that have those words in their official
Unicode names. The full source code for cf.py is in Example 4-21.

The Unicode Database | 151

https://fpy.li/4-21
https://fpy.li/4-22
https://fpy.li/4-22
https://fpy.li/4-23
https://fpy.li/4-23

Figure 4-6. Using cf.py to find smiling cats.

Emoji support varies widely across operating systems and apps. In
recent years the macOS terminal offers the best support for emojis,
followed by modern GNU/Linux graphic terminals. Windows
cmd.exe and PowerShell now support Unicode output, but as I
write this section in January 2020, they still don’t display emojis—
at least not “out of the box.” Tech reviewer Leonardo Rochael told
me about a new, open source Windows Terminal by Microsoft,
which may have better Unicode support than the older Microsoft
consoles. I did not have time to try it.

In Example 4-21, note the if statement in the find function using the .issubset()
method to quickly test whether all the words in the query set appear in the list of
words built from the character’s name. Thanks to Python’s rich set API, we don’t
need a nested for loop and another if to implement this check.

Example 4-21. cf.py: the character finder utility

#!/usr/bin/env python3
import sys
import unicodedata

START, END = ord(' '), sys.maxunicode + 1

def find(*query_words, start=START, end=END):
 query = {w.upper() for w in query_words}
 for code in range(start, end):
 char = chr(code)
 name = unicodedata.name(char, None)
 if name and query.issubset(name.split()):
 print(f'U+{code:04X}\t{char}\t{name}')

def main(words):
 if words:
 find(*words)
 else:
 print('Please provide words to find.')

if __name__ == '__main__':
 main(sys.argv[1:])

152 | Chapter 4: Unicode Text Versus Bytes

https://fpy.li/4-24

Set defaults for the range of code points to search.

find accepts query_words and optional keyword-only arguments to limit the
range of the search, to facilitate testing.

Convert query_words into a set of uppercased strings.

Get the Unicode character for code.

Get the name of the character, or None if the code point is unassigned.

If there is a name, split it into a list of words, then check that the query set is a
subset of that list.

Print out line with code point in U+9999 format, the character, and its name.

The unicodedata module has other interesting functions. Next, we’ll see a few that
are related to getting information from characters that have numeric meaning.

Numeric Meaning of Characters
The unicodedata module includes functions to check whether a Unicode character
represents a number and, if so, its numeric value for humans—as opposed to its code
point number. Example 4-22 shows the use of unicodedata.name() and unicode
data.numeric(), along with the .isdecimal() and .isnumeric() methods of str.

Example 4-22. Demo of Unicode database numerical character metadata (callouts
describe each column in the output)

import unicodedata
import re

re_digit = re.compile(r'\d')

sample = '1\xbc\xb2\u0969\u136b\u216b\u2466\u2480\u3285'

for char in sample:
 print(f'U+{ord(char):04x}',
 char.center(6),
 're_dig' if re_digit.match(char) else '-',
 'isdig' if char.isdigit() else '-',
 'isnum' if char.isnumeric() else '-',
 f'{unicodedata.numeric(char):5.2f}',
 unicodedata.name(char),
 sep='\t')

The Unicode Database | 153

11 Although it was not better than re at identifying digits in this particular sample.

Code point in U+0000 format.

Character centralized in a str of length 6.

Show re_dig if character matches the r'\d' regex.

Show isdig if char.isdigit() is True.

Show isnum if char.isnumeric() is True.

Numeric value formatted with width 5 and 2 decimal places.

Unicode character name.

Running Example 4-22 gives you Figure 4-7, if your terminal font has all those
glyphs.

Figure 4-7. macOS terminal showing numeric characters and metadata about them;
re_dig means the character matches the regular expression r'\d'.

The sixth column of Figure 4-7 is the result of calling unicodedata.numeric(char)
on the character. It shows that Unicode knows the numeric value of symbols that
represent numbers. So if you want to create a spreadsheet application that supports
Tamil digits or Roman numerals, go for it!

Figure 4-7 shows that the regular expression r'\d' matches the digit “1” and the
Devanagari digit 3, but not some other characters that are considered digits by the
isdigit function. The re module is not as savvy about Unicode as it could be. The
new regex module available on PyPI was designed to eventually replace re and pro‐
vides better Unicode support.11 We’ll come back to the re module in the next section.

154 | Chapter 4: Unicode Text Versus Bytes

Throughout this chapter we’ve used several unicodedata functions, but there are
many more we did not cover. See the standard library documentation for the unicode
data module.

Next we’ll take a quick look at dual-mode APIs offering functions that accept str or
bytes arguments with special handling depending on the type.

Dual-Mode str and bytes APIs
Python’s standard library has functions that accept str or bytes arguments and
behave differently depending on the type. Some examples can be found in the re and
os modules.

str Versus bytes in Regular Expressions
If you build a regular expression with bytes, patterns such as \d and \w only match
ASCII characters; in contrast, if these patterns are given as str, they match Unicode
digits or letters beyond ASCII. Example 4-23 and Figure 4-8 compare how letters,
ASCII digits, superscripts, and Tamil digits are matched by str and bytes patterns.

Example 4-23. ramanujan.py: compare behavior of simple str and bytes regular
expressions

import re

re_numbers_str = re.compile(r'\d+')
re_words_str = re.compile(r'\w+')
re_numbers_bytes = re.compile(rb'\d+')
re_words_bytes = re.compile(rb'\w+')

text_str = ("Ramanujan saw \u0be7\u0bed\u0be8\u0bef"
 " as 1729 = 1³ + 12³ = 9³ + 10³.")

text_bytes = text_str.encode('utf_8')

print(f'Text\n {text_str!r}')
print('Numbers')
print(' str :', re_numbers_str.findall(text_str))
print(' bytes:', re_numbers_bytes.findall(text_bytes))
print('Words')
print(' str :', re_words_str.findall(text_str))
print(' bytes:', re_words_bytes.findall(text_bytes))

The first two regular expressions are of the str type.

The last two are of the bytes type.

Dual-Mode str and bytes APIs | 155

https://fpy.li/4-25
https://fpy.li/4-25

Unicode text to search, containing the Tamil digits for 1729 (the logical line con‐
tinues until the right parenthesis token).

This string is joined to the previous one at compile time (see “2.4.2. String literal
concatenation” in The Python Language Reference).

A bytes string is needed to search with the bytes regular expressions.

The str pattern r'\d+' matches the Tamil and ASCII digits.

The bytes pattern rb'\d+' matches only the ASCII bytes for digits.

The str pattern r'\w+' matches the letters, superscripts, Tamil, and ASCII
digits.

The bytes pattern rb'\w+' matches only the ASCII bytes for letters and digits.

Figure 4-8. Screenshot of running ramanujan.py from Example 4-23.

Example 4-23 is a trivial example to make one point: you can use regular expressions
on str and bytes, but in the second case, bytes outside the ASCII range are treated as
nondigits and nonword characters.

For str regular expressions, there is a re.ASCII flag that makes \w, \W, \b, \B, \d, \D,
\s, and \S perform ASCII-only matching. See the documentation of the re module
for full details.

Another important dual-mode module is os.

str Versus bytes in os Functions
The GNU/Linux kernel is not Unicode savvy, so in the real world you may find file‐
names made of byte sequences that are not valid in any sensible encoding scheme,
and cannot be decoded to str. File servers with clients using a variety of OSes are
particularly prone to this problem.

156 | Chapter 4: Unicode Text Versus Bytes

https://fpy.li/4-26
https://fpy.li/4-26
https://fpy.li/4-27

In order to work around this issue, all os module functions that accept filenames or
pathnames take arguments as str or bytes. If one such function is called with a str
argument, the argument will be automatically converted using the codec named by
sys.getfilesystemencoding(), and the OS response will be decoded with the same
codec. This is almost always what you want, in keeping with the Unicode sandwich
best practice.

But if you must deal with (and perhaps fix) filenames that cannot be handled in that
way, you can pass bytes arguments to the os functions to get bytes return values.
This feature lets you deal with any file or pathname, no matter how many gremlins
you may find. See Example 4-24.

Example 4-24. listdir with str and bytes arguments and results

>>> os.listdir('.')
['abc.txt', 'digits-of-π.txt']
>>> os.listdir(b'.')
[b'abc.txt', b'digits-of-\xcf\x80.txt']

The second filename is “digits-of-π.txt” (with the Greek letter pi).

Given a byte argument, listdir returns filenames as bytes: b'\xcf\x80' is the
UTF-8 encoding of the Greek letter pi.

To help with manual handling of str or bytes sequences that are filenames or path‐
names, the os module provides special encoding and decoding functions os.fsen
code(name_or_path) and os.fsdecode(name_or_path). Both of these functions
accept an argument of type str, bytes, or an object implementing the os.PathLike
interface since Python 3.6.

Unicode is a deep rabbit hole. Time to wrap up our exploration of str and bytes.

Chapter Summary
We started the chapter by dismissing the notion that 1 character == 1 byte. As the
world adopts Unicode, we need to keep the concept of text strings separated from the
binary sequences that represent them in files, and Python 3 enforces this separation.

After a brief overview of the binary sequence data types—bytes, bytearray, and
memoryview—we jumped into encoding and decoding, with a sampling of important
codecs, followed by approaches to prevent or deal with the infamous UnicodeEnco
deError, UnicodeDecodeError, and the SyntaxError caused by wrong encoding in
Python source files.

Chapter Summary | 157

We then considered the theory and practice of encoding detection in the absence of
metadata: in theory, it can’t be done, but in practice the Chardet package pulls it off
pretty well for a number of popular encodings. Byte order marks were then presented
as the only encoding hint commonly found in UTF-16 and UTF-32 files—sometimes
in UTF-8 files as well.

In the next section, we demonstrated opening text files, an easy task except for one
pitfall: the encoding= keyword argument is not mandatory when you open a text file,
but it should be. If you fail to specify the encoding, you end up with a program that
manages to generate “plain text” that is incompatible across platforms, due to con‐
flicting default encodings. We then exposed the different encoding settings that
Python uses as defaults and how to detect them. A sad realization for Windows users
is that these settings often have distinct values within the same machine, and the val‐
ues are mutually incompatible; GNU/Linux and macOS users, in contrast, live in a
happier place where UTF-8 is the default pretty much everywhere.

Unicode provides multiple ways of representing some characters, so normalizing is a
prerequisite for text matching. In addition to explaining normalization and case fold‐
ing, we presented some utility functions that you may adapt to your needs, including
drastic transformations like removing all accents. We then saw how to sort Unicode
text correctly by leveraging the standard locale module—with some caveats—and an
alternative that does not depend on tricky locale configurations: the external pyuca
package.

We leveraged the Unicode database to program a command-line utility to search for
characters by name—in 28 lines of code, thanks to the power of Python. We glanced
at other Unicode metadata, and had a brief overview of dual-mode APIs where some
functions can be called with str or bytes arguments, producing different results.

Further Reading
Ned Batchelder’s 2012 PyCon US talk “Pragmatic Unicode, or, How Do I Stop the
Pain?” was outstanding. Ned is so professional that he provides a full transcript of the
talk along with the slides and video.

“Character encoding and Unicode in Python: How to (╯°□°)╯︵ ┻━┻ with dig‐
nity” (slides, video) was the excellent PyCon 2014 talk by Esther Nam and Travis
Fischer, where I found this chapter’s pithy epigraph: “Humans use text. Computers
speak bytes.”

Lennart Regebro—one of the technical reviewers for the first edition of this book—
shares his “Useful Mental Model of Unicode (UMMU)” in the short post “Unconfus‐
ing Unicode: What Is Unicode?”. Unicode is a complex standard, so Lennart’s
UMMU is a really useful starting point.

158 | Chapter 4: Unicode Text Versus Bytes

https://fpy.li/4-28
https://fpy.li/4-28
https://fpy.li/4-1
https://fpy.li/4-2
https://fpy.li/4-31
https://fpy.li/4-31

The official “Unicode HOWTO” in the Python docs approaches the subject from sev‐
eral different angles, from a good historic intro, to syntax details, codecs, regular
expressions, filenames, and best practices for Unicode-aware I/O (i.e., the Unicode
sandwich), with plenty of additional reference links from each section. Chapter 4,
“Strings”, of Mark Pilgrim’s awesome book Dive into Python 3 (Apress) also provides
a very good intro to Unicode support in Python 3. In the same book, Chapter 15
describes how the Chardet library was ported from Python 2 to Python 3, a valuable
case study given that the switch from the old str to the new bytes is the cause of
most migration pains, and that is a central concern in a library designed to detect
encodings.

If you know Python 2 but are new to Python 3, Guido van Rossum’s “What’s New in
Python 3.0” has 15 bullet points that summarize what changed, with lots of links.
Guido starts with the blunt statement: “Everything you thought you knew about
binary data and Unicode has changed.” Armin Ronacher’s blog post “The Updated
Guide to Unicode on Python” is deep and highlights some of the pitfalls of Unicode
in Python 3 (Armin is not a big fan of Python 3).

Chapter 2, “Strings and Text,” of the Python Cookbook, 3rd ed. (O’Reilly), by David
Beazley and Brian K. Jones, has several recipes dealing with Unicode normalization,
sanitizing text, and performing text-oriented operations on byte sequences. Chapter 5
covers files and I/O, and it includes “Recipe 5.17. Writing Bytes to a Text File,” show‐
ing that underlying any text file there is always a binary stream that may be accessed
directly when needed. Later in the cookbook, the struct module is put to use in
“Recipe 6.11. Reading and Writing Binary Arrays of Structures.”

Nick Coghlan’s “Python Notes” blog has two posts very relevant to this chapter:
“Python 3 and ASCII Compatible Binary Protocols” and “Processing Text Files in
Python 3”. Highly recommended.

A list of encodings supported by Python is available at “Standard Encodings” in the
codecs module documentation. If you need to get that list programmatically, see how
it’s done in the /Tools/unicode/listcodecs.py script that comes with the CPython
source code.

The books Unicode Explained by Jukka K. Korpela (O’Reilly) and Unicode Demysti‐
fied by Richard Gillam (Addison-Wesley) are not Python-specific but were very help‐
ful as I studied Unicode concepts. Programming with Unicode by Victor Stinner is a
free, self-published book (Creative Commons BY-SA) covering Unicode in general,
as well as tools and APIs in the context of the main operating systems and a few pro‐
gramming languages, including Python.

The W3C pages “Case Folding: An Introduction” and “Character Model for the
World Wide Web: String Matching” cover normalization concepts, with the former
being a gentle introduction and the latter a working group note written in dry

Further Reading | 159

https://fpy.li/4-32
https://fpy.li/4-33
https://fpy.li/4-33
https://fpy.li/4-34
https://fpy.li/4-35
https://fpy.li/4-36
https://fpy.li/4-36
https://fpy.li/4-37
https://fpy.li/4-37
https://fpy.li/pycook3
https://fpy.li/4-38
https://fpy.li/4-39
https://fpy.li/4-39
https://fpy.li/4-40
https://fpy.li/4-41
https://fpy.li/4-42
https://fpy.li/4-43
https://fpy.li/4-43
https://fpy.li/4-44
https://fpy.li/4-45
https://fpy.li/4-15
https://fpy.li/4-15

standard-speak—the same tone of the “Unicode Standard Annex #15—Unicode Nor‐
malization Forms”. The “Frequently Asked Questions, Normalization” section from
Unicode.org is more readable, as is the “NFC FAQ” by Mark Davis—author of several
Unicode algorithms and president of the Unicode Consortium at the time of this
writing.

In 2016, the Museum of Modern Art (MoMA) in New York added to its collection
the original emoji, the 176 emojis designed by Shigetaka Kurita in 1999 for NTT
DOCOMO—the Japanese mobile carrier. Going further back in history, Emojipedia
published “Correcting the Record on the First Emoji Set”, crediting Japan’s SoftBank
for the earliest known emoji set, deployed in cell phones in 1997. SoftBank’s set is the
source of 90 emojis now in Unicode, including U+1F4A9 (PILE OF POO). Matthew
Rothenberg’s emojitracker.com is a live dashboard showing counts of emoji usage on
Twitter, updated in real time. As I write this, FACE WITH TEARS OF JOY (U+1F602)
is the most popular emoji on Twitter, with more than 3,313,667,315 recorded
occurrences.

Soapbox

Non-ASCII Names in Source Code: Should You Use Them?

Python 3 allows non-ASCII identifiers in source code:

>>> ação = 'PBR' # ação = stock
>>> ε = 10**-6 # ε = epsilon

Some people dislike the idea. The most common argument to stick with ASCII iden‐
tifiers is to make it easy for everyone to read and edit code. That argument misses the
point: you want your source code to be readable and editable by its intended audi‐
ence, and that may not be “everyone.” If the code belongs to a multinational corpora‐
tion or is open source and you want contributors from around the world, the
identifiers should be in English, and then all you need is ASCII.

But if you are a teacher in Brazil, your students will find it easier to read code that
uses Portuguese variable and function names, correctly spelled. And they will have no
difficulty typing the cedillas and accented vowels on their localized keyboards.

Now that Python can parse Unicode names and UTF-8 is the default source encod‐
ing, I see no point in coding identifiers in Portuguese without accents, as we used to
do in Python 2 out of necessity—unless you need the code to run on Python 2 also. If
the names are in Portuguese, leaving out the accents won’t make the code more read‐
able to anyone.

This is my point of view as a Portuguese-speaking Brazilian, but I believe it applies
across borders and cultures: choose the human language that makes the code easier to
read by the team, then use the characters needed for correct spelling.

160 | Chapter 4: Unicode Text Versus Bytes

https://fpy.li/4-47
https://fpy.li/4-47
https://fpy.li/4-48
https://fpy.li/4-49
https://fpy.li/4-50
https://fpy.li/4-51
https://fpy.li/4-52
https://fpy.li/4-53
https://fpy.li/4-54

What Is “Plain Text”?

For anyone who deals with non-English text on a daily basis, “plain text” does not
imply “ASCII.” The Unicode Glossary defines plain text like this:

Computer-encoded text that consists only of a sequence of code points from a given
standard, with no other formatting or structural information.

That definition starts very well, but I don’t agree with the part after the comma.
HTML is a great example of a plain-text format that carries formatting and structural
information. But it’s still plain text because every byte in such a file is there to repre‐
sent a text character, usually using UTF-8. There are no bytes with nontext meaning,
as you can find in a .png or .xls document where most bytes represent packed binary
values like RGB values and floating-point numbers. In plain text, numbers are repre‐
sented as sequences of digit characters.

I am writing this book in a plain-text format called—ironically—AsciiDoc, which is
part of the toolchain of O’Reilly’s excellent Atlas book publishing platform. AsciiDoc
source files are plain text, but they are UTF-8, not ASCII. Otherwise, writing this
chapter would have been really painful. Despite the name, AsciiDoc is just great.

The world of Unicode is constantly expanding and, at the edges, tool support is not
always there. Not all characters I wanted to show were available in the fonts used to
render the book. That’s why I had to use images instead of listings in several examples
in this chapter. On the other hand, the Ubuntu and macOS terminals display most
Unicode text very well—including the Japanese characters for the word “mojibake”:
文字化け.

How Are str Code Points Represented in RAM?

The official Python docs avoid the issue of how the code points of a str are stored in
memory. It is really an implementation detail. In theory, it doesn’t matter: whatever
the internal representation, every str must be encoded to bytes on output.

In memory, Python 3 stores each str as a sequence of code points using a fixed num‐
ber of bytes per code point, to allow efficient direct access to any character or slice.

Since Python 3.3, when creating a new str object, the interpreter checks the charac‐
ters in it and chooses the most economic memory layout that is suitable for that par‐
ticular str: if there are only characters in the latin1 range, that str will use just one
byte per code point. Otherwise, two or four bytes per code point may be used,
depending on the str. This is a simplification; for the full details, look up PEP 393—
Flexible String Representation.

The flexible string representation is similar to the way the int type works in Python
3: if the integer fits in a machine word, it is stored in one machine word. Otherwise,
the interpreter switches to a variable-length representation like that of the Python 2
long type. It is nice to see the spread of good ideas.

Further Reading | 161

https://fpy.li/4-55
https://fpy.li/4-56
https://fpy.li/4-57
https://fpy.li/pep393
https://fpy.li/pep393

However, we can always count on Armin Ronacher to find problems in Python 3. He
explained to me why that was not such as great idea in practice: it takes a single RAT
(U+1F400) to inflate an otherwise all-ASCII text into a memory-hogging array using
four bytes per character, when one byte would suffice for each character except the
RAT. In addition, because of all the ways Unicode characters combine, the ability to
quickly retrieve an arbitrary character by position is overrated—and extracting arbi‐
trary slices from Unicode text is naïve at best, and often wrong, producing mojibake.
As emojis become more popular, these problems will only get worse.

162 | Chapter 4: Unicode Text Versus Bytes

1 From Refactoring, first edition, Chapter 3, “Bad Smells in Code, Data Class” section, page 87 (Addison-
Wesley).

CHAPTER 5

Data Class Builders

Data classes are like children. They are okay as a starting point, but to participate as a
grownup object, they need to take some responsibility.

—Martin Fowler and Kent Beck1

Python offers a few ways to build a simple class that is just a collection of fields, with
little or no extra functionality. That pattern is known as a “data class”—and data
classes is one of the packages that supports this pattern. This chapter covers three
different class builders that you may use as shortcuts to write data classes:

collections.namedtuple

The simplest way—available since Python 2.6.

typing.NamedTuple

An alternative that requires type hints on the fields—since Python 3.5, with
class syntax added in 3.6.

@dataclasses.dataclass

A class decorator that allows more customization than previous alternatives,
adding lots of options and potential complexity—since Python 3.7.

After covering those class builders, we will discuss why Data Class is also the name of
a code smell: a coding pattern that may be a symptom of poor object-oriented design.

163

typing.TypedDict may seem like another data class builder. It uses
similar syntax and is described right after typing.NamedTuple
in the typing module documentation for Python 3.9.
However, TypedDict does not build concrete classes that you can
instantiate. It’s just syntax to write type hints for function parame‐
ters and variables that will accept mapping values used as records,
with keys as field names. We’ll see them in Chapter 15,
“TypedDict” on page 526.

What’s New in This Chapter
This chapter is new in the second edition of Fluent Python. The section “Classic
Named Tuples” on page 169 appeared in Chapter 2 of the first edition, but the rest of
the chapter is completely new.

We begin with a high-level overview of the three class builders.

Overview of Data Class Builders
Consider a simple class to represent a geographic coordinate pair, as shown in
Example 5-1.

Example 5-1. class/coordinates.py

class Coordinate:

 def __init__(self, lat, lon):
 self.lat = lat
 self.lon = lon

That Coordinate class does the job of holding latitude and longitude attributes. Writ‐
ing the __init__ boilerplate becomes old real fast, especially if your class has more
than a couple of attributes: each of them is mentioned three times! And that boiler‐
plate doesn’t buy us basic features we’d expect from a Python object:

>>> from coordinates import Coordinate
>>> moscow = Coordinate(55.76, 37.62)
>>> moscow
<coordinates.Coordinate object at 0x107142f10>
>>> location = Coordinate(55.76, 37.62)
>>> location == moscow
False
>>> (location.lat, location.lon) == (moscow.lat, moscow.lon)
True

164 | Chapter 5: Data Class Builders

https://fpy.li/5-1

__repr__ inherited from object is not very helpful.

Meaningless ==; the __eq__ method inherited from object compares object IDs.

Comparing two coordinates requires explicit comparison of each attribute.

The data class builders covered in this chapter provide the necessary __init__,
__repr__, and __eq__ methods automatically, as well as other useful features.

None of the class builders discussed here depend on inheritance to
do their work. Both collections.namedtuple and typing.Name
dTuple build classes that are tuple subclasses. @dataclass is a class
decorator that does not affect the class hierarchy in any way. Each
of them uses different metaprogramming techniques to inject
methods and data attributes into the class under construction.

Here is a Coordinate class built with namedtuple—a factory function that builds a
subclass of tuple with the name and fields you specify:

>>> from collections import namedtuple
>>> Coordinate = namedtuple('Coordinate', 'lat lon')
>>> issubclass(Coordinate, tuple)
True
>>> moscow = Coordinate(55.756, 37.617)
>>> moscow
Coordinate(lat=55.756, lon=37.617)
>>> moscow == Coordinate(lat=55.756, lon=37.617)
True

Useful __repr__.

Meaningful __eq__.

The newer typing.NamedTuple provides the same functionality, adding a type anno‐
tation to each field:

>>> import typing
>>> Coordinate = typing.NamedTuple('Coordinate',
... [('lat', float), ('lon', float)])
>>> issubclass(Coordinate, tuple)
True
>>> typing.get_type_hints(Coordinate)
{'lat': <class 'float'>, 'lon': <class 'float'>}

Overview of Data Class Builders | 165

2 Metaclasses are one of the subjects covered in Chapter 24, “Class Metaprogramming”.

A typed named tuple can also be constructed with the fields given
as keyword arguments, like this:

Coordinate = typing.NamedTuple('Coordinate', lat=float, lon=float)

This is more readable, and also lets you provide the mapping of
fields and types as **fields_and_types.

Since Python 3.6, typing.NamedTuple can also be used in a class statement, with
type annotations written as described in PEP 526—Syntax for Variable Annotations.
This is much more readable, and makes it easy to override methods or add new ones.
Example 5-2 is the same Coordinate class, with a pair of float attributes and a cus‐
tom __str__ to display a coordinate formatted like 55.8°N, 37.6°E.

Example 5-2. typing_namedtuple/coordinates.py

from typing import NamedTuple

class Coordinate(NamedTuple):
 lat: float
 lon: float

 def __str__(self):
 ns = 'N' if self.lat >= 0 else 'S'
 we = 'E' if self.lon >= 0 else 'W'
 return f'{abs(self.lat):.1f}°{ns}, {abs(self.lon):.1f}°{we}'

Although NamedTuple appears in the class statement as a super‐
class, it’s actually not. typing.NamedTuple uses the advanced func‐
tionality of a metaclass2 to customize the creation of the user’s
class. Check this out:

>>> issubclass(Coordinate, typing.NamedTuple)
False
>>> issubclass(Coordinate, tuple)
True

In the __init__ method generated by typing.NamedTuple, the fields appear as
parameters in the same order they appear in the class statement.

Like typing.NamedTuple, the dataclass decorator supports PEP 526 syntax to
declare instance attributes. The decorator reads the variable annotations and auto‐
matically generates methods for your class. For comparison, check out the equivalent

166 | Chapter 5: Data Class Builders

https://fpy.li/pep526
https://fpy.li/pep526

3 Class decorators are covered in Chapter 24, “Class Metaprogramming,” along with metaclasses. Both are ways
of customizing class behavior beyond what is possible with inheritance.

Coordinate class written with the help of the dataclass decorator, as shown in
Example 5-3.

Example 5-3. dataclass/coordinates.py

from dataclasses import dataclass

@dataclass(frozen=True)
class Coordinate:
 lat: float
 lon: float

 def __str__(self):
 ns = 'N' if self.lat >= 0 else 'S'
 we = 'E' if self.lon >= 0 else 'W'
 return f'{abs(self.lat):.1f}°{ns}, {abs(self.lon):.1f}°{we}'

Note that the body of the classes in Example 5-2 and Example 5-3 are identical—the
difference is in the class statement itself. The @dataclass decorator does not depend
on inheritance or a metaclass, so it should not interfere with your own use of these
mechanisms.3 The Coordinate class in Example 5-3 is a subclass of object.

Main Features
The different data class builders have a lot in common, as summarized in Table 5-1.

Table 5-1. Selected features compared across the three data class builders; x stands for an
instance of a data class of that kind

namedtuple NamedTuple dataclass
mutable instances NO NO YES

class statement syntax NO YES YES

construct dict x._asdict() x._asdict() dataclasses.asdict(x)

get field names x._fields x._fields [f.name for f in dataclasses.fields(x)]

get defaults x._field_defaults x._field_defaults [f.default for f in dataclasses.fields(x)]

get field types N/A x.__annotations__ x.__annotations__

new instance with
changes

x._replace(…) x._replace(…) dataclasses.replace(x, …)

new class at runtime namedtuple(…) NamedTuple(…) dataclasses.make_dataclass(…)

Overview of Data Class Builders | 167

The classes built by typing.NamedTuple and @dataclass have an
__annotations__ attribute holding the type hints for the fields.
However, reading from __annotations__ directly is not recom‐
mended. Instead, the recommended best practice to get that
information is to call inspect.get_annotations(MyClass) (added
in Python 3.10) or typing.get_type_hints(MyClass) (Python 3.5
to 3.9). That’s because those functions provide extra services, like
resolving forward references in type hints. We’ll come back to this
issue much later in the book, in “Problems with Annotations at
Runtime” on page 538.

Now let’s discuss those main features.

Mutable instances

A key difference between these class builders is that collections.namedtuple and
typing.NamedTuple build tuple subclasses, therefore the instances are immutable.
By default, @dataclass produces mutable classes. But the decorator accepts a key‐
word argument frozen—shown in Example 5-3. When frozen=True, the class will
raise an exception if you try to assign a value to a field after the instance is initialized.

Class statement syntax

Only typing.NamedTuple and dataclass support the regular class statement syn‐
tax, making it easier to add methods and docstrings to the class you are creating.

Construct dict

Both named tuple variants provide an instance method (._asdict) to construct a
dict object from the fields in a data class instance. The dataclasses module pro‐
vides a function to do it: dataclasses.asdict.

Get field names and default values
All three class builders let you get the field names and default values that may be con‐
figured for them. In named tuple classes, that metadata is in the ._fields
and ._fields_defaults class attributes. You can get the same metadata from a data
class decorated class using the fields function from the dataclasses module. It
returns a tuple of Field objects that have several attributes, including name and
default.

168 | Chapter 5: Data Class Builders

https://fpy.li/5-2
https://fpy.li/5-3

Get field types

Classes defined with the help of typing.NamedTuple and @dataclass have a mapping
of field names to type the __annotations__ class attribute. As mentioned, use the
typing.get_type_hints function instead of reading __annotations__ directly.

New instance with changes

Given a named tuple instance x, the call x._replace(**kwargs) returns a new
instance with some attribute values replaced according to the keyword arguments
given. The dataclasses.replace(x, **kwargs) module-level function does the
same for an instance of a dataclass decorated class.

New class at runtime

Although the class statement syntax is more readable, it is hardcoded. A framework
may need to build data classes on the fly, at runtime. For that, you can use the default
function call syntax of collections.namedtuple, which is likewise supported by
typing.NamedTuple. The dataclasses module provides a make_dataclass function
for the same purpose.

After this overview of the main features of the data class builders, let’s focus on each
of them in turn, starting with the simplest.

Classic Named Tuples
The collections.namedtuple function is a factory that builds subclasses of tuple
enhanced with field names, a class name, and an informative __repr__. Classes built
with namedtuple can be used anywhere where tuples are needed, and in fact many
functions of the Python standard library that are used to return tuples now return
named tuples for convenience, without affecting the user’s code at all.

Each instance of a class built by namedtuple takes exactly the same
amount of memory as a tuple because the field names are stored in
the class.

Example 5-4 shows how we could define a named tuple to hold information about a
city.

Example 5-4. Defining and using a named tuple type

>>> from collections import namedtuple
>>> City = namedtuple('City', 'name country population coordinates')

Classic Named Tuples | 169

>>> tokyo = City('Tokyo', 'JP', 36.933, (35.689722, 139.691667))
>>> tokyo
City(name='Tokyo', country='JP', population=36.933, coordinates=(35.689722,
139.691667))
>>> tokyo.population
36.933
>>> tokyo.coordinates
(35.689722, 139.691667)
>>> tokyo[1]
'JP'

Two parameters are required to create a named tuple: a class name and a list of
field names, which can be given as an iterable of strings or as a single space-
delimited string.

Field values must be passed as separate positional arguments to the constructor
(in contrast, the tuple constructor takes a single iterable).

You can access the fields by name or position.

As a tuple subclass, City inherits useful methods such as __eq__ and the special
methods for comparison operators—including __lt__, which allows sorting lists of
City instances.

A named tuple offers a few attributes and methods in addition to those inherited
from the tuple. Example 5-5 shows the most useful: the _fields class attribute, the
class method _make(iterable), and the _asdict() instance method.

Example 5-5. Named tuple attributes and methods (continued from the previous
example)

>>> City._fields
('name', 'country', 'population', 'location')
>>> Coordinate = namedtuple('Coordinate', 'lat lon')
>>> delhi_data = ('Delhi NCR', 'IN', 21.935, Coordinate(28.613889, 77.208889))
>>> delhi = City._make(delhi_data)
>>> delhi._asdict()
{'name': 'Delhi NCR', 'country': 'IN', 'population': 21.935,
'location': Coordinate(lat=28.613889, lon=77.208889)}
>>> import json
>>> json.dumps(delhi._asdict())
'{"name": "Delhi NCR", "country": "IN", "population": 21.935,
"location": [28.613889, 77.208889]}'

._fields is a tuple with the field names of the class.

._make() builds City from an iterable; City(*delhi_data) would do the same.

170 | Chapter 5: Data Class Builders

._asdict() returns a dict built from the named tuple instance.

._asdict() is useful to serialize the data in JSON format, for example.

The _asdict method returned an OrderedDict until Python 3.7.
Since Python 3.8, it returns a simple dict—which is OK now that
we can rely on key insertion order. If you must have an Ordered
Dict, the _asdict documentation recommends building one from
the result: OrderedDict(x._asdict()).

Since Python 3.7, namedtuple accepts the defaults keyword-only argument provid‐
ing an iterable of N default values for each of the N rightmost fields of the class.
Example 5-6 shows how to define a Coordinate named tuple with a default value for
a reference field.

Example 5-6. Named tuple attributes and methods, continued from Example 5-5

>>> Coordinate = namedtuple('Coordinate', 'lat lon reference', defaults=['WGS84'])
>>> Coordinate(0, 0)
Coordinate(lat=0, lon=0, reference='WGS84')
>>> Coordinate._field_defaults
{'reference': 'WGS84'}

In “Class statement syntax” on page 168, I mentioned it’s easier to code methods with
the class syntax supported by typing.NamedTuple and @dataclass. You can also add
methods to a namedtuple, but it’s a hack. Skip the following box if you’re not interes‐
ted in hacks.

Hacking a namedtuple to Inject a Method
Recall how we built the Card class in Example 1-1 in Chapter 1:

Card = collections.namedtuple('Card', ['rank', 'suit'])

Later in Chapter 1, I wrote a spades_high function for sorting. It would be nice if
that logic was encapsulated in a method of Card, but adding spades_high to Card
without the benefit of a class statement requires a quick hack: define the function
and then assign it to a class attribute. Example 5-7 shows how.

Example 5-7. frenchdeck.doctest: Adding a class attribute and a method to Card,
the namedtuple from “A Pythonic Card Deck” on page 5

>>> Card.suit_values = dict(spades=3, hearts=2, diamonds=1, clubs=0)

>>> def spades_high(card):
... rank_value = FrenchDeck.ranks.index(card.rank)

Classic Named Tuples | 171

https://fpy.li/5-4

4 If you know Ruby, you know that injecting methods is a well-known but controversial technique among
Rubyists. In Python, it’s not as common, because it doesn’t work with any built-in type—str, list, etc. I con‐
sider this limitation of Python a blessing.

... suit_value = card.suit_values[card.suit]

... return rank_value * len(card.suit_values) + suit_value

...

>>> Card.overall_rank = spades_high
>>> lowest_card = Card('2', 'clubs')
>>> highest_card = Card('A', 'spades')

>>> lowest_card.overall_rank()
0
>>> highest_card.overall_rank()
51

Attach a class attribute with values for each suit.

spades_high will become a method; the first argument doesn’t need to be named
self. Anyway, it will get the receiver when called as a method.

Attach the function to the Card class as a method named overall_rank.

It works!

For readability and future maintenance, it’s much better to code methods inside a
class statement. But it’s good to know this hack is possible, because it may come in
handy.4

This was a small detour to showcase the power of a dynamic language.

Now let’s check out the typing.NamedTuple variation.

Typed Named Tuples
The Coordinate class with a default field from Example 5-6 can be written using
typing.NamedTuple, as shown in Example 5-8.

Example 5-8. typing_namedtuple/coordinates2.py

from typing import NamedTuple

class Coordinate(NamedTuple):
 lat: float
 lon: float
 reference: str = 'WGS84'

172 | Chapter 5: Data Class Builders

Every instance field must be annotated with a type.

The reference instance field is annotated with a type and a default value.

Classes built by typing.NamedTuple don’t have any methods beyond those that col
lections.namedtuple also generates—and those that are inherited from tuple. The
only difference is the presence of the __annotations__ class attribute—which Python
completely ignores at runtime.

Given that the main feature of typing.NamedTuple are the type annotations, we’ll
take a brief look at them before resuming our exploration of data class builders.

Type Hints 101
Type hints—a.k.a. type annotations—are ways to declare the expected type of func‐
tion arguments, return values, variables, and attributes.

The first thing you need to know about type hints is that they are not enforced at all
by the Python bytecode compiler and interpreter.

This is a very brief introduction to type hints, just enough to make
sense of the syntax and meaning of the annotations used in typ
ing.NamedTuple and @dataclass declarations. We will cover type
hints for function signatures in Chapter 8 and more advanced
annotations in Chapter 15. Here we’ll mostly see hints with simple
built-in types, such as str, int, and float, which are probably the
most common types used to annotate fields of data classes.

No Runtime Effect
Think about Python type hints as “documentation that can be verified by IDEs and
type checkers.”

That’s because type hints have no impact on the runtime behavior of Python pro‐
grams. Check out Example 5-9.

Example 5-9. Python does not enforce type hints at runtime

>>> import typing
>>> class Coordinate(typing.NamedTuple):
... lat: float
... lon: float
...
>>> trash = Coordinate('Ni!', None)
>>> print(trash)
Coordinate(lat='Ni!', lon=None)

Type Hints 101 | 173

5 In the context of type hints, None is not the NoneType singleton, but an alias for NoneType itself. This is strange
when we stop to think about it, but appeals to our intuition and makes function return annotations easier to
read in the common case of functions that return None.

I told you: no type checking at runtime!

If you type the code of Example 5-9 in a Python module, it will run and display a
meaningless Coordinate, with no error or warning:

$ python3 nocheck_demo.py
Coordinate(lat='Ni!', lon=None)

The type hints are intended primarily to support third-party type checkers, like Mypy
or the PyCharm IDE built-in type checker. These are static analysis tools: they check
Python source code “at rest,” not running code.

To see the effect of type hints, you must run one of those tools on your code—like a
linter. For instance, here is what Mypy has to say about the previous example:

$ mypy nocheck_demo.py
nocheck_demo.py:8: error: Argument 1 to "Coordinate" has
incompatible type "str"; expected "float"
nocheck_demo.py:8: error: Argument 2 to "Coordinate" has
incompatible type "None"; expected "float"

As you can see, given the definition of Coordinate, Mypy knows that both arguments
to create an instance must be of type float, but the assignment to trash uses a str
and None.5

Now let’s talk about the syntax and meaning of type hints.

Variable Annotation Syntax
Both typing.NamedTuple and @dataclass use the syntax of variable annotations
defined in PEP 526. This is a quick introduction to that syntax in the context defining
attributes in class statements.

The basic syntax of variable annotation is:

var_name: some_type

The “Acceptable type hints” section in PEP 484 explains what are acceptable types,
but in the context of defining a data class, these types are more likely to be useful:

• A concrete class, for example, str or FrenchDeck
• A parameterized collection type, like list[int], tuple[str, float], etc.

174 | Chapter 5: Data Class Builders

https://fpy.li/mypy
https://fpy.li/5-5
https://fpy.li/pep526
https://fpy.li/5-6

• typing.Optional, for example, Optional[str]—to declare a field that can be a
str or None

You can also initialize the variable with a value. In a typing.NamedTuple or @data
class declaration, that value will become the default for that attribute if the corre‐
sponding argument is omitted in the constructor call:

var_name: some_type = a_value

The Meaning of Variable Annotations
We saw in “No Runtime Effect” on page 173 that type hints have no effect at runtime.
But at import time—when a module is loaded—Python does read them to build the
__annotations__ dictionary that typing.NamedTuple and @dataclass then use to
enhance the class.

We’ll start this exploration with a simple class in Example 5-10, so that we can later
see what extra features are added by typing.NamedTuple and @dataclass.

Example 5-10. meaning/demo_plain.py: a plain class with type hints

class DemoPlainClass:
 a: int
 b: float = 1.1
 c = 'spam'

a becomes an entry in __annotations__, but is otherwise discarded: no attribute
named a is created in the class.

b is saved as an annotation, and also becomes a class attribute with value 1.1.

c is just a plain old class attribute, not an annotation.

We can verify that in the console, first reading the __annotations__ of the Demo
PlainClass, then trying to get its attributes named a, b, and c:

>>> from demo_plain import DemoPlainClass
>>> DemoPlainClass.__annotations__
{'a': <class 'int'>, 'b': <class 'float'>}
>>> DemoPlainClass.a
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: type object 'DemoPlainClass' has no attribute 'a'
>>> DemoPlainClass.b
1.1
>>> DemoPlainClass.c
'spam'

Type Hints 101 | 175

6 Python has no concept of undefined, one of the silliest mistakes in the design of JavaScript. Thank Guido!

Note that the __annotations__ special attribute is created by the interpreter to
record the type hints that appear in the source code—even in a plain class.

The a survives only as an annotation. It doesn’t become a class attribute because no
value is bound to it.6 The b and c are stored as class attributes because they are bound
to values.

None of those three attributes will be in a new instance of DemoPlainClass. If you
create an object o = DemoPlainClass(), o.a will raise AttributeError, while o.b
and o.c will retrieve the class attributes with values 1.1 and 'spam'—that’s just nor‐
mal Python object behavior.

Inspecting a typing.NamedTuple

Now let’s examine a class built with typing.NamedTuple (Example 5-11), using the
same attributes and annotations as DemoPlainClass from Example 5-10.

Example 5-11. meaning/demo_nt.py: a class built with typing.NamedTuple

import typing

class DemoNTClass(typing.NamedTuple):
 a: int
 b: float = 1.1
 c = 'spam'

a becomes an annotation and also an instance attribute.

b is another annotation, and also becomes an instance attribute with default
value 1.1.

c is just a plain old class attribute; no annotation will refer to it.

Inspecting the DemoNTClass, we get:

>>> from demo_nt import DemoNTClass
>>> DemoNTClass.__annotations__
{'a': <class 'int'>, 'b': <class 'float'>}
>>> DemoNTClass.a
<_collections._tuplegetter object at 0x101f0f940>
>>> DemoNTClass.b
<_collections._tuplegetter object at 0x101f0f8b0>
>>> DemoNTClass.c
'spam'

176 | Chapter 5: Data Class Builders

Here we have the same annotations for a and b as we saw in Example 5-10. But typ
ing.NamedTuple creates a and b class attributes. The c attribute is just a plain class
attribute with the value 'spam'.

The a and b class attributes are descriptors—an advanced feature covered in Chap‐
ter 23. For now, think of them as similar to property getters: methods that don’t
require the explicit call operator () to retrieve an instance attribute. In practice, this
means a and b will work as read-only instance attributes—which makes sense when
we recall that DemoNTClass instances are just fancy tuples, and tuples are immutable.

DemoNTClass also gets a custom docstring:

>>> DemoNTClass.__doc__
'DemoNTClass(a, b)'

Let’s inspect an instance of DemoNTClass:

>>> nt = DemoNTClass(8)
>>> nt.a
8
>>> nt.b
1.1
>>> nt.c
'spam'

To construct nt, we need to give at least the a argument to DemoNTClass. The con‐
structor also takes a b argument, but it has a default value of 1.1, so it’s optional. The
nt object has the a and b attributes as expected; it doesn’t have a c attribute, but
Python retrieves it from the class, as usual.

If you try to assign values to nt.a, nt.b, nt.c, or even nt.z, you’ll get Attribute
Error exceptions with subtly different error messages. Try that and reflect on the
messages.

Inspecting a class decorated with dataclass
Now, we’ll examine Example 5-12.

Example 5-12. meaning/demo_dc.py: a class decorated with @dataclass

from dataclasses import dataclass

@dataclass
class DemoDataClass:
 a: int
 b: float = 1.1
 c = 'spam'

Type Hints 101 | 177

a becomes an annotation and also an instance attribute controlled by a
descriptor.

b is another annotation, and also becomes an instance attribute with a descriptor
and a default value 1.1.

c is just a plain old class attribute; no annotation will refer to it.

Now let’s check out __annotations__, __doc__, and the a, b, c attributes on Demo
DataClass:

>>> from demo_dc import DemoDataClass
>>> DemoDataClass.__annotations__
{'a': <class 'int'>, 'b': <class 'float'>}
>>> DemoDataClass.__doc__
'DemoDataClass(a: int, b: float = 1.1)'
>>> DemoDataClass.a
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: type object 'DemoDataClass' has no attribute 'a'
>>> DemoDataClass.b
1.1
>>> DemoDataClass.c
'spam'

The __annotations__ and __doc__ are not surprising. However, there is no attribute
named a in DemoDataClass—in contrast with DemoNTClass from Example 5-11,
which has a descriptor to get a from the instances as read-only attributes (that myste‐
rious <_collections._tuplegetter>). That’s because the a attribute will only exist
in instances of DemoDataClass. It will be a public attribute that we can get and set,
unless the class is frozen. But b and c exist as class attributes, with b holding the
default value for the b instance attribute, while c is just a class attribute that will not
be bound to the instances.

Now let’s see how a DemoDataClass instance looks:

>>> dc = DemoDataClass(9)
>>> dc.a
9
>>> dc.b
1.1
>>> dc.c
'spam'

Again, a and b are instance attributes, and c is a class attribute we get via the instance.

As mentioned, DemoDataClass instances are mutable—and no type checking is done
at runtime:

178 | Chapter 5: Data Class Builders

7 Setting an attribute after __init__ defeats the __dict__ key-sharing memory optimization mentioned in
“Practical Consequences of How dict Works” on page 102.

>>> dc.a = 10
>>> dc.b = 'oops'

We can do even sillier assignments:

>>> dc.c = 'whatever'
>>> dc.z = 'secret stash'

Now the dc instance has a c attribute—but that does not change the c class attribute.
And we can add a new z attribute. This is normal Python behavior: regular instances
can have their own attributes that don’t appear in the class.7

More About @dataclass
We’ve only seen simple examples of @dataclass use so far. The decorator accepts
several keyword arguments. This is its signature:

@dataclass(*, init=True, repr=True, eq=True, order=False,
 unsafe_hash=False, frozen=False)

The * in the first position means the remaining parameters are keyword-only.
Table 5-2 describes them.

Table 5-2. Keyword parameters accepted by the @dataclass decorator

Option Meaning Default Notes

init Generate __init__ True Ignored if __init__ is implemented by
user.

repr Generate __repr__ True Ignored if __repr__ is implemented by
user.

eq Generate __eq__ True Ignored if __eq__ is implemented by
user.

order Generate __lt__,
__le__, __gt__,
__ge__

False If True, raises exceptions if eq=False,
or if any of the comparison methods that
would be generated are defined or
inherited.

unsafe_hash Generate __hash__ False Complex semantics and several caveats—
see: dataclass documentation.

frozen Make instances
“immutable”

False Instances will be reasonably safe from
accidental change, but not really
immutable.a

a @dataclass emulates immutability by generating __setattr__ and __delattr__, which raise data
class.FrozenInstanceError—a subclass of AttributeError—when the user attempts to set or delete a field.

More About @dataclass | 179

https://fpy.li/5-7

The defaults are really the most useful settings for common use cases. The options
you are more likely to change from the defaults are:

frozen=True

Protects against accidental changes to the class instances.

order=True

Allows sorting of instances of the data class.

Given the dynamic nature of Python objects, it’s not too hard for a nosy programmer
to go around the protection afforded by frozen=True. But the necessary tricks should
be easy to spot in a code review.

If the eq and frozen arguments are both True, @dataclass produces a suitable
__hash__ method, so the instances will be hashable. The generated __hash__ will use
data from all fields that are not individually excluded using a field option we’ll see in
“Field Options” on page 180. If frozen=False (the default), @dataclass will set
__hash__ to None, signalling that the instances are unhashable, therefore overriding
__hash__ from any superclass.

PEP 557—Data Classes has this to say about unsafe_hash:

Although not recommended, you can force Data Classes to create a __hash__ method
with unsafe_hash=True. This might be the case if your class is logically immutable but
can nonetheless be mutated. This is a specialized use case and should be considered
carefully.

I will leave unsafe_hash at that. If you feel you must use that option, check the data
classes.dataclass documentation.

Further customization of the generated data class can be done at a field level.

Field Options
We’ve already seen the most basic field option: providing (or not) a default value
with the type hint. The instance fields you declare will become parameters in the gen‐
erated __init__. Python does not allow parameters without defaults after parameters
with defaults, therefore after you declare a field with a default value, all remaining
fields must also have default values.

Mutable default values are a common source of bugs for beginning Python develop‐
ers. In function definitions, a mutable default value is easily corrupted when one
invocation of the function mutates the default, changing the behavior of further invo‐
cations—an issue we’ll explore in “Mutable Types as Parameter Defaults: Bad Idea”
on page 214 (Chapter 6). Class attributes are often used as default attribute values for
instances, including in data classes. And @dataclass uses the default values in the

180 | Chapter 5: Data Class Builders

https://fpy.li/pep557
https://fpy.li/5-7
https://fpy.li/5-7

type hints to generate parameters with defaults for __init__. To prevent bugs, @data
class rejects the class definition in Example 5-13.

Example 5-13. dataclass/club_wrong.py: this class raises ValueError

@dataclass
class ClubMember:
 name: str
 guests: list = []

If you load the module with that ClubMember class, this is what you get:

$ python3 club_wrong.py
Traceback (most recent call last):
 File "club_wrong.py", line 4, in <module>
 class ClubMember:
 ...several lines omitted...
ValueError: mutable default <class 'list'> for field guests is not allowed:
use default_factory

The ValueError message explains the problem and suggests a solution: use
default_factory. Example 5-14 shows how to correct ClubMember.

Example 5-14. dataclass/club.py: this ClubMember definition works

from dataclasses import dataclass, field

@dataclass
class ClubMember:
 name: str
 guests: list = field(default_factory=list)

In the guests field of Example 5-14, instead of a literal list, the default value is set by
calling the dataclasses.field function with default_factory=list.

The default_factory parameter lets you provide a function, class, or any other call‐
able, which will be invoked with zero arguments to build a default value each time an
instance of the data class is created. This way, each instance of ClubMember will have
its own list—instead of all instances sharing the same list from the class, which is
rarely what we want and is often a bug.

It’s good that @dataclass rejects class definitions with a list
default value in a field. However, be aware that it is a partial solu‐
tion that only applies to list, dict, and set. Other mutable values
used as defaults will not be flagged by @dataclass. It’s up to you to
understand the problem and remember to use a default factory to
set mutable default values.

More About @dataclass | 181

If you browse the dataclasses module documentation, you’ll see a list field defined
with a novel syntax, as in Example 5-15.

Example 5-15. dataclass/club_generic.py: this ClubMember definition is more precise

from dataclasses import dataclass, field

@dataclass
class ClubMember:
 name: str
 guests: list[str] = field(default_factory=list)

list[str] means “a list of str.”

The new syntax list[str] is a parameterized generic type: since Python 3.9, the list
built-in accepts that bracket notation to specify the type of the list items.

Prior to Python 3.9, the built-in collections did not support generic
type notation. As a temporary workaround, there are correspond‐
ing collection types in the typing module. If you need a parameter‐
ized list type hint in Python 3.8 or earlier, you must import the
List type from typing and use it: List[str]. For more about this
issue, see “Legacy Support and Deprecated Collection Types” on
page 272.

We’ll cover generics in Chapter 8. For now, note that Examples 5-14 and 5-15 are
both correct, and the Mypy type checker does not complain about either of those
class definitions.

The difference is that guests: list means that guests can be a list of objects of
any kind, while guests: list[str] says that guests must be a list in which every
item is a str. This will allow the type checker to find (some) bugs in code that puts
invalid items in the list, or that read items from it.

The default_factory is likely to be the most common option of the field function,
but there are several others, listed in Table 5-3.

Table 5-3. Keyword arguments accepted by the field function

Option Meaning Default

default Default value for field _MISSING_TYPEa

default_factory 0-parameter function used to produce a default _MISSING_TYPE

init Include field in parameters to __init__ True

repr Include field in __repr__ True

182 | Chapter 5: Data Class Builders

https://fpy.li/5-9

Option Meaning Default

compare Use field in comparison methods __eq__,
__lt__, etc.

True

hash Include field in __hash__ calculation Noneb

metadata Mapping with user-defined data; ignored by
the @dataclass

None

a dataclass._MISSING_TYPE is a sentinel value indicating the option was not provided. It exists so we can set None
as an actual default value, a common use case.
b The option hash=None means the field will be used in __hash__ only if compare=True.

The default option exists because the field call takes the place of the default value
in the field annotation. If you want to create an athlete field with a default value of
False, and also omit that field from the __repr__ method, you’d write this:

@dataclass
class ClubMember:
 name: str
 guests: list = field(default_factory=list)
 athlete: bool = field(default=False, repr=False)

Post-init Processing
The __init__ method generated by @dataclass only takes the arguments passed and
assigns them—or their default values, if missing—to the instance attributes that are
instance fields. But you may need to do more than that to initialize the instance.
If that’s the case, you can provide a __post_init__ method. When that method
exists, @dataclass will add code to the generated __init__ to call __post_init__ as
the last step.

Common use cases for __post_init__ are validation and computing field values
based on other fields. We’ll study a simple example that uses __post_init__ for both
of these reasons.

First, let’s look at the expected behavior of a ClubMember subclass named HackerClub
Member, as described by doctests in Example 5-16.

Example 5-16. dataclass/hackerclub.py: doctests for HackerClubMember

"""
``HackerClubMember`` objects accept an optional ``handle`` argument::

 >>> anna = HackerClubMember('Anna Ravenscroft', handle='AnnaRaven')
 >>> anna
 HackerClubMember(name='Anna Ravenscroft', guests=[], handle='AnnaRaven')

If ``handle`` is omitted, it's set to the first part of the member's name::

More About @dataclass | 183

 >>> leo = HackerClubMember('Leo Rochael')
 >>> leo
 HackerClubMember(name='Leo Rochael', guests=[], handle='Leo')

Members must have a unique handle. The following ``leo2`` will not be created,
because its ``handle`` would be 'Leo', which was taken by ``leo``::

 >>> leo2 = HackerClubMember('Leo DaVinci')
 Traceback (most recent call last):
 ...
 ValueError: handle 'Leo' already exists.

To fix, ``leo2`` must be created with an explicit ``handle``::

 >>> leo2 = HackerClubMember('Leo DaVinci', handle='Neo')
 >>> leo2
 HackerClubMember(name='Leo DaVinci', guests=[], handle='Neo')
"""

Note that we must provide handle as a keyword argument, because HackerClubMem
ber inherits name and guests from ClubMember, and adds the handle field. The gen‐
erated docstring for HackerClubMember shows the order of the fields in the
constructor call:

>>> HackerClubMember.__doc__
"HackerClubMember(name: str, guests: list = <factory>, handle: str = '')"

Here, <factory> is a short way of saying that some callable will produce the default
value for guests (in our case, the factory is the list class). The point is: to provide a
handle but no guests, we must pass handle as a keyword argument.

The “Inheritance” section of the dataclasses module documentation explains how
the order of the fields is computed when there are several levels of inheritance.

In Chapter 14 we’ll talk about misusing inheritance, particularly
when the superclasses are not abstract. Creating a hierarchy of data
classes is usually a bad idea, but it served us well here to make
Example 5-17 shorter, focusing on the handle field declaration and
__post_init__ validation.

Example 5-17 shows the implementation.

Example 5-17. dataclass/hackerclub.py: code for HackerClubMember

from dataclasses import dataclass
from club import ClubMember

184 | Chapter 5: Data Class Builders

https://fpy.li/5-10

@dataclass
class HackerClubMember(ClubMember):
 all_handles = set()
 handle: str = ''

 def __post_init__(self):
 cls = self.__class__
 if self.handle == '':
 self.handle = self.name.split()[0]
 if self.handle in cls.all_handles:
 msg = f'handle {self.handle!r} already exists.'
 raise ValueError(msg)
 cls.all_handles.add(self.handle)

HackerClubMember extends ClubMember.

all_handles is a class attribute.

handle is an instance field of type str with an empty string as its default value;
this makes it optional.

Get the class of the instance.

If self.handle is the empty string, set it to the first part of name.

If self.handle is in cls.all_handles, raise ValueError.

Add the new handle to cls.all_handles.

Example 5-17 works as intended, but is not satisfactory to a static type checker. Next,
we’ll see why, and how to fix it.

Typed Class Attributes
If we type check Example 5-17 with Mypy, we are reprimanded:

$ mypy hackerclub.py
hackerclub.py:37: error: Need type annotation for "all_handles"
(hint: "all_handles: Set[<type>] = ...")
Found 1 error in 1 file (checked 1 source file)

Unfortunately, the hint provided by Mypy (version 0.910 as I review this) is not help‐
ful in the context of @dataclass usage. First, it suggests using Set, but I am using
Python 3.9 so I can use set—and avoid importing Set from typing. More impor‐
tantly, if we add a type hint like set[…] to all_handles, @dataclass will find that
annotation and make all_handles an instance field. We saw this happening in
“Inspecting a class decorated with dataclass” on page 177.

More About @dataclass | 185

The workaround defined in PEP 526—Syntax for Variable Annotations is ugly. To
code a class variable with a type hint, we need to use a pseudotype named typ
ing.ClassVar, which leverages the generics [] notation to set the type of the variable
and also declare it a class attribute.

To make the type checker and @dataclass happy, this is how we are supposed to
declare all_handles in Example 5-17:

 all_handles: ClassVar[set[str]] = set()

That type hint is saying:

all_handles is a class attribute of type set-of-str, with an empty set as its default
value.

To code that annotation, we must import ClassVar from the typing module.

The @dataclass decorator doesn’t care about the types in the annotations, except in
two cases, and this is one of them: if the type is ClassVar, an instance field will not be
generated for that attribute.

The other case where the type of the field is relevant to @dataclass is when declaring
init-only variables, our next topic.

Initialization Variables That Are Not Fields
Sometimes you may need to pass arguments to __init__ that are not instance fields.
Such arguments are called init-only variables by the dataclasses documentation. To
declare an argument like that, the dataclasses module provides the pseudotype Init
Var, which uses the same syntax of typing.ClassVar. The example given in the doc‐
umentation is a data class that has a field initialized from a database, and the database
object must be passed to the constructor.

Example 5-18 shows the code that illustrates the “Init-only variables” section.

Example 5-18. Example from the dataclasses module documentation

@dataclass
class C:
 i: int
 j: int = None
 database: InitVar[DatabaseType] = None

 def __post_init__(self, database):
 if self.j is None and database is not None:
 self.j = database.lookup('j')

c = C(10, database=my_database)

186 | Chapter 5: Data Class Builders

https://fpy.li/5-11
https://fpy.li/initvar
https://fpy.li/initvar
https://fpy.li/initvar

8 Source: Dublin Core article in the English Wikipedia.

Note how the database attribute is declared. InitVar will prevent @dataclass from
treating database as a regular field. It will not be set as an instance attribute, and the
dataclasses.fields function will not list it. However, database will be one of the
arguments that the generated __init__ will accept, and it will be also passed to
__post_init__. If you write that method, you must add a corresponding argument to
the method signature, as shown in Example 5-18.

This rather long overview of @dataclass covered the most useful features—some of
them appeared in previous sections, like “Main Features” on page 167 where we cov‐
ered all three data class builders in parallel. The dataclasses documentation and
PEP 526—Syntax for Variable Annotations have all the details.

In the next section, I present a longer example with @dataclass.

@dataclass Example: Dublin Core Resource Record
Often, classes built with @dataclass will have more fields than the very short exam‐
ples presented so far. Dublin Core provides the foundation for a more typical @data
class example.

The Dublin Core Schema is a small set of vocabulary terms that can be used to describe
digital resources (video, images, web pages, etc.), as well as physical resources such as
books or CDs, and objects like artworks.8

—Dublin Core on Wikipedia

The standard defines 15 optional fields; the Resource class in Example 5-19 uses 8 of
them.

Example 5-19. dataclass/resource.py: code for Resource, a class based on Dublin Core
terms

from dataclasses import dataclass, field
from typing import Optional
from enum import Enum, auto
from datetime import date

class ResourceType(Enum):
 BOOK = auto()
 EBOOK = auto()
 VIDEO = auto()

@dataclass

More About @dataclass | 187

https://fpy.li/5-13
https://fpy.li/initvar
https://fpy.li/pep526
https://fpy.li/5-12

class Resource:
 """Media resource description."""
 identifier: str
 title: str = '<untitled>'
 creators: list[str] = field(default_factory=list)
 date: Optional[date] = None
 type: ResourceType = ResourceType.BOOK
 description: str = ''
 language: str = ''
 subjects: list[str] = field(default_factory=list)

This Enum will provide type-safe values for the Resource.type field.

identifier is the only required field.

title is the first field with a default. This forces all fields below to provide
defaults.

The value of date can be a datetime.date instance, or None.

The type field default is ResourceType.BOOK.

Example 5-20 shows a doctest to demonstrate how a Resource record appears in
code.

Example 5-20. dataclass/resource.py: code for Resource, a class based on Dublin Core
terms

 >>> description = 'Improving the design of existing code'
 >>> book = Resource('978-0-13-475759-9', 'Refactoring, 2nd Edition',
 ... ['Martin Fowler', 'Kent Beck'], date(2018, 11, 19),
 ... ResourceType.BOOK, description, 'EN',
 ... ['computer programming', 'OOP'])
 >>> book # doctest: +NORMALIZE_WHITESPACE
 Resource(identifier='978-0-13-475759-9', title='Refactoring, 2nd Edition',
 creators=['Martin Fowler', 'Kent Beck'], date=datetime.date(2018, 11, 19),
 type=<ResourceType.BOOK: 1>, description='Improving the design of existing code',
 language='EN', subjects=['computer programming', 'OOP'])

The __repr__ generated by @dataclass is OK, but we can make it more readable.
This is the format we want from repr(book):

 >>> book # doctest: +NORMALIZE_WHITESPACE
 Resource(
 identifier = '978-0-13-475759-9',
 title = 'Refactoring, 2nd Edition',
 creators = ['Martin Fowler', 'Kent Beck'],
 date = datetime.date(2018, 11, 19),
 type = <ResourceType.BOOK: 1>,

188 | Chapter 5: Data Class Builders

 description = 'Improving the design of existing code',
 language = 'EN',
 subjects = ['computer programming', 'OOP'],
)

Example 5-21 is the code of __repr__ to produce the format shown in the last snip‐
pet. This example uses dataclass.fields to get the names of the data class fields.

Example 5-21. dataclass/resource_repr.py: code for __repr__ method
implemented in the Resource class from Example 5-19

 def __repr__(self):
 cls = self.__class__
 cls_name = cls.__name__
 indent = ' ' * 4
 res = [f'{cls_name}(']
 for f in fields(cls):
 value = getattr(self, f.name)
 res.append(f'{indent}{f.name} = {value!r},')

 res.append(')')
 return '\n'.join(res)

Start the res list to build the output string with the class name and open
parenthesis.

For each field f in the class…

…get the named attribute from the instance.

Append an indented line with the name of the field and repr(value)—that’s
what the !r does.

Append closing parenthesis.

Build a multiline string from res and return it.

With this example inspired by the soul of Dublin, Ohio, we conclude our tour of
Python’s data class builders.

Data classes are handy, but your project may suffer if you overuse them. The next
section explains.

More About @dataclass | 189

9 I am fortunate to have Martin Fowler as a colleague at Thoughtworks, so it took just 20 minutes to get his
permission.

Data Class as a Code Smell
Whether you implement a data class by writing all the code yourself or leveraging
one of the class builders described in this chapter, be aware that it may signal a prob‐
lem in your design.

In Refactoring: Improving the Design of Existing Code, 2nd ed. (Addison-Wesley),
Martin Fowler and Kent Beck present a catalog of “code smells”—patterns in code
that may indicate the need for refactoring. The entry titled “Data Class” starts like
this:

These are classes that have fields, getting and setting methods for fields, and nothing
else. Such classes are dumb data holders and are often being manipulated in far too
much detail by other classes.

In Fowler’s personal website, there’s an illuminating post titled “Code Smell”. The
post is very relevant to our discussion because he uses data class as one example of a
code smell and suggests how to deal with it. Here is the post, reproduced in full.9

Code Smell
By Martin Fowler

A code smell is a surface indication that usually corresponds to a deeper problem in
the system. The term was first coined by Kent Beck while helping me with my Refac‐
toring book.

The quick definition above contains a couple of subtle points. Firstly, a smell is by
definition something that’s quick to spot—or sniffable as I’ve recently put it. A long
method is a good example of this—just looking at the code and my nose twitches if I
see more than a dozen lines of Java.

The second is that smells don’t always indicate a problem. Some long methods are
just fine. You have to look deeper to see if there is an underlying problem there—
smells aren’t inherently bad on their own—they are often an indicator of a problem
rather than the problem themselves.

The best smells are something that’s easy to spot and most of the time lead you to
really interesting problems. Data classes (classes with all data and no behavior) are
good examples of this. You look at them and ask yourself what behavior should be in
this class. Then you start refactoring to move that behavior in there. Often simple
questions and initial refactorings can be the vital step in turning anemic objects into
something that really has class.

190 | Chapter 5: Data Class Builders

https://martinfowler.com/books/refactoring.html
https://fpy.li/5-14
https://fpy.li/5-15
https://fpy.li/5-15

One of the nice things about smells is that it’s easy for inexperienced people to spot
them, even if they don’t know enough to evaluate if there’s a real problem or to cor‐
rect them. I’ve heard of lead developers who will pick a “smell of the week” and ask
people to look for the smell and bring it up with the senior members of the team.
Doing it one smell at a time is a good way of gradually teaching people on the team to
be better programmers.

The main idea of object-oriented programming is to place behavior and data together
in the same code unit: a class. If a class is widely used but has no significant behavior
of its own, it’s possible that code dealing with its instances is scattered (and even
duplicated) in methods and functions throughout the system—a recipe for mainte‐
nance headaches. That’s why Fowler’s refactorings to deal with a data class involve
bringing responsibilities back into it.

Taking that into account, there are a couple of common scenarios where it makes
sense to have a data class with little or no behavior.

Data Class as Scaffolding
In this scenario, the data class is an initial, simplistic implementation of a class to
jump-start a new project or module. With time, the class should get its own methods,
instead of relying on methods of other classes to operate on its instances. Scaffolding
is temporary; eventually your custom class may become fully independent from the
builder you used to start it.

Python is also used for quick problem solving and experimentation, and then it’s OK
to leave the scaffolding in place.

Data Class as Intermediate Representation
A data class can be useful to build records about to be exported to JSON or some
other interchange format, or to hold data that was just imported, crossing some sys‐
tem boundary. Python’s data class builders all provide a method or function to con‐
vert an instance to a plain dict, and you can always invoke the constructor with a
dict used as keyword arguments expanded with **. Such a dict is very close to a
JSON record.

In this scenario, the data class instances should be handled as immutable objects—
even if the fields are mutable, you should not change them while they are in this
intermediate form. If you do, you’re losing the key benefit of having data and behav‐
ior close together. When importing/exporting requires changing values, you should
implement your own builder methods instead of using the given “as dict” methods or
standard constructors.

Data Class as a Code Smell | 191

10 I put this content here because it is the earliest chapter focusing on user-defined classes, and I thought pattern
matching with classes was too important to wait until Part II of the book. My philosophy: it’s more important
to know how to use classes than to define classes.

Now we change the subject to see how to write patterns that match instances of arbi‐
trary classes, and not just the sequences and mappings we’ve seen in “Pattern Match‐
ing with Sequences” on page 38 and “Pattern Matching with Mappings” on page 81.

Pattern Matching Class Instances
Class patterns are designed to match class instances by type and—optionally—by
attributes. The subject of a class pattern can be any class instance, not only instances
of data classes.10

There are three variations of class patterns: simple, keyword, and positional. We’ll
study them in that order.

Simple Class Patterns
We’ve already seen an example with simple class patterns used as subpatterns in “Pat‐
tern Matching with Sequences” on page 38:

 case [str(name), _, _, (float(lat), float(lon))]:

That pattern matches a four-item sequence where the first item must be an instance
of str, and the last item must be a 2-tuple with two instances of float.

The syntax for class patterns looks like a constructor invocation. The following is a
class pattern that matches float values without binding a variable (the case body can
refer to x directly if needed):

 match x:
 case float():
 do_something_with(x)

But this is likely to be a bug in your code:

 match x:
 case float: # DANGER!!!
 do_something_with(x)

In the preceding example, case float: matches any subject, because Python sees
float as a variable, which is then bound to the subject.

The simple pattern syntax of float(x) is a special case that applies only to nine
blessed built-in types, listed at the end of the “Class Patterns” section of PEP 634—
Structural Pattern Matching: Specification:

bytes dict float frozenset int list set str tuple

192 | Chapter 5: Data Class Builders

https://fpy.li/5-16
https://fpy.li/pep634
https://fpy.li/pep634

In those classes, the variable that looks like a constructor argument—e.g., the x in
float(x)—is bound to the whole subject instance or the part of the subject that
matches a subpattern, as exemplified by str(name) in the sequence pattern we saw
earlier:

 case [str(name), _, _, (float(lat), float(lon))]:

If the class is not one of those nine blessed built-ins, then the argument-like variables
represent patterns to be matched against attributes of an instance of that class.

Keyword Class Patterns
To understand how to use keyword class patterns, consider the following City class
and five instances in Example 5-22.

Example 5-22. City class and a few instances

import typing

class City(typing.NamedTuple):
 continent: str
 name: str
 country: str

cities = [
 City('Asia', 'Tokyo', 'JP'),
 City('Asia', 'Delhi', 'IN'),
 City('North America', 'Mexico City', 'MX'),
 City('North America', 'New York', 'US'),
 City('South America', 'São Paulo', 'BR'),
]

Given those definitions, the following function would return a list of Asian cities:

def match_asian_cities():
 results = []
 for city in cities:
 match city:
 case City(continent='Asia'):
 results.append(city)
 return results

The pattern City(continent='Asia') matches any City instance where the conti
nent attribute value is equal to 'Asia', regardless of the values of the other attributes.

If you want to collect the value of the country attribute, you could write:

def match_asian_countries():
 results = []
 for city in cities:

Pattern Matching Class Instances | 193

 match city:
 case City(continent='Asia', country=cc):
 results.append(cc)
 return results

The pattern City(continent='Asia', country=cc) matches the same Asian cities as
before, but now the cc variable is bound to the country attribute of the instance. This
also works if the pattern variable is called country as well:

 match city:
 case City(continent='Asia', country=country):
 results.append(country)

Keyword class patterns are very readable, and work with any class that has public
instance attributes, but they are somewhat verbose.

Positional class patterns are more convenient in some cases, but they require explicit
support by the class of the subject, as we’ll see next.

Positional Class Patterns
Given the definitions from Example 5-22, the following function would return a list
of Asian cities, using a positional class pattern:

def match_asian_cities_pos():
 results = []
 for city in cities:
 match city:
 case City('Asia'):
 results.append(city)
 return results

The pattern City('Asia') matches any City instance where the first attribute value
is 'Asia', regardless of the values of the other attributes.

If you want to collect the value of the country attribute, you could write:

def match_asian_countries_pos():
 results = []
 for city in cities:
 match city:
 case City('Asia', _, country):
 results.append(country)
 return results

The pattern City('Asia', _, country) matches the same cities as before, but now
the country variable is bound to the third attribute of the instance.

I’ve mentioned “first” or “third” attribute, but what does that really mean?

194 | Chapter 5: Data Class Builders

What makes City or any class work with positional patterns is the presence of a spe‐
cial class attribute named __match_args__, which the class builders in this chapter
automatically create. This is the value of __match_args__ in the City class:

>>> City.__match_args__
('continent', 'name', 'country')

As you can see, __match_args__ declares the names of the attributes in the order they
will be used in positional patterns.

In “Supporting Positional Pattern Matching” on page 377 we’ll write code to define
__match_args__ for a class we’ll create without the help of a class builder.

You can combine keyword and positional arguments in a pattern.
Some, but not all, of the instance attributes available for matching
may be listed in __match_args__. Therefore, sometimes you may
need to use keyword arguments in addition to positional argu‐
ments in a pattern.

Time for a chapter summary.

Chapter Summary
The main topic of this chapter was the data class builders collections.namedtuple,
typing.NamedTuple, and dataclasses.dataclass. We saw that each generates data
classes from descriptions provided as arguments to a factory function, or from class
statements with type hints in the case of the latter two. In particular, both named
tuple variants produce tuple subclasses, adding only the ability to access fields by
name, and providing a _fields class attribute listing the field names as a tuple of
strings.

Next we studied the main features of the three class builders side by side, including
how to extract instance data as a dict, how to get the names and default values of
fields, and how to make a new instance from an existing one.

This prompted our first look into type hints, particularly those used to annotate
attributes in a class statement, using the notation introduced in Python 3.6 with
PEP 526—Syntax for Variable Annotations. Probably the most surprising aspect of
type hints in general is the fact that they have no effect at all at runtime. Python
remains a dynamic language. External tools, like Mypy, are needed to take advantage
of typing information to detect errors via static analysis of the source code. After a
basic overview of the syntax from PEP 526, we studied the effect of annotations in a
plain class and in classes built by typing.NamedTuple and @dataclass.

Chapter Summary | 195

https://fpy.li/pep526

Next, we covered the most commonly used features provided by @dataclass and the
default_factory option of the dataclasses.field function. We also looked into
the special pseudotype hints typing.ClassVar and dataclasses.InitVar that are
important in the context of data classes. This main topic concluded with an example
based on the Dublin Core Schema, which illustrated how to use dataclasses.fields
to iterate over the attributes of a Resource instance in a custom __repr__.

Then, we warned against possible abuse of data classes defeating a basic principle of
object-oriented programming: data and the functions that touch it should be together
in the same class. Classes with no logic may be a sign of misplaced logic.

In the last section, we saw how pattern matching works with subjects that are instan‐
ces of any class—not just classes built with the class builders presented in this
chapter.

Further Reading
Python’s standard documentation for the data class builders we covered is very good,
and has quite a few small examples.

For @dataclass in particular, most of PEP 557—Data Classes was copied into the
dataclasses module documentation. But PEP 557 has a few very informative sec‐
tions that were not copied, including “Why not just use namedtuple?”, “Why not just
use typing.NamedTuple?”, and the “Rationale” section, which concludes with this
Q&A:

Where is it not appropriate to use Data Classes?
API compatibility with tuples or dicts is required. Type validation beyond that pro‐
vided by PEPs 484 and 526 is required, or value validation or conversion is required.

—Eric V. Smith, PEP 557 “Rationale”

Over at RealPython.com, Geir Arne Hjelle wrote a very complete “Ultimate guide to
data classes in Python 3.7”.

At PyCon US 2018, Raymond Hettinger presented “Dataclasses: The code generator
to end all code generators” (video).

For more features and advanced functionality, including validation, the attrs project
led by Hynek Schlawack appeared years before dataclasses, and offers more fea‐
tures, promising to “bring back the joy of writing classes by relieving you from the
drudgery of implementing object protocols (aka dunder methods).” The influence of
attrs on @dataclass is acknowledged by Eric V. Smith in PEP 557. This probably
includes Smith’s most important API decision: the use of a class decorator instead of
a base class and/or a metaclass to do the job.

196 | Chapter 5: Data Class Builders

https://fpy.li/pep557
https://fpy.li/5-9
https://fpy.li/pep557
https://fpy.li/5-18
https://fpy.li/5-19
https://fpy.li/5-19
https://fpy.li/5-20
https://fpy.li/5-21
https://fpy.li/5-22
https://fpy.li/5-22
https://fpy.li/5-23
https://fpy.li/5-23
https://fpy.li/5-24

Glyph—founder of the Twisted project—wrote an excellent introduction to attrs in
“The One Python Library Everyone Needs”. The attrs documentation includes a dis‐
cussion of alternatives.

Book author, instructor, and mad computer scientist Dave Beazley wrote cluegen, yet
another data class generator. If you’ve seen any of Dave’s talks, you know he is a mas‐
ter of metaprogramming Python from first principles. So I found it inspiring to learn
from the cluegen README.md file the concrete use case that motivated him to write
an alternative to Python’s @dataclass, and his philosophy of presenting an approach
to solve the problem, in contrast to providing a tool: the tool may be quicker to use at
first, but the approach is more flexible and can take you as far as you want to go.

Regarding data class as a code smell, the best source I found was Martin Fowler’s
book Refactoring, 2nd ed. This newest version is missing the quote from the epigraph
of this chapter, “Data classes are like children…,” but otherwise it’s the best edition of
Fowler’s most famous book, particularly for Pythonistas because the examples are
in modern JavaScript, which is closer to Python than Java—the language of the first
edition.

The website Refactoring Guru also has a description of the data class code smell.

Soapbox
The entry for “Guido” in “The Jargon File” is about Guido van Rossum. It says,
among other things:

Mythically, Guido’s most important attribute besides Python itself is Guido’s time
machine, a device he is reputed to possess because of the unnerving frequency with
which user requests for new features have been met with the response “I just imple‐
mented that last night…”

For the longest time, one of the missing pieces in Python’s syntax has been a quick,
standard way to declare instance attributes in a class. Many object-oriented languages
have that. Here is part of a Point class definition in Smalltalk:

Object subclass: #Point
 instanceVariableNames: 'x y'
 classVariableNames: ''
 package: 'Kernel-BasicObjects'

The second line lists the names of the instance attributes x and y. If there were class
attributes, they would be in the third line.

Python has always offered an easy way to declare class attributes, if they have an ini‐
tial value. But instance attributes are much more common, and Python coders have
been forced to look into the __init__ method to find them, always afraid that there
may be instance attributes created elsewhere in the class—or even created by external
functions or methods of other classes.

Further Reading | 197

https://fpy.li/5-25
https://fpy.li/5-26
https://fpy.li/5-26
https://fpy.li/5-27
https://fpy.li/5-28
https://fpy.li/5-29
https://fpy.li/5-30
https://fpy.li/5-31

Now we have @dataclass, yay!

But they bring their own problems.

First, when you use @dataclass, type hints are not optional. We’ve been promised for
the last seven years, since PEP 484—Type Hints that they would always be optional.
Now we have a major new language feature that requires them. If you don’t like the
whole static typing trend, you may want to use attrs instead.

Second, the PEP 526 syntax for annotating instance and class attributes reverses the
established convention of class statements: everything declared at the top-level of a
class block was a class attribute (methods are class attributes, too). With PEP 526
and @dataclass, any attribute declared at the top level with a type hint becomes an
instance attribute:

 @dataclass
 class Spam:
 repeat: int # instance attribute

Here, repeat is also an instance attribute:

 @dataclass
 class Spam:
 repeat: int = 99 # instance attribute

But if there are no type hints, suddenly you are back in the good old times when dec‐
larations at the top level of the class belong to the class only:

 @dataclass
 class Spam:
 repeat = 99 # class attribute!

Finally, if you want to annotate that class attribute with a type, you can’t use regular
types because then it will become an instance attribute. You must resort to that pseu‐
dotype ClassVar annotation:

 @dataclass
 class Spam:
 repeat: ClassVar[int] = 99 # aargh!

Here we are talking about the exception to the exception to the rule. This seems
rather unPythonic to me.

I did not take part in the discussions leading to PEP 526 or PEP 557—Data Classes,
but here is an alternative syntax that I’d like to see:

@dataclass
class HackerClubMember:

 .name: str
 .guests: list = field(default_factory=list)
 .handle: str = ''

 all_handles = set()

198 | Chapter 5: Data Class Builders

https://fpy.li/pep484
https://fpy.li/5-24
https://fpy.li/pep526
https://fpy.li/pep557

Instance attributes must be declared with a . prefix.

Any attribute name that doesn’t have a . prefix is a class attribute (as they always
have been).

The language grammar would have to change to accept that. I find this quite readable,
and it avoids the exception-to-the-exception issue.

I wish I could borrow Guido’s time machine to go back to 2017 and sell this idea to
the core team.

Further Reading | 199

CHAPTER 6

Object References, Mutability,
and Recycling

“You are sad,” the Knight said in an anxious tone: “let me sing you a song to comfort
you. […] The name of the song is called ‘HADDOCKS’ EYES’.”
“Oh, that’s the name of the song, is it?” Alice said, trying to feel interested.
“No, you don’t understand,” the Knight said, looking a little vexed. “That’s what the
name is CALLED. The name really IS ‘THE AGED AGED MAN.’”

—Adapted from Lewis Carroll, Through the Looking-Glass, and What Alice Found
There

Alice and the Knight set the tone of what we will see in this chapter. The theme is the
distinction between objects and their names. A name is not the object; a name is a
separate thing.

We start the chapter by presenting a metaphor for variables in Python: variables are
labels, not boxes. If reference variables are old news to you, the analogy may still be
handy if you need to explain aliasing issues to others.

We then discuss the concepts of object identity, value, and aliasing. A surprising trait
of tuples is revealed: they are immutable but their values may change. This leads to a
discussion of shallow and deep copies. References and function parameters are our
next theme: the problem with mutable parameter defaults and the safe handling of
mutable arguments passed by clients of our functions.

The last sections of the chapter cover garbage collection, the del command, and a
selection of tricks that Python plays with immutable objects.

This is a rather dry chapter, but its topics lie at the heart of many subtle bugs in real
Python programs.

201

1 Lynn Andrea Stein is an award-winning computer science educator who currently teaches at Olin College of
Engineering.

What’s New in This Chapter
The topics covered here are very fundamental and stable. There were no changes
worth mentioning in this second edition.

I added an example of using is to test for a sentinel object, and a warning about
misuses of the is operator at the end of “Choosing Between == and is” on page 206.

This chapter used to be in Part IV, but I decided to bring it up earlier because it
works better as an ending to Part II, “Data Structures,” than an opening to “Object-
Oriented Idioms.”

The section on “Weak References” from the first edition of this
book is now a post at fluentpython.com.

Let’s start by unlearning that a variable is like a box where you store data.

Variables Are Not Boxes
In 1997, I took a summer course on Java at MIT. The professor, Lynn Stein,1 made
the point that the usual “variables as boxes” metaphor actually hinders the under‐
standing of reference variables in object-oriented languages. Python variables are like
reference variables in Java; a better metaphor is to think of variables as labels with
names attached to objects. The next example and figure will help you understand
why.

Example 6-1 is a simple interaction that the “variables as boxes” idea cannot explain.
Figure 6-1 illustrates why the box metaphor is wrong for Python, while sticky notes
provide a helpful picture of how variables actually work.

Example 6-1. Variables a and b hold references to the same list, not copies of the list

>>> a = [1, 2, 3]
>>> b = a
>>> a.append(4)
>>> b
[1, 2, 3, 4]

202 | Chapter 6: Object References, Mutability, and Recycling

https://fpy.li/6-1
https://fpy.li/6-1
https://fpy.li/weakref

Create a list [1, 2, 3] and bind the variable a to it.

Bind the variable b to the same value that a is referencing.

Modify the list referenced by a, by appending another item.

You can see the effect via the b variable. If we think of b as a box that stored a
copy of the [1, 2, 3] from the a box, this behavior makes no sense.

Figure 6-1. If you imagine variables are like boxes, you can’t make sense of assignment
in Python; instead, think of variables as sticky notes, and Example 6-1 becomes easy to
explain.

Therefore, the b = a statement does not copy the contents of box a into box b. It
attaches the label b to the object that already has the label a.

Prof. Stein also spoke about assignment in a very deliberate way. For example, when
talking about a seesaw object in a simulation, she would say: “Variable s is assigned to
the seesaw,” but never “The seesaw is assigned to variable s.” With reference vari‐
ables, it makes much more sense to say that the variable is assigned to an object, and
not the other way around. After all, the object is created before the assignment.
Example 6-2 proves that the righthand side of an assignment happens first.

Since the verb “to assign” is used in contradictory ways, a useful alternative is “to
bind”: Python’s assignment statement x = … binds the x name to the object created
or referenced on the righthand side. And the object must exist before a name can be
bound to it, as Example 6-2 proves.

Example 6-2. Variables are bound to objects only after the objects are created

>>> class Gizmo:
... def __init__(self):
... print(f'Gizmo id: {id(self)}')
...
>>> x = Gizmo()

Variables Are Not Boxes | 203

Gizmo id: 4301489152
>>> y = Gizmo() * 10
Gizmo id: 4301489432
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for *: 'Gizmo' and 'int'
>>>
>>> dir()
['Gizmo', '__builtins__', '__doc__', '__loader__', '__name__',
'__package__', '__spec__', 'x']

The output Gizmo id: … is a side effect of creating a Gizmo instance.

Multiplying a Gizmo instance will raise an exception.

Here is proof that a second Gizmo was actually instantiated before the multiplica‐
tion was attempted.

But variable y was never created, because the exception happened while the
righthand side of the assignment was being evaluated.

To understand an assignment in Python, read the righthand side
first: that’s where the object is created or retrieved. After that, the
variable on the left is bound to the object, like a label stuck to it.
Just forget about the boxes.

Because variables are mere labels, nothing prevents an object from having several
labels assigned to it. When that happens, you have aliasing, our next topic.

Identity, Equality, and Aliases
Lewis Carroll is the pen name of Prof. Charles Lutwidge Dodgson. Mr. Carroll is not
only equal to Prof. Dodgson, they are one and the same. Example 6-3 expresses this
idea in Python.

Example 6-3. charles and lewis refer to the same object

>>> charles = {'name': 'Charles L. Dodgson', 'born': 1832}
>>> lewis = charles
>>> lewis is charles
True
>>> id(charles), id(lewis)
(4300473992, 4300473992)
>>> lewis['balance'] = 950

204 | Chapter 6: Object References, Mutability, and Recycling

>>> charles
{'name': 'Charles L. Dodgson', 'born': 1832, 'balance': 950}

lewis is an alias for charles.

The is operator and the id function confirm it.

Adding an item to lewis is the same as adding an item to charles.

However, suppose an impostor—let’s call him Dr. Alexander Pedachenko—claims he
is Charles L. Dodgson, born in 1832. His credentials may be the same, but Dr. Peda‐
chenko is not Prof. Dodgson. Figure 6-2 illustrates this scenario.

Figure 6-2. charles and lewis are bound to the same object; alex is bound to a sepa‐
rate object of equal value.

Example 6-4 implements and tests the alex object depicted in Figure 6-2.

Example 6-4. alex and charles compare equal, but alex is not charles

>>> alex = {'name': 'Charles L. Dodgson', 'born': 1832, 'balance': 950}
>>> alex == charles
True
>>> alex is not charles
True

alex refers to an object that is a replica of the object assigned to charles.

The objects compare equal because of the __eq__ implementation in the dict
class.

But they are distinct objects. This is the Pythonic way of writing the negative
identity comparison: a is not b.

Example 6-3 is an example of aliasing. In that code, lewis and charles are aliases:
two variables bound to the same object. On the other hand, alex is not an alias for

Identity, Equality, and Aliases | 205

charles: these variables are bound to distinct objects. The objects bound to alex and
charles have the same value—that’s what == compares—but they have different
identities.

In The Python Language Reference, “3.1. Objects, values and types” states:

An object’s identity never changes once it has been created; you may think of it as the
object’s address in memory. The is operator compares the identity of two objects; the
id() function returns an integer representing its identity.

The real meaning of an object’s ID is implementation dependent. In CPython, id()
returns the memory address of the object, but it may be something else in another
Python interpreter. The key point is that the ID is guaranteed to be a unique integer
label, and it will never change during the life of the object.

In practice, we rarely use the id() function while programming. Identity checks are
most often done with the is operator, which compares the object IDs, so our code
doesn’t need to call id() explicitly. Next, we’ll talk about is versus ==.

For tech reviewer Leonardo Rochael, the most frequent use for
id() is while debugging, when the repr() of two objects look alike,
but you need to understand whether two references are aliases or
point to separate objects. If the references are in different contexts
—such as different stack frames—using the is operator may not be
viable.

Choosing Between == and is
The == operator compares the values of objects (the data they hold), while is com‐
pares their identities.

While programming, we often care more about values than object identities, so ==
appears more frequently than is in Python code.

However, if you are comparing a variable to a singleton, then it makes sense to use
is. By far, the most common case is checking whether a variable is bound to None.
This is the recommended way to do it:

x is None

And the proper way to write its negation is:

x is not None

None is the most common singleton we test with is. Sentinel objects are another
example of singletons we test with is. Here is one way to create and test a sentinel
object:

206 | Chapter 6: Object References, Mutability, and Recycling

https://fpy.li/6-2

2 In contrast, flat sequences like str, bytes, and array.array don’t contain references but directly hold their
contents—characters, bytes, and numbers—in contiguous memory.

END_OF_DATA = object()
... many lines
def traverse(...):
 # ... more lines
 if node is END_OF_DATA:
 return
 # etc.

The is operator is faster than ==, because it cannot be overloaded, so Python does
not have to find and invoke special methods to evaluate it, and computing is as sim‐
ple as comparing two integer IDs. In contrast, a == b is syntactic sugar for
a.__eq__(b). The __eq__ method inherited from object compares object IDs, so it
produces the same result as is. But most built-in types override __eq__ with more
meaningful implementations that actually take into account the values of the object
attributes. Equality may involve a lot of processing—for example, when comparing
large collections or deeply nested structures.

Usually we are more interested in object equality than identity.
Checking for None is the only common use case for the is operator.
Most other uses I see while reviewing code are wrong. If you are
not sure, use ==. It’s usually what you want, and also works with
None—albeit not as fast.

To wrap up this discussion of identity versus equality, we’ll see that the famously
immutable tuple is not as unchanging as you may expect.

The Relative Immutability of Tuples
Tuples, like most Python collections—lists, dicts, sets, etc.—are containers: they hold
references to objects.2 If the referenced items are mutable, they may change even if
the tuple itself does not. In other words, the immutability of tuples really refers to the
physical contents of the tuple data structure (i.e., the references it holds), and does
not extend to the referenced objects.

Example 6-5 illustrates the situation in which the value of a tuple changes as a result
of changes to a mutable object referenced in it. What can never change in a tuple is
the identity of the items it contains.

Identity, Equality, and Aliases | 207

Example 6-5. t1 and t2 initially compare equal, but changing a mutable item inside
tuple t1 makes it different

>>> t1 = (1, 2, [30, 40])
>>> t2 = (1, 2, [30, 40])
>>> t1 == t2
True
>>> id(t1[-1])
4302515784
>>> t1[-1].append(99)
>>> t1
(1, 2, [30, 40, 99])
>>> id(t1[-1])
4302515784
>>> t1 == t2
False

t1 is immutable, but t1[-1] is mutable.

Build a tuple t2 whose items are equal to those of t1.

Although distinct objects, t1 and t2 compare equal, as expected.

Inspect the identity of the list at t1[-1].

Modify the t1[-1] list in place.

The identity of t1[-1] has not changed, only its value.

t1 and t2 are now different.

This relative immutability of tuples is behind the riddle “A += Assignment Puzzler”
on page 54. It’s also the reason why some tuples are unhashable, as we’ve seen in
“What Is Hashable” on page 84.

The distinction between equality and identity has further implications when you
need to copy an object. A copy is an equal object with a different ID. But if an object
contains other objects, should the copy also duplicate the inner objects, or is it OK to
share them? There’s no single answer. Read on for a discussion.

Copies Are Shallow by Default
The easiest way to copy a list (or most built-in mutable collections) is to use the built-
in constructor for the type itself. For example:

>>> l1 = [3, [55, 44], (7, 8, 9)]
>>> l2 = list(l1)

208 | Chapter 6: Object References, Mutability, and Recycling

>>> l2
[3, [55, 44], (7, 8, 9)]
>>> l2 == l1
True
>>> l2 is l1
False

list(l1) creates a copy of l1.

The copies are equal…

…but refer to two different objects.

For lists and other mutable sequences, the shortcut l2 = l1[:] also makes a copy.

However, using the constructor or [:] produces a shallow copy (i.e., the outermost
container is duplicated, but the copy is filled with references to the same items held
by the original container). This saves memory and causes no problems if all the items
are immutable. But if there are mutable items, this may lead to unpleasant surprises.

In Example 6-6, we create a shallow copy of a list containing another list and a tuple,
and then make changes to see how they affect the referenced objects.

If you have a connected computer on hand, I highly recommend
watching the interactive animation for Example 6-6 at the Online
Python Tutor. As I write this, direct linking to a prepared example
at pythontutor.com is not working reliably, but the tool is awesome,
so taking the time to copy and paste the code is worthwhile.

Example 6-6. Making a shallow copy of a list containing another list; copy and paste
this code to see it animated at the Online Python Tutor

l1 = [3, [66, 55, 44], (7, 8, 9)]
l2 = list(l1)
l1.append(100)
l1[1].remove(55)
print('l1:', l1)
print('l2:', l2)
l2[1] += [33, 22]
l2[2] += (10, 11)
print('l1:', l1)
print('l2:', l2)

l2 is a shallow copy of l1. This state is depicted in Figure 6-3.

Appending 100 to l1 has no effect on l2.

Copies Are Shallow by Default | 209

https://fpy.li/6-3
https://fpy.li/6-3

Here we remove 55 from the inner list l1[1]. This affects l2 because l2[1] is
bound to the same list as l1[1].

For a mutable object like the list referred by l2[1], the operator += changes the
list in place. This change is visible at l1[1], which is an alias for l2[1].

+= on a tuple creates a new tuple and rebinds the variable l2[2] here. This is the
same as doing l2[2] = l2[2] + (10, 11). Now the tuples in the last position of
l1 and l2 are no longer the same object. See Figure 6-4.

Figure 6-3. Program state immediately after the assignment l2 = list(l1) in
Example 6-6. l1 and l2 refer to distinct lists, but the lists share references to the same
inner list object [66, 55, 44] and tuple (7, 8, 9). (Diagram generated by the
Online Python Tutor.)

The output of Example 6-6 is Example 6-7, and the final state of the objects is depic‐
ted in Figure 6-4.

Example 6-7. Output of Example 6-6

l1: [3, [66, 44], (7, 8, 9), 100]
l2: [3, [66, 44], (7, 8, 9)]
l1: [3, [66, 44, 33, 22], (7, 8, 9), 100]
l2: [3, [66, 44, 33, 22], (7, 8, 9, 10, 11)]

210 | Chapter 6: Object References, Mutability, and Recycling

Figure 6-4. Final state of l1 and l2: they still share references to the same list object,
now containing [66, 44, 33, 22], but the operation l2[2] += (10, 11) created a
new tuple with content (7, 8, 9, 10, 11), unrelated to the tuple (7, 8, 9) refer‐
enced by l1[2]. (Diagram generated by the Online Python Tutor.)

It should be clear now that shallow copies are easy to make, but they may or may not
be what you want. How to make deep copies is our next topic.

Deep and Shallow Copies of Arbitrary Objects
Working with shallow copies is not always a problem, but sometimes you need to
make deep copies (i.e., duplicates that do not share references of embedded objects).
The copy module provides the deepcopy and copy functions that return deep and
shallow copies of arbitrary objects.

To illustrate the use of copy() and deepcopy(), Example 6-8 defines a simple class,
Bus, representing a school bus that is loaded with passengers and then picks up or
drops off passengers on its route.

Example 6-8. Bus picks up and drops off passengers

class Bus:

 def __init__(self, passengers=None):
 if passengers is None:
 self.passengers = []
 else:
 self.passengers = list(passengers)

 def pick(self, name):
 self.passengers.append(name)

Copies Are Shallow by Default | 211

 def drop(self, name):
 self.passengers.remove(name)

Now, in the interactive Example 6-9, we will create a bus object (bus1) and two
clones—a shallow copy (bus2) and a deep copy (bus3)—to observe what happens as
bus1 drops off a student.

Example 6-9. Effects of using copy versus deepcopy

>>> import copy
>>> bus1 = Bus(['Alice', 'Bill', 'Claire', 'David'])
>>> bus2 = copy.copy(bus1)
>>> bus3 = copy.deepcopy(bus1)
>>> id(bus1), id(bus2), id(bus3)
(4301498296, 4301499416, 4301499752)
>>> bus1.drop('Bill')
>>> bus2.passengers
['Alice', 'Claire', 'David']
>>> id(bus1.passengers), id(bus2.passengers), id(bus3.passengers)
(4302658568, 4302658568, 4302657800)
>>> bus3.passengers
['Alice', 'Bill', 'Claire', 'David']

Using copy and deepcopy, we create three distinct Bus instances.

After bus1 drops 'Bill', he is also missing from bus2.

Inspection of the passengers attributes shows that bus1 and bus2 share the same
list object, because bus2 is a shallow copy of bus1.

bus3 is a deep copy of bus1, so its passengers attribute refers to another list.

Note that making deep copies is not a simple matter in the general case. Objects may
have cyclic references that would cause a naïve algorithm to enter an infinite loop.
The deepcopy function remembers the objects already copied to handle cyclic refer‐
ences gracefully. This is demonstrated in Example 6-10.

Example 6-10. Cyclic references: b refers to a, and then is appended to a; deepcopy still
manages to copy a

>>> a = [10, 20]
>>> b = [a, 30]
>>> a.append(b)
>>> a
[10, 20, [[...], 30]]
>>> from copy import deepcopy

212 | Chapter 6: Object References, Mutability, and Recycling

>>> c = deepcopy(a)
>>> c
[10, 20, [[...], 30]]

Also, a deep copy may be too deep in some cases. For example, objects may refer
to external resources or singletons that should not be copied. You can control the
behavior of both copy and deepcopy by implementing the __copy__() and
__deepcopy__() special methods, as described in the copy module documentation.

The sharing of objects through aliases also explains how parameter passing works in
Python, and the problem of using mutable types as parameter defaults. These issues
will be covered next.

Function Parameters as References
The only mode of parameter passing in Python is call by sharing. That is the same
mode used in most object-oriented languages, including JavaScript, Ruby, and Java
(this applies to Java reference types; primitive types use call by value). Call by sharing
means that each formal parameter of the function gets a copy of each reference in the
arguments. In other words, the parameters inside the function become aliases of the
actual arguments.

The result of this scheme is that a function may change any mutable object passed as
a parameter, but it cannot change the identity of those objects (i.e., it cannot alto‐
gether replace an object with another). Example 6-11 shows a simple function using
+= on one of its parameters. As we pass numbers, lists, and tuples to the function, the
actual arguments passed are affected in different ways.

Example 6-11. A function may change any mutable object it receives

>>> def f(a, b):
... a += b
... return a
...
>>> x = 1
>>> y = 2
>>> f(x, y)
3
>>> x, y
(1, 2)
>>> a = [1, 2]
>>> b = [3, 4]
>>> f(a, b)
[1, 2, 3, 4]
>>> a, b
([1, 2, 3, 4], [3, 4])
>>> t = (10, 20)

Function Parameters as References | 213

https://fpy.li/6-4

>>> u = (30, 40)
>>> f(t, u)
(10, 20, 30, 40)
>>> t, u
((10, 20), (30, 40))

The number x is unchanged.

The list a is changed.

The tuple t is unchanged.

Another issue related to function parameters is the use of mutable values for defaults,
as discussed next.

Mutable Types as Parameter Defaults: Bad Idea
Optional parameters with default values are a great feature of Python function defini‐
tions, allowing our APIs to evolve while remaining backward compatible. However,
you should avoid mutable objects as default values for parameters.

To illustrate this point, in Example 6-12, we take the Bus class from Example 6-8 and
change its __init__ method to create HauntedBus. Here we tried to be clever, and
instead of having a default value of passengers=None, we have passengers=[], thus
avoiding the if in the previous __init__. This “cleverness” gets us into trouble.

Example 6-12. A simple class to illustrate the danger of a mutable default

class HauntedBus:
 """A bus model haunted by ghost passengers"""

 def __init__(self, passengers=[]):
 self.passengers = passengers

 def pick(self, name):
 self.passengers.append(name)

 def drop(self, name):
 self.passengers.remove(name)

When the passengers argument is not passed, this parameter is bound to the
default list object, which is initially empty.

This assignment makes self.passengers an alias for passengers, which is itself
an alias for the default list, when no passengers argument is given.

214 | Chapter 6: Object References, Mutability, and Recycling

When the methods .remove() and .append() are used with self.passengers,
we are actually mutating the default list, which is an attribute of the function
object.

Example 6-13 shows the eerie behavior of the HauntedBus.

Example 6-13. Buses haunted by ghost passengers

>>> bus1 = HauntedBus(['Alice', 'Bill'])
>>> bus1.passengers
['Alice', 'Bill']
>>> bus1.pick('Charlie')
>>> bus1.drop('Alice')
>>> bus1.passengers
['Bill', 'Charlie']
>>> bus2 = HauntedBus()
>>> bus2.pick('Carrie')
>>> bus2.passengers
['Carrie']
>>> bus3 = HauntedBus()
>>> bus3.passengers
['Carrie']
>>> bus3.pick('Dave')
>>> bus2.passengers
['Carrie', 'Dave']
>>> bus2.passengers is bus3.passengers
True
>>> bus1.passengers
['Bill', 'Charlie']

bus1 starts with a two-passenger list.

So far, so good: no surprises with bus1.

bus2 starts empty, so the default empty list is assigned to self.passengers.

bus3 also starts empty, again the default list is assigned.

The default is no longer empty!

Now Dave, picked by bus3, appears in bus2.

The problem: bus2.passengers and bus3.passengers refer to the same list.

But bus1.passengers is a distinct list.

Function Parameters as References | 215

The problem is that HauntedBus instances that don’t get an initial passenger list end
up sharing the same passenger list among themselves.

Such bugs may be subtle. As Example 6-13 demonstrates, when a HauntedBus is
instantiated with passengers, it works as expected. Strange things happen only when a
HauntedBus starts empty, because then self.passengers becomes an alias for the
default value of the passengers parameter. The problem is that each default value is
evaluated when the function is defined—i.e., usually when the module is loaded—and
the default values become attributes of the function object. So if a default value is
a mutable object, and you change it, the change will affect every future call of the
function.

After running the lines in Example 6-13, you can inspect the HauntedBus.__init__
object and see the ghost students haunting its __defaults__ attribute:

>>> dir(HauntedBus.__init__) # doctest: +ELLIPSIS
['__annotations__', '__call__', ..., '__defaults__', ...]
>>> HauntedBus.__init__.__defaults__
(['Carrie', 'Dave'],)

Finally, we can verify that bus2.passengers is an alias bound to the first element of
the HauntedBus.__init__.__defaults__ attribute:

>>> HauntedBus.__init__.__defaults__[0] is bus2.passengers
True

The issue with mutable defaults explains why None is commonly used as the default
value for parameters that may receive mutable values. In Example 6-8, __init__
checks whether the passengers argument is None. If it is, self.passengers is bound
to a new empty list. If passengers is not None, the correct implementation binds a
copy of that argument to self.passengers. The next section explains why copying
the argument is a good practice.

Defensive Programming with Mutable Parameters
When you are coding a function that receives a mutable parameter, you should care‐
fully consider whether the caller expects the argument passed to be changed.

For example, if your function receives a dict and needs to modify it while processing
it, should this side effect be visible outside of the function or not? Actually it depends
on the context. It’s really a matter of aligning the expectation of the coder of the func‐
tion and that of the caller.

The last bus example in this chapter shows how a TwilightBus breaks expectations
by sharing its passenger list with its clients. Before studying the implementation, see
in Example 6-14 how the TwilightBus class works from the perspective of a client of
the class.

216 | Chapter 6: Object References, Mutability, and Recycling

3 See Principle of least astonishment in the English Wikipedia.

Example 6-14. Passengers disappear when dropped by a TwilightBus

>>> basketball_team = ['Sue', 'Tina', 'Maya', 'Diana', 'Pat']
>>> bus = TwilightBus(basketball_team)
>>> bus.drop('Tina')
>>> bus.drop('Pat')
>>> basketball_team
['Sue', 'Maya', 'Diana']

basketball_team holds five student names.

A TwilightBus is loaded with the team.

The bus drops one student, then another.

The dropped passengers vanished from the basketball team!

TwilightBus violates the “Principle of least astonishment,” a best practice of interface
design.3 It surely is astonishing that when the bus drops a student, their name is
removed from the basketball team roster.

Example 6-15 is the implementation TwilightBus and an explanation of the
problem.

Example 6-15. A simple class to show the perils of mutating received arguments

class TwilightBus:
 """A bus model that makes passengers vanish"""

 def __init__(self, passengers=None):
 if passengers is None:
 self.passengers = []
 else:
 self.passengers = passengers

 def pick(self, name):
 self.passengers.append(name)

 def drop(self, name):
 self.passengers.remove(name)

Function Parameters as References | 217

https://fpy.li/6-5

Here we are careful to create a new empty list when passengers is None.

However, this assignment makes self.passengers an alias for passengers,
which is itself an alias for the actual argument passed to __init__ (i.e., basket
ball_team in Example 6-14).

When the methods .remove() and .append() are used with self.passengers,
we are actually mutating the original list received as an argument to the con‐
structor.

The problem here is that the bus is aliasing the list that is passed to the constructor.
Instead, it should keep its own passenger list. The fix is simple: in __init__, when the
passengers parameter is provided, self.passengers should be initialized with a
copy of it, as we did correctly in Example 6-8:

 def __init__(self, passengers=None):
 if passengers is None:
 self.passengers = []
 else:
 self.passengers = list(passengers)

Make a copy of the passengers list, or convert it to a list if it’s not one.

Now our internal handling of the passenger list will not affect the argument used to
initialize the bus. As a bonus, this solution is more flexible: now the argument passed
to the passengers parameter may be a tuple or any other iterable, like a set or even
database results, because the list constructor accepts any iterable. As we create our
own list to manage, we ensure that it supports the necessary .remove()

and .append() operations we use in the .pick() and .drop() methods.

Unless a method is explicitly intended to mutate an object received
as an argument, you should think twice before aliasing the argu‐
ment object by simply assigning it to an instance variable in your
class. If in doubt, make a copy. Your clients will be happier. Of
course, making a copy is not free: there is a cost in CPU and mem‐
ory. However, an API that causes subtle bugs is usually a bigger
problem than one that is a little slower or uses more resources.

Now let’s talk about one of the most misunderstood of Python’s statements: del.

218 | Chapter 6: Object References, Mutability, and Recycling

del and Garbage Collection
Objects are never explicitly destroyed; however, when they become unreachable they
may be garbage-collected.

—“Data Model” chapter of The Python Language Reference

The first strange fact about del is that it’s not a function, it’s a statement. We write
del x and not del(x)—although the latter also works, but only because the expres‐
sions x and (x) usually mean the same thing in Python.

The second surprising fact is that del deletes references, not objects. Python’s
garbage collector may discard an object from memory as an indirect result of del, if
the deleted variable was the last reference to the object. Rebinding a variable may also
cause the number of references to an object to reach zero, causing its destruction.

>>> a = [1, 2]
>>> b = a
>>> del a
>>> b
[1, 2]
>>> b = [3]

Create object [1, 2] and bind a to it.

Bind b to the same [1, 2] object.

Delete reference a.

[1, 2] was not affected, because b still points to it.

Rebinding b to a different object removes the last remaining reference to [1, 2].
Now the garbage collector can discard that object.

There is a __del__ special method, but it does not cause the dis‐
posal of the instance, and should not be called by your code.
__del__ is invoked by the Python interpreter when the instance is
about to be destroyed to give it a chance to release external
resources. You will seldom need to implement __del__ in your
own code, yet some Python programmers spend time coding it for
no good reason. The proper use of __del__ is rather tricky. See the
__del__ special method documentation in the “Data Model” chap‐
ter of The Python Language Reference.

In CPython, the primary algorithm for garbage collection is reference counting.
Essentially, each object keeps count of how many references point to it. As soon as

del and Garbage Collection | 219

https://fpy.li/6-6

that refcount reaches zero, the object is immediately destroyed: CPython calls the
__del__ method on the object (if defined) and then frees the memory allocated to the
object. In CPython 2.0, a generational garbage collection algorithm was added to
detect groups of objects involved in reference cycles—which may be unreachable
even with outstanding references to them, when all the mutual references are con‐
tained within the group. Other implementations of Python have more sophisticated
garbage collectors that do not rely on reference counting, which means the __del__
method may not be called immediately when there are no more references to the
object. See “PyPy, Garbage Collection, and a Deadlock” by A. Jesse Jiryu Davis for
discussion of improper and proper use of __del__.

To demonstrate the end of an object’s life, Example 6-16 uses weakref.finalize to
register a callback function to be called when an object is destroyed.

Example 6-16. Watching the end of an object when no more references point to it

>>> import weakref
>>> s1 = {1, 2, 3}
>>> s2 = s1
>>> def bye():
... print('...like tears in the rain.')
...
>>> ender = weakref.finalize(s1, bye)
>>> ender.alive
True
>>> del s1
>>> ender.alive
True
>>> s2 = 'spam'
...like tears in the rain.
>>> ender.alive
False

s1 and s2 are aliases referring to the same set, {1, 2, 3}.

This function must not be a bound method of the object about to be destroyed or
otherwise hold a reference to it.

Register the bye callback on the object referred by s1.

The .alive attribute is True before the finalize object is called.

As discussed, del did not delete the object, just the s1 reference to it.

Rebinding the last reference, s2, makes {1, 2, 3} unreachable. It is destroyed,
the bye callback is invoked, and ender.alive becomes False.

220 | Chapter 6: Object References, Mutability, and Recycling

https://fpy.li/6-7

4 This is clearly documented. Type help(tuple) in the Python console to read: “If the argument is a tuple, the
return value is the same object.” I thought I knew everything about tuples before writing this book.

The point of Example 6-16 is to make explicit that del does not delete objects, but
objects may be deleted as a consequence of being unreachable after del is used.

You may be wondering why the {1, 2, 3} object was destroyed in Example 6-16.
After all, the s1 reference was passed to the finalize function, which must have held
on to it in order to monitor the object and invoke the callback. This works because
finalize holds a weak reference to {1, 2, 3}. Weak references to an object do not
increase its reference count. Therefore, a weak reference does not prevent the target
object from being garbage collected. Weak references are useful in caching applica‐
tions because you don’t want the cached objects to be kept alive just because they are
referenced by the cache.

Weak references is a very specialized topic. That’s why I chose to
skip it in this second edition. Instead, I published “Weak Refer‐
ences” on fluentpython.com.

Tricks Python Plays with Immutables
This optional section discusses some Python details that are not
really important for users of Python, and that may not apply to
other Python implementations or even future versions of CPython.
Nevertheless, I’ve seen people stumble upon these corner cases and
then start using the is operator incorrectly, so I felt they were
worth mentioning.

I was surprised to learn that, for a tuple t, t[:] does not make a copy, but returns a
reference to the same object. You also get a reference to the same tuple if you write
tuple(t).4 Example 6-17 proves it.

Example 6-17. A tuple built from another is actually the same exact tuple

>>> t1 = (1, 2, 3)
>>> t2 = tuple(t1)
>>> t2 is t1
True
>>> t3 = t1[:]
>>> t3 is t1
True

Tricks Python Plays with Immutables | 221

https://fpy.li/weakref
https://fpy.li/weakref

5 The harmless lie of having the copy method not copying anything is justified by interface compatibility: it
makes frozenset more compatible with set. Anyway, it makes no difference to the end user whether two
identical immutable objects are the same or are copies.

t1 and t2 are bound to the same object.

And so is t3.

The same behavior can be observed with instances of str, bytes, and frozenset.
Note that a frozenset is not a sequence, so fs[:] does not work if fs is a frozenset.
But fs.copy() has the same effect: it cheats and returns a reference to the same
object, and not a copy at all, as Example 6-18 shows.5

Example 6-18. String literals may create shared objects

>>> t1 = (1, 2, 3)
>>> t3 = (1, 2, 3)
>>> t3 is t1
False
>>> s1 = 'ABC'
>>> s2 = 'ABC'
>>> s2 is s1
True

Creating a new tuple from scratch.

t1 and t3 are equal, but not the same object.

Creating a second str from scratch.

Surprise: a and b refer to the same str!

The sharing of string literals is an optimization technique called interning. CPython
uses a similar technique with small integers to avoid unnecessary duplication of num‐
bers that appear frequently in programs like 0, 1, –1, etc. Note that CPython does not
intern all strings or integers, and the criteria it uses to do so is an undocumented
implementation detail.

Never depend on str or int interning! Always use == instead of is
to compare strings or integers for equality. Interning is an optimi‐
zation for internal use of the Python interpreter.

222 | Chapter 6: Object References, Mutability, and Recycling

6 A terrible use for this information would be to ask about it when interviewing candidates or authoring ques‐
tions for “certification” exams. There are countless more important and useful facts to check for Python
knowledge.

7 Actually the type of an object may be changed by merely assigning a different class to its __class__ attribute,
but that is pure evil and I regret writing this footnote.

The tricks discussed in this section, including the behavior of frozenset.copy(),
are harmless “lies” that save memory and make the interpreter faster. Do not worry
about them, they should not give you any trouble because they only apply to immuta‐
ble types. Probably the best use of these bits of trivia is to win bets with fellow
Pythonistas.6

Chapter Summary
Every Python object has an identity, a type, and a value. Only the value of an object
may change over time.7

If two variables refer to immutable objects that have equal values (a == b is True), in
practice it rarely matters if they refer to copies or are aliases referring to the same
object, because the value of an immutable object does not change, with one excep‐
tion. The exception being immutable collections such as tuples: if an immutable col‐
lection holds references to mutable items, then its value may actually change when
the value of a mutable item changes. In practice, this scenario is not so common.
What never changes in an immutable collection are the identities of the objects
within. The frozenset class does not suffer from this problem because it can only
hold hashable elements, and the value of hashable objects cannot ever change, by
definition.

The fact that variables hold references has many practical consequences in Python
programming:

• Simple assignment does not create copies.
• Augmented assignment with += or *= creates new objects if the lefthand variable

is bound to an immutable object, but may modify a mutable object in place.
• Assigning a new value to an existing variable does not change the object previ‐

ously bound to it. This is called a rebinding: the variable is now bound to a differ‐
ent object. If that variable was the last reference to the previous object, that object
will be garbage collected.

Chapter Summary | 223

• Function parameters are passed as aliases, which means the function may change
any mutable object received as an argument. There is no way to prevent this,
except making local copies or using immutable objects (e.g., passing a tuple
instead of a list).

• Using mutable objects as default values for function parameters is dangerous
because if the parameters are changed in place, then the default is changed,
affecting every future call that relies on the default.

In CPython, objects are discarded as soon as the number of references to them rea‐
ches zero. They may also be discarded if they form groups with cyclic references but
not outside references.

In some situations, it may be useful to hold a reference to an object that will not—by
itself—keep an object alive. One example is a class that wants to keep track of all its
current instances. This can be done with weak references, a low-level mechanism
underlying the more useful collections WeakValueDictionary, WeakKeyDictionary,
WeakSet, and the finalize function from the weakref module. For more on this,
please see “Weak References” at fluentpython.com.

Further Reading
The “Data Model” chapter of The Python Language Reference starts with a clear
explanation of object identities and values.

Wesley Chun, author of the Core Python series of books, presented Understanding
Python’s Memory Model, Mutability, and Methods at EuroPython 2011, covering not
only the theme of this chapter but also the use of special methods.

Doug Hellmann wrote the posts “copy – Duplicate Objects” and “weakref—Garbage-
Collectable References to Objects” covering some of the topics we just discussed.

More information on the CPython generational garbage collector can be found in the
gc module documentation, which starts with the sentence “This module provides an
interface to the optional garbage collector.” The “optional” qualifier here may be sur‐
prising, but the “Data Model” chapter also states:

An implementation is allowed to postpone garbage collection or omit it altogether—it
is a matter of implementation quality how garbage collection is implemented, as long
as no objects are collected that are still reachable.

224 | Chapter 6: Object References, Mutability, and Recycling

https://fpy.li/weakref
https://fpy.li/dtmodel
https://fpy.li/6-8
https://fpy.li/6-8
https://fpy.li/6-9
https://fpy.li/6-10
https://fpy.li/6-10
https://fpy.li/6-11
https://fpy.li/dtmodel

Pablo Galindo wrote more in-depth treatment of Python’s GC in “Design of CPy‐
thon’s Garbage Collector” in the Python Developer’s Guide, aimed at new and experi‐
enced contributors to the CPython implementation.

The CPython 3.4 garbage collector improved handling of objects with a __del__
method, as described in PEP 442—Safe object finalization.

Wikipedia has an article about string interning, mentioning the use of this technique
in several languages, including Python.

Wikipedia also as an article on “Haddocks’ Eyes”, the Lewis Carroll song I quoted at
the top of this chapter. The Wikipedia editors wrote that the lyrics are used in works
on logic and philosophy “to elaborate on the symbolic status of the concept of name:
a name as identification marker may be assigned to anything, including another
name, thus introducing different levels of symbolization.”

Soapbox

Equal Treatment to All Objects

I learned Java before I discovered Python. The == operator in Java never felt right to
me. It is much more common for programmers to care about equality than identity,
but for objects (not primitive types), the Java == compares references, and not object
values. Even for something as basic as comparing strings, Java forces you to use
the .equals method. Even then, there is another catch: if you write a.equals(b) and
a is null, you get a null pointer exception. The Java designers felt the need to over‐
load + for strings, so why not go ahead and overload == as well?

Python gets this right. The == operator compares object values; is compares refer‐
ences. And because Python has operator overloading, == works sensibly with all
objects in the standard library, including None, which is a proper object, unlike Java’s
null.

And of course, you can define __eq__ in your own classes to decide what == means
for your instances. If you don’t override __eq__, the method inherited from object
compares object IDs, so the fallback is that every instance of a user-defined class is
considered different.

These are some of the things that made me switch from Java to Python as soon as I
finished reading The Python Tutorial one afternoon in September 1998.

Mutability

This chapter would not be necessary if all Python objects were immutable. When you
are dealing with unchanging objects, it makes no difference whether variables hold
the actual objects or references to shared objects. If a == b is true, and neither object

Further Reading | 225

https://fpy.li/6-12
https://fpy.li/6-12
https://fpy.li/6-13
https://fpy.li/6-14
https://fpy.li/6-15
https://fpy.li/6-16

can change, they might as well be the same. That’s why string interning is safe. Object
identity becomes important only when objects are mutable.

In “pure” functional programming, all data is immutable: appending to a collection
actually creates a new collection. Elixir is one easy to learn, practical functional lan‐
guage in which all built-in types are immutable, including lists.

Python, however, is not a functional language, much less a pure one. Instances of
user-defined classes are mutable by default in Python—as in most object-oriented
languages. When creating your own objects, you have to be extra careful to make
them immutable, if that is a requirement. Every attribute of the object must also be
immutable, otherwise you end up with something like the tuple: immutable as far as
object IDs go, but the value of a tuple may change if it holds a mutable object.

Mutable objects are also the main reason why programming with threads is so hard
to get right: threads mutating objects without proper synchronization produce cor‐
rupted data. Excessive synchronization, on the other hand, causes deadlocks. The
Erlang language and platform—which includes Elixir—was designed to maximize
uptime in highly concurrent, distributed applications such as telecommunications
switches. Naturally, they chose immutable data by default.

Object Destruction and Garbage Collection

There is no mechanism in Python to directly destroy an object, and this omission is
actually a great feature: if you could destroy an object at any time, what would hap‐
pen to existing references pointing to it?

Garbage collection in CPython is done primarily by reference counting, which is easy
to implement, but is prone to memory leaking when there are reference cycles, so
with version 2.0 (October 2000) a generational garbage collector was implemented,
and it is able to dispose of unreachable objects kept alive by reference cycles.

But the reference counting is still there as a baseline, and it causes the immediate dis‐
posal of objects with zero references. This means that, in CPython—at least for now
—it’s safe to write this:

open('test.txt', 'wt', encoding='utf-8').write('1, 2, 3')

That code is safe because the reference count of the file object will be zero after the
write method returns, and Python will immediately close the file before destroying
the object representing it in memory. However, the same line is not safe in Jython or
IronPython that use the garbage collector of their host runtimes (the Java VM and
the .NET CLR), which are more sophisticated but do not rely on reference counting
and may take longer to destroy the object and close the file. In all cases, including
CPython, the best practice is to explicitly close the file, and the most reliable way of
doing it is using the with statement, which guarantees that the file will be closed even
if exceptions are raised while it is open. Using with, the previous snippet becomes:

226 | Chapter 6: Object References, Mutability, and Recycling

with open('test.txt', 'wt', encoding='utf-8') as fp:
 fp.write('1, 2, 3')

If you are into the subject of garbage collectors, you may want to read Thomas Perl’s
paper “Python Garbage Collector Implementations: CPython, PyPy and GaS”, from
which I learned the bit about the safety of the open().write() in CPython.

Parameter Passing: Call by Sharing

A popular way of explaining how parameter passing works in Python is the phrase:
“Parameters are passed by value, but the values are references.” This is not wrong, but
causes confusion because the most common parameter passing modes in older lan‐
guages are call by value (the function gets a copy of the argument) and call by refer‐
ence (the function gets a pointer to the argument). In Python, the function gets a copy
of the arguments, but the arguments are always references. So the value of the refer‐
enced objects may be changed, if they are mutable, but their identity cannot. Also,
because the function gets a copy of the reference in an argument, rebinding it in the
function body has no effect outside of the function. I adopted the term call by sharing
after reading up on the subject in Programming Language Pragmatics, 3rd ed., by
Michael L. Scott (Morgan Kaufmann), section “8.3.1: Parameter Modes.”

Further Reading | 227

https://fpy.li/6-17

PART II

Functions as Objects

1 “Origins of Python’s ‘Functional’ Features”, from Guido’s The History of Python blog.

CHAPTER 7

Functions as First-Class Objects

I have never considered Python to be heavily influenced by functional languages, no
matter what people say or think. I was much more familiar with imperative languages
such as C and Algol 68 and although I had made functions first-class objects, I didn’t
view Python as a functional programming language.

— Guido van Rossum, Python BDFL1

Functions in Python are first-class objects. Programming language researchers define
a “first-class object” as a program entity that can be:

• Created at runtime
• Assigned to a variable or element in a data structure
• Passed as an argument to a function
• Returned as the result of a function

Integers, strings, and dictionaries are other examples of first-class objects in Python
—nothing fancy here. Having functions as first-class objects is an essential feature of
functional languages, such as Clojure, Elixir, and Haskell. However, first-class func‐
tions are so useful that they’ve been adopted by popular languages like JavaScript, Go,
and Java (since JDK 8), none of which claim to be “functional languages.”

This chapter and most of Part III explore the practical applications of treating func‐
tions as objects.

231

https://fpy.li/7-1

The term “first-class functions” is widely used as shorthand for
“functions as first-class objects.” It’s not ideal because it implies an
“elite” among functions. In Python, all functions are first-class.

What’s New in This Chapter
The section “The Nine Flavors of Callable Objects” on page 237 was titled “The Seven
Flavors of Callable Objects” in the first edition of this book. The new callables are
native coroutines and asynchronous generators, introduced in Python 3.5 and 3.6,
respectively. Both are covered in Chapter 21, but they are mentioned here along with
the other callables for completeness.

“Positional-Only Parameters” on page 242 is a new section, covering a feature added
in Python 3.8.

I moved the discussion of runtime access to function annotations to “Reading Type
Hints at Runtime” on page 537. When I wrote the first edition, PEP 484—Type Hints
was still under consideration, and people used annotations in different ways. Since
Python 3.5, annotations should conform to PEP 484. Therefore, the best place to
cover them is when discussing type hints.

The first edition of this book had sections about the introspection
of function objects that were too low-level and distracted from the
main subject of this chapter. I merged those sections into a post
titled “Introspection of Function Parameters” at fluentpython.com.

Now let’s see why Python functions are full-fledged objects.

Treating a Function Like an Object
The console session in Example 7-1 shows that Python functions are objects. Here we
create a function, call it, read its __doc__ attribute, and check that the function object
itself is an instance of the function class.

Example 7-1. Create and test a function, then read its __doc__ and check its type

>>> def factorial(n):
... """returns n!"""
... return 1 if n < 2 else n * factorial(n - 1)
...
>>> factorial(42)
1405006117752879898543142606244511569936384000000000
>>> factorial.__doc__

232 | Chapter 7: Functions as First-Class Objects

https://fpy.li/pep484
https://fpy.li/7-2

'returns n!'
>>> type(factorial)
<class 'function'>

This is a console session, so we’re creating a function at “runtime.”

__doc__ is one of several attributes of function objects.

factorial is an instance of the function class.

The __doc__ attribute is used to generate the help text of an object. In the Python
console, the command help(factorial) will display a screen like Figure 7-1.

Figure 7-1. Help screen for factorial; the text is built from the __doc__ attribute of
the function.

Example 7-2 shows the “first class” nature of a function object. We can assign it a
variable fact and call it through that name. We can also pass factorial as an argu‐
ment to the map function. Calling map(function, iterable) returns an iterable
where each item is the result of calling the first argument (a function) to successive
elements of the second argument (an iterable), range(10) in this example.

Example 7-2. Use factorial through a different name, and pass factorial as an
argument

>>> fact = factorial
>>> fact
<function factorial at 0x...>
>>> fact(5)
120
>>> map(factorial, range(11))
<map object at 0x...>
>>> list(map(factorial, range(11)))
[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]

Treating a Function Like an Object | 233

https://fpy.li/7-3

Having first-class functions enables programming in a functional style. One of the
hallmarks of functional programming is the use of higher-order functions, our next
topic.

Higher-Order Functions
A function that takes a function as an argument or returns a function as the result is a
higher-order function. One example is map, shown in Example 7-2. Another is the
built-in function sorted: the optional key argument lets you provide a function to be
applied to each item for sorting, as we saw in “list.sort Versus the sorted Built-In” on
page 56. For example, to sort a list of words by length, pass the len function as the
key, as in Example 7-3.

Example 7-3. Sorting a list of words by length

>>> fruits = ['strawberry', 'fig', 'apple', 'cherry', 'raspberry', 'banana']
>>> sorted(fruits, key=len)
['fig', 'apple', 'cherry', 'banana', 'raspberry', 'strawberry']
>>>

Any one-argument function can be used as the key. For example, to create a rhyme
dictionary it might be useful to sort each word spelled backward. In Example 7-4,
note that the words in the list are not changed at all; only their reversed spelling is
used as the sort criterion, so that the berries appear together.

Example 7-4. Sorting a list of words by their reversed spelling

>>> def reverse(word):
... return word[::-1]
>>> reverse('testing')
'gnitset'
>>> sorted(fruits, key=reverse)
['banana', 'apple', 'fig', 'raspberry', 'strawberry', 'cherry']
>>>

In the functional programming paradigm, some of the best known higher-order
functions are map, filter, reduce, and apply. The apply function was deprecated in
Python 2.3 and removed in Python 3 because it’s no longer necessary. If you need to
call a function with a dynamic set of arguments, you can write fn(*args, **kwargs)
instead of apply(fn, args, kwargs).

The map, filter, and reduce higher-order functions are still around, but better alter‐
natives are available for most of their use cases, as the next section shows.

234 | Chapter 7: Functions as First-Class Objects

https://fpy.li/7-4

Modern Replacements for map, filter, and reduce
Functional languages commonly offer the map, filter, and reduce higher-order
functions (sometimes with different names). The map and filter functions are still
built-ins in Python 3, but since the introduction of list comprehensions and genera‐
tor expressions, they are not as important. A listcomp or a genexp does the job of map
and filter combined, but is more readable. Consider Example 7-5.

Example 7-5. Lists of factorials produced with map and filter compared to
alternatives coded as list comprehensions

>>> list(map(factorial, range(6)))
[1, 1, 2, 6, 24, 120]
>>> [factorial(n) for n in range(6)]
[1, 1, 2, 6, 24, 120]
>>> list(map(factorial, filter(lambda n: n % 2, range(6))))
[1, 6, 120]
>>> [factorial(n) for n in range(6) if n % 2]
[1, 6, 120]
>>>

Build a list of factorials from 0! to 5!.

Same operation, with a list comprehension.

List of factorials of odd numbers up to 5!, using both map and filter.

List comprehension does the same job, replacing map and filter, and making
lambda unnecessary.

In Python 3, map and filter return generators—a form of iterator—so their direct
substitute is now a generator expression (in Python 2, these functions returned lists,
therefore their closest alternative was a listcomp).

The reduce function was demoted from a built-in in Python 2 to the functools
module in Python 3. Its most common use case, summation, is better served by the
sum built-in available since Python 2.3 was released in 2003. This is a big win in terms
of readability and performance (see Example 7-6).

Example 7-6. Sum of integers up to 99 performed with reduce and sum

>>> from functools import reduce
>>> from operator import add
>>> reduce(add, range(100))
4950
>>> sum(range(100))

Higher-Order Functions | 235

4950
>>>

Starting with Python 3.0, reduce is no longer a built-in.

Import add to avoid creating a function just to add two numbers.

Sum integers up to 99.

Same task with sum—no need to import and call reduce and add.

The common idea of sum and reduce is to apply some operation to
successive items in a series, accumulating previous results, thus
reducing a series of values to a single value.

Other reducing built-ins are all and any:

all(iterable)

Returns True if there are no falsy elements in the iterable; all([]) returns True.

any(iterable)

Returns True if any element of the iterable is truthy; any([]) returns False.

I give a fuller explanation of reduce in “Vector Take #4: Hashing and a Faster ==” on
page 411 where an ongoing example provides a meaningful context for the use of this
function. The reducing functions are summarized later in the book when iterables are
in focus, in “Iterable Reducing Functions” on page 630.

To use a higher-order function, sometimes it is convenient to create a small, . one-off
function. That is why anonymous functions exist. We’ll cover them next.

Anonymous Functions
The lambda keyword creates an anonymous function within a Python expression.

However, the simple syntax of Python limits the body of lambda functions to be pure
expressions. In other words, the body cannot contain other Python statements such
as while, try, etc. Assignment with = is also a statement, so it cannot occur in a
lambda. The new assignment expression syntax using := can be used—but if you need
it, your lambda is probably too complicated and hard to read, and it should be refac‐
tored into a regular function using def.

236 | Chapter 7: Functions as First-Class Objects

The best use of anonymous functions is in the context of an argument list for a
higher-order function. For example, Example 7-7 is the rhyme index example from
Example 7-4 rewritten with lambda, without defining a reverse function.

Example 7-7. Sorting a list of words by their reversed spelling using lambda

>>> fruits = ['strawberry', 'fig', 'apple', 'cherry', 'raspberry', 'banana']
>>> sorted(fruits, key=lambda word: word[::-1])
['banana', 'apple', 'fig', 'raspberry', 'strawberry', 'cherry']
>>>

Outside the limited context of arguments to higher-order functions, anonymous
functions are rarely useful in Python. The syntactic restrictions tend to make nontriv‐
ial lambdas either unreadable or unworkable. If a lambda is hard to read, I strongly
advise you follow Fredrik Lundh’s refactoring advice.

Fredrik Lundh’s lambda Refactoring Recipe
If you find a piece of code hard to understand because of a lambda, Fredrik Lundh
suggests this refactoring procedure:

1. Write a comment explaining what the heck that lambda does.
2. Study the comment for a while, and think of a name that captures the essence of

the comment.
3. Convert the lambda to a def statement, using that name.
4. Remove the comment.

These steps are quoted from the “Functional Programming HOWTO”, a must read.

The lambda syntax is just syntactic sugar: a lambda expression creates a function
object just like the def statement. That is just one of several kinds of callable objects
in Python. The following section reviews all of them.

The Nine Flavors of Callable Objects
The call operator () may be applied to other objects besides functions. To determine
whether an object is callable, use the callable() built-in function. As of Python 3.9,
the data model documentation lists nine callable types:

The Nine Flavors of Callable Objects | 237

https://fpy.li/7-5
https://fpy.li/7-6

2 Calling a class usually creates an instance of that same class, but other behaviors are possible by overriding
__new__. We’ll see an example of this in “Flexible Object Creation with __new__” on page 843.

User-defined functions
Created with def statements or lambda expressions.

Built-in functions
A function implemented in C (for CPython), like len or time.strftime.

Built-in methods
Methods implemented in C, like dict.get.

Methods
Functions defined in the body of a class.

Classes
When invoked, a class runs its __new__ method to create an instance, then
__init__ to initialize it, and finally the instance is returned to the caller. Because
there is no new operator in Python, calling a class is like calling a function.2

Class instances
If a class defines a __call__ method, then its instances may be invoked as func‐
tions—that’s the subject of the next section.

Generator functions
Functions or methods that use the yield keyword in their body. When called,
they return a generator object.

Native coroutine functions
Functions or methods defined with async def. When called, they return a
coroutine object. Added in Python 3.5.

Asynchronous generator functions
Functions or methods defined with async def that have yield in their body.
When called, they return an asynchronous generator for use with async for.
Added in Python 3.6.

Generators, native coroutines, and asynchronous generator functions are unlike
other callables in that their return values are never application data, but objects that
require further processing to yield application data or perform useful work. Genera‐
tor functions return iterators. Both are covered in Chapter 17. Native coroutine func‐
tions and asynchronous generator functions return objects that only work with the
help of an asynchronous programming framework, such as asyncio. They are the sub‐
ject of Chapter 21.

238 | Chapter 7: Functions as First-Class Objects

3 Why build a BingoCage when we already have random.choice? The choice function may return the same
item multiple times, because the picked item is not removed from the collection given. Calling BingoCage
never returns duplicate results—as long as the instance is filled with unique values.

Given the variety of existing callable types in Python, the safest way
to determine whether an object is callable is to use the callable()
built-in:

>>> abs, str, 'Ni!'
(<built-in function abs>, <class 'str'>, 'Ni!')
>>> [callable(obj) for obj in (abs, str, 'Ni!')]
[True, True, False]

We now move on to building class instances that work as callable objects.

User-Defined Callable Types
Not only are Python functions real objects, but arbitrary Python objects may also be
made to behave like functions. Implementing a __call__ instance method is all it
takes.

Example 7-8 implements a BingoCage class. An instance is built from any iterable,
and stores an internal list of items, in random order. Calling the instance pops an
item.3

Example 7-8. bingocall.py: A BingoCage does one thing: picks items from a shuffled list

import random

class BingoCage:

 def __init__(self, items):
 self._items = list(items)
 random.shuffle(self._items)

 def pick(self):
 try:
 return self._items.pop()
 except IndexError:
 raise LookupError('pick from empty BingoCage')

 def __call__(self):
 return self.pick()

User-Defined Callable Types | 239

__init__ accepts any iterable; building a local copy prevents unexpected side
effects on any list passed as an argument.

shuffle is guaranteed to work because self._items is a list.

The main method.

Raise exception with custom message if self._items is empty.

Shortcut to bingo.pick(): bingo().

Here is a simple demo of Example 7-8. Note how a bingo instance can be invoked as
a function, and the callable() built-in recognizes it as a callable object:

>>> bingo = BingoCage(range(3))
>>> bingo.pick()
1
>>> bingo()
0
>>> callable(bingo)
True

A class implementing __call__ is an easy way to create function-like objects that
have some internal state that must be kept across invocations, like the remaining
items in the BingoCage. Another good use case for __call__ is implementing decora‐
tors. Decorators must be callable, and it is sometimes convenient to “remember”
something between calls of the decorator (e.g., for memoization—caching the results
of expensive computations for later use) or to split a complex implementation into
separate methods.

The functional approach to creating functions with internal state is to use closures.
Closures, as well as decorators, are the subject of Chapter 9.

Now let’s explore the powerful syntax Python offers to declare function parameters
and pass arguments into them.

From Positional to Keyword-Only Parameters
One of the best features of Python functions is the extremely flexible parameter han‐
dling mechanism. Closely related are the use of * and ** to unpack iterables and
mappings into separate arguments when we call a function. To see these features in
action, see the code for Example 7-9 and tests showing its use in Example 7-10.

240 | Chapter 7: Functions as First-Class Objects

Example 7-9. tag generates HTML elements; a keyword-only argument class_ is used
to pass “class” attributes as a workaround because class is a keyword in Python

def tag(name, *content, class_=None, **attrs):
 """Generate one or more HTML tags"""
 if class_ is not None:
 attrs['class'] = class_
 attr_pairs = (f' {attr}="{value}"' for attr, value
 in sorted(attrs.items()))
 attr_str = ''.join(attr_pairs)
 if content:
 elements = (f'<{name}{attr_str}>{c}</{name}>'
 for c in content)
 return '\n'.join(elements)
 else:
 return f'<{name}{attr_str} />'

The tag function can be invoked in many ways, as Example 7-10 shows.

Example 7-10. Some of the many ways of calling the tag function from Example 7-9

>>> tag('br')
'
'
>>> tag('p', 'hello')
'<p>hello</p>'
>>> print(tag('p', 'hello', 'world'))
<p>hello</p>
<p>world</p>
>>> tag('p', 'hello', id=33)
'<p id="33">hello</p>'
>>> print(tag('p', 'hello', 'world', class_='sidebar'))
<p class="sidebar">hello</p>
<p class="sidebar">world</p>
>>> tag(content='testing', name="img")
''
>>> my_tag = {'name': 'img', 'title': 'Sunset Boulevard',
... 'src': 'sunset.jpg', 'class': 'framed'}
>>> tag(**my_tag)
''

A single positional argument produces an empty tag with that name.

Any number of arguments after the first are captured by *content as a tuple.

Keyword arguments not explicitly named in the tag signature are captured by
**attrs as a dict.

The class_ parameter can only be passed as a keyword argument.

From Positional to Keyword-Only Parameters | 241

The first positional argument can also be passed as a keyword.

Prefixing the my_tag dict with ** passes all its items as separate arguments,
which are then bound to the named parameters, with the remaining caught by
**attrs. In this case we can have a 'class' key in the arguments dict, because
it is a string, and does not clash with the class reserved word.

Keyword-only arguments are a feature of Python 3. In Example 7-9, the class_
parameter can only be given as a keyword argument—it will never capture unnamed
positional arguments. To specify keyword-only arguments when defining a function,
name them after the argument prefixed with *. If you don’t want to support variable
positional arguments but still want keyword-only arguments, put a * by itself in the
signature, like this:

>>> def f(a, *, b):
... return a, b
...
>>> f(1, b=2)
(1, 2)
>>> f(1, 2)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: f() takes 1 positional argument but 2 were given

Note that keyword-only arguments do not need to have a default value: they can be
mandatory, like b in the preceding example.

Positional-Only Parameters
Since Python 3.8, user-defined function signatures may specify positional-only
parameters. This feature always existed for built-in functions, such as divmod(a, b),
which can only be called with positional parameters, and not as divmod(a=10, b=4).

To define a function requiring positional-only parameters, use / in the parameter list.

This example from “What’s New In Python 3.8” shows how to emulate the divmod
built-in function:

def divmod(a, b, /):
 return (a // b, a % b)

All arguments to the left of the / are positional-only. After the /, you may specify
other arguments, which work as usual.

242 | Chapter 7: Functions as First-Class Objects

https://fpy.li/7-7

The / in the parameter list is a syntax error in Python 3.7 or earlier.

For example, consider the tag function from Example 7-9. If we want the name
parameter to be positional only, we can add a / after it in the function signature, like
this:

def tag(name, /, *content, class_=None, **attrs):
 ...

You can find other examples of positional-only parameters in “What’s New In
Python 3.8” and in PEP 570.

After diving into Python’s flexible argument declaration features, the remainder of
this chapter covers the most useful packages in the standard library for programming
in a functional style.

Packages for Functional Programming
Although Guido makes it clear that he did not design Python to be a functional pro‐
gramming language, a functional coding style can be used to good extent, thanks to
first-class functions, pattern matching, and the support of packages like operator
and functools, which we cover in the next two sections.

The operator Module
Often in functional programming it is convenient to use an arithmetic operator as a
function. For example, suppose you want to multiply a sequence of numbers to calcu‐
late factorials without using recursion. To perform summation, you can use sum, but
there is no equivalent function for multiplication. You could use reduce—as we saw
in “Modern Replacements for map, filter, and reduce” on page 235—but this requires
a function to multiply two items of the sequence. Example 7-11 shows how to solve
this using lambda.

Example 7-11. Factorial implemented with reduce and an anonymous function

from functools import reduce

def factorial(n):
 return reduce(lambda a, b: a*b, range(1, n+1))

Packages for Functional Programming | 243

https://fpy.li/7-7
https://fpy.li/7-7
https://fpy.li/pep570

The operator module provides function equivalents for dozens of operators so you
don’t have to code trivial functions like lambda a, b: a*b. With it, we can rewrite
Example 7-11 as Example 7-12.

Example 7-12. Factorial implemented with reduce and operator.mul

from functools import reduce
from operator import mul

def factorial(n):
 return reduce(mul, range(1, n+1))

Another group of one-trick lambdas that operator replaces are functions to pick
items from sequences or read attributes from objects: itemgetter and attrgetter
are factories that build custom functions to do that.

Example 7-13 shows a common use of itemgetter: sorting a list of tuples by the
value of one field. In the example, the cities are printed sorted by country code (field
1). Essentially, itemgetter(1) creates a function that, given a collection, returns the
item at index 1. That’s easier to write and read than lambda fields: fields[1],
which does the same thing.

Example 7-13. Demo of itemgetter to sort a list of tuples (data from Example 2-8)

>>> metro_data = [
... ('Tokyo', 'JP', 36.933, (35.689722, 139.691667)),
... ('Delhi NCR', 'IN', 21.935, (28.613889, 77.208889)),
... ('Mexico City', 'MX', 20.142, (19.433333, -99.133333)),
... ('New York-Newark', 'US', 20.104, (40.808611, -74.020386)),
... ('São Paulo', 'BR', 19.649, (-23.547778, -46.635833)),
...]
>>>
>>> from operator import itemgetter
>>> for city in sorted(metro_data, key=itemgetter(1)):
... print(city)
...
('São Paulo', 'BR', 19.649, (-23.547778, -46.635833))
('Delhi NCR', 'IN', 21.935, (28.613889, 77.208889))
('Tokyo', 'JP', 36.933, (35.689722, 139.691667))
('Mexico City', 'MX', 20.142, (19.433333, -99.133333))
('New York-Newark', 'US', 20.104, (40.808611, -74.020386))

If you pass multiple index arguments to itemgetter, the function it builds will return
tuples with the extracted values, which is useful for sorting on multiple keys:

>>> cc_name = itemgetter(1, 0)
>>> for city in metro_data:
... print(cc_name(city))

244 | Chapter 7: Functions as First-Class Objects

...
('JP', 'Tokyo')
('IN', 'Delhi NCR')
('MX', 'Mexico City')
('US', 'New York-Newark')
('BR', 'São Paulo')
>>>

Because itemgetter uses the [] operator, it supports not only sequences but also
mappings and any class that implements __getitem__.

A sibling of itemgetter is attrgetter, which creates functions to extract object
attributes by name. If you pass attrgetter several attribute names as arguments, it
also returns a tuple of values. In addition, if any argument name contains a . (dot),
attrgetter navigates through nested objects to retrieve the attribute. These behav‐
iors are shown in Example 7-14. This is not the shortest console session because we
need to build a nested structure to showcase the handling of dotted attributes by
attrgetter.

Example 7-14. Demo of attrgetter to process a previously defined list of namedtuple
called metro_data (the same list that appears in Example 7-13)

>>> from collections import namedtuple
>>> LatLon = namedtuple('LatLon', 'lat lon')
>>> Metropolis = namedtuple('Metropolis', 'name cc pop coord')
>>> metro_areas = [Metropolis(name, cc, pop, LatLon(lat, lon))
... for name, cc, pop, (lat, lon) in metro_data]
>>> metro_areas[0]
Metropolis(name='Tokyo', cc='JP', pop=36.933, coord=LatLon(lat=35.689722,
lon=139.691667))
>>> metro_areas[0].coord.lat
35.689722
>>> from operator import attrgetter
>>> name_lat = attrgetter('name', 'coord.lat')
>>>
>>> for city in sorted(metro_areas, key=attrgetter('coord.lat')):
... print(name_lat(city))
...
('São Paulo', -23.547778)
('Mexico City', 19.433333)
('Delhi NCR', 28.613889)
('Tokyo', 35.689722)
('New York-Newark', 40.808611)

Use namedtuple to define LatLon.

Also define Metropolis.

Packages for Functional Programming | 245

Build metro_areas list with Metropolis instances; note the nested tuple unpack‐
ing to extract (lat, lon) and use them to build the LatLon for the coord
attribute of Metropolis.

Reach into element metro_areas[0] to get its latitude.

Define an attrgetter to retrieve the name and the coord.lat nested attribute.

Use attrgetter again to sort list of cities by latitude.

Use the attrgetter defined in to show only the city name and latitude.

Here is a partial list of functions defined in operator (names starting with _ are omit‐
ted, because they are mostly implementation details):

>>> [name for name in dir(operator) if not name.startswith('_')]
['abs', 'add', 'and_', 'attrgetter', 'concat', 'contains',
'countOf', 'delitem', 'eq', 'floordiv', 'ge', 'getitem', 'gt',
'iadd', 'iand', 'iconcat', 'ifloordiv', 'ilshift', 'imatmul',
'imod', 'imul', 'index', 'indexOf', 'inv', 'invert', 'ior',
'ipow', 'irshift', 'is_', 'is_not', 'isub', 'itemgetter',
'itruediv', 'ixor', 'le', 'length_hint', 'lshift', 'lt', 'matmul',
'methodcaller', 'mod', 'mul', 'ne', 'neg', 'not_', 'or_', 'pos',
'pow', 'rshift', 'setitem', 'sub', 'truediv', 'truth', 'xor']

Most of the 54 names listed are self-evident. The group of names prefixed with i and
the name of another operator—e.g., iadd, iand, etc.—correspond to the augmented
assignment operators—e.g., +=, &=, etc. These change their first argument in place, if
it is mutable; if not, the function works like the one without the i prefix: it simply
returns the result of the operation.

Of the remaining operator functions, methodcaller is the last we will cover. It is
somewhat similar to attrgetter and itemgetter in that it creates a function on the
fly. The function it creates calls a method by name on the object given as argument,
as shown in Example 7-15.

Example 7-15. Demo of methodcaller: second test shows the binding of extra
arguments

>>> from operator import methodcaller
>>> s = 'The time has come'
>>> upcase = methodcaller('upper')
>>> upcase(s)
'THE TIME HAS COME'
>>> hyphenate = methodcaller('replace', ' ', '-')
>>> hyphenate(s)
'The-time-has-come'

246 | Chapter 7: Functions as First-Class Objects

The first test in Example 7-15 is there just to show methodcaller at work, but if you
need to use the str.upper as a function, you can just call it on the str class and pass
a string as an argument, like this:

>>> str.upper(s)
'THE TIME HAS COME'

The second test in Example 7-15 shows that methodcaller can also do a partial appli‐
cation to freeze some arguments, like the functools.partial function does. That is
our next subject.*Bold Text*opmod07

Freezing Arguments with functools.partial
The functools module provides several higher-order functions. We saw reduce in
“Modern Replacements for map, filter, and reduce” on page 235. Another is partial:
given a callable, it produces a new callable with some of the arguments of the original
callable bound to predetermined values. This is useful to adapt a function that takes
one or more arguments to an API that requires a callback with fewer arguments.
Example 7-16 is a trivial demonstration.

Example 7-16. Using partial to use a two-argument function where a one-argument
callable is required

>>> from operator import mul
>>> from functools import partial
>>> triple = partial(mul, 3)
>>> triple(7)
21
>>> list(map(triple, range(1, 10)))
[3, 6, 9, 12, 15, 18, 21, 24, 27]

Create new triple function from mul, binding the first positional argument to 3.

Test it.

Use triple with map; mul would not work with map in this example.

A more useful example involves the unicode.normalize function that we saw in
“Normalizing Unicode for Reliable Comparisons” on page 140. If you work with text
from many languages, you may want to apply unicode.normalize('NFC', s) to any
string s before comparing or storing it. If you do that often, it’s handy to have an nfc
function to do so, as in Example 7-17.

Packages for Functional Programming | 247

Example 7-17. Building a convenient Unicode normalizing function with partial

>>> import unicodedata, functools
>>> nfc = functools.partial(unicodedata.normalize, 'NFC')
>>> s1 = 'café'
>>> s2 = 'cafe\u0301'
>>> s1, s2
('café', 'café')
>>> s1 == s2
False
>>> nfc(s1) == nfc(s2)
True

partial takes a callable as first argument, followed by an arbitrary number of posi‐
tional and keyword arguments to bind.

Example 7-18 shows the use of partial with the tag function from Example 7-9, to
freeze one positional argument and one keyword argument.

Example 7-18. Demo of partial applied to the function tag from Example 7-9

>>> from tagger import tag
>>> tag
<function tag at 0x10206d1e0>
>>> from functools import partial
>>> picture = partial(tag, 'img', class_='pic-frame')
>>> picture(src='wumpus.jpeg')
''
>>> picture
functools.partial(<function tag at 0x10206d1e0>, 'img', class_='pic-frame')
>>> picture.func
<function tag at 0x10206d1e0>
>>> picture.args
('img',)
>>> picture.keywords
{'class_': 'pic-frame'}

Import tag from Example 7-9 and show its ID.

Create the picture function from tag by fixing the first positional argument
with 'img' and the class_ keyword argument with 'pic-frame'.

picture works as expected.

248 | Chapter 7: Functions as First-Class Objects

4 The source code for functools.py reveals that functools.partial is implemented in C and is used by default.
If that is not available, a pure-Python implementation of partial is available since Python 3.4.

partial() returns a functools.partial object.4

A functools.partial object has attributes providing access to the original func‐
tion and the fixed arguments.

The functools.partialmethod function does the same job as partial, but is
designed to work with methods.

The functools module also includes higher-order functions designed to be used as
function decorators, such as cache and singledispatch, among others. Those
functions are covered in Chapter 9, which also explains how to implement custom
decorators.

Chapter Summary
The goal of this chapter was to explore the first-class nature of functions in Python.
The main ideas are that you can assign functions to variables, pass them to other
functions, store them in data structures, and access function attributes, allowing
frameworks and tools to act on that information.

Higher-order functions, a staple of functional programming, are common in Python.
The sorted, min, and max built-ins, and functools.partial are examples of com‐
monly used higher-order functions in the language. Using map, filter, and reduce is
not as common as it used to be, thanks to list comprehensions (and similar con‐
structs like generator expressions) and the addition of reducing built-ins like sum,
all, and any.

Callables come in nine different flavors since Python 3.6, from the simple functions
created with lambda to instances of classes implementing __call__. Generators and
coroutines are also callable, although their behavior is very different from other calla‐
bles. All callables can be detected by the callable() built-in. Callables offer rich syn‐
tax for declaring formal parameters, including keyword-only parameters, positional-
only parameters, and annotations.

Lastly, we covered some functions from the operator module and functools.par
tial, which facilitate functional programming by minimizing the need for the func‐
tionally challenged lambda syntax.

Chapter Summary | 249

https://fpy.li/7-9

Further Reading
The next chapters continue our exploration of programming with function objects.
Chapter 8 is devoted to type hints in function parameters and return values. Chap‐
ter 9 dives into function decorators—a special kind of higher-order function—and
the closure mechanism that makes them work. Chapter 10 shows how first-class
functions can simplify some classic object-oriented design patterns.

In The Python Language Reference, “3.2. The standard type hierarchy” presents the
nine callable types, along with all the other built-in types.

Chapter 7 of the Python Cookbook, 3rd ed. (O’Reilly), by David Beazley and Brian K.
Jones, is an excellent complement to the current chapter as well as Chapter 9 of this
book, covering mostly the same concepts with a different approach.

See PEP 3102—Keyword-Only Arguments if you are interested in the rationale and
use cases for that feature.

A great introduction to functional programming in Python is A. M. Kuchling’s
“Python Functional Programming HOWTO”. The main focus of that text, however,
is the use of iterators and generators, which are the subject of Chapter 17.

The StackOverflow question “Python: Why is functools.partial necessary?” has a
highly informative (and funny) reply by Alex Martelli, coauthor of the classic Python
in a Nutshell (O’Reilly).

Reflecting on the question “Is Python a functional language?”, I created one of my
favorite talks, “Beyond Paradigms,” which I presented at PyCaribbean, PyBay, and
PyConDE. See the slides and video from the Berlin presentation—where I met Miro‐
slav Šedivý and Jürgen Gmach, two of the technical reviewers of this book.

Soapbox

Is Python a Functional Language?

Sometime in the year 2000 I attended a Zope workshop at Zope Corporation in the
United States when Guido van Rossum dropped by the classroom (he was not the
instructor). In the Q&A that followed, somebody asked him which features of Python
were borrowed from other languages. Guido’s answer: “Everything that is good in
Python was stolen from other languages.”

Shriram Krishnamurthi, professor of Computer Science at Brown University, starts
his “Teaching Programming Languages in a Post-Linnaean Age” paper with this:

Programming language “paradigms” are a moribund and tedious legacy of a bygone
age. Modern language designers pay them no respect, so why do our courses slavishly
adhere to them?

250 | Chapter 7: Functions as First-Class Objects

https://fpy.li/7-10
https://fpy.li/pycook3
https://fpy.li/pep3102
https://fpy.li/7-5
https://fpy.li/7-12
https://fpy.li/7-13
https://fpy.li/7-14
https://fpy.li/7-15

5 There is also the problem of lost indentation when pasting code to web forums, but I digress.

In that paper, Python is mentioned by name in this passage:

What else to make of a language like Python, Ruby, or Perl? Their designers have no
patience for the niceties of these Linnaean hierarchies; they borrow features as they
wish, creating mélanges that utterly defy characterization.

Krishnamurthi argues that instead of trying to classify languages in some taxonomy,
it’s more useful to consider them as aggregations of features. His ideas inspired my
talk “Beyond Paradigms,” mentioned at the end of “Further Reading” on page 250.

Even if it was not Guido’s goal, endowing Python with first-class functions opened
the door to functional programming. In his post, “Origins of Python’s Functional
Features”, he says that map, filter, and reduce were the motivation for adding
lambda to Python in the first place. All of these features were contributed together by
Amrit Prem for Python 1.0 in 1994, according to Misc/HISTORY in the CPython
source code.

Functions like map, filter, and reduce first appeared in Lisp, the original functional
language. However, Lisp does not limit what can be done inside a lambda, because
everything in Lisp is an expression. Python uses a statement-oriented syntax in which
expressions cannot contain statements, and many language constructs are statements
—including try/catch, which is what I miss most often when writing lambdas. This
is the price to pay for Python’s highly readable syntax.5 Lisp has many strengths, but
readability is not one of them.

Ironically, stealing the list comprehension syntax from another functional language—
Haskell—significantly diminished the need for map and filter, and also for lambda.

Besides the limited anonymous function syntax, the biggest obstacle to wider adop‐
tion of functional programming idioms in Python is the lack of tail-call elimination,
an optimization that allows memory-efficient computation of a function that makes a
recursive call at the “tail” of its body. In another blog post, “Tail Recursion Elimina‐
tion”, Guido gives several reasons why such optimization is not a good fit for Python.
That post is a great read for the technical arguments, but even more so because the
first three and most important reasons given are usability issues. It is no accident that
Python is a pleasure to use, learn, and teach. Guido made it so.

So there you have it: Python is not, by design, a functional language—whatever that
means. Python just borrows a few good ideas from functional languages.

The Problem with Anonymous Functions

Beyond the Python-specific syntax constraints, anonymous functions have a serious
drawback in any language: they have no name.

Further Reading | 251

https://fpy.li/7-1
https://fpy.li/7-1
https://fpy.li/7-17
https://fpy.li/7-18
https://fpy.li/7-18

I am only half joking here. Stack traces are easier to read when functions have names.
Anonymous functions are a handy shortcut, people have fun coding with them, but
sometimes they get carried away—especially if the language and environment
encourage deep nesting of anonymous functions, like JavaScript on Node.js do. Lots
of nested anonymous functions make debugging and error handling hard. Asynchro‐
nous programming in Python is more structured, perhaps because the limited lambda
syntax prevents its abuse and forces a more explicit approach. Promises, futures, and
deferreds are concepts used in modern asynchronous APIs. Along with coroutines,
they provide an escape from the so-called “callback hell.” I promise to write more
about asynchronous programming in the future, but this subject must be deferred to
Chapter 21.

252 | Chapter 7: Functions as First-Class Objects

1 PEP 484—Type Hints, “Rationale and Goals”; bold emphasis retained from the original.

CHAPTER 8

Type Hints in Functions

It should also be emphasized that Python will remain a dynamically typed language,
and the authors have no desire to ever make type hints mandatory, even by
convention.

—Guido van Rossum, Jukka Lehtosalo, and Łukasz Langa, PEP 484—Type Hints1

Type hints are the biggest change in the history of Python since the unification of
types and classes in Python 2.2, released in 2001. However, type hints do not benefit
all Python users equally. That’s why they should always be optional.

PEP 484—Type Hints introduced syntax and semantics for explicit type declarations
in function arguments, return values, and variables. The goal is to help developer
tools find bugs in Python codebases via static analysis, i.e., without actually running
the code through tests.

The main beneficiaries are professional software engineers using IDEs (Integrated
Development Environments) and CI (Continuous Integration). The cost-benefit
analysis that makes type hints attractive to that group does not apply to all users of
Python.

Python’s user base is much wider than that. It includes scientists, traders, journalists,
artists, makers, analysts, and students in many fields—among others. For most of
them, the cost of learning type hints is likely higher—unless they already know a
language with static types, subtyping, and generics. The benefits will be lower for
many of those users, given how they interact with Python, and the smaller size of
their codebases and teams—often “teams” of one. Python’s default dynamic typing is

253

https://fpy.li/8-1
https://fpy.li/descr101
https://fpy.li/descr101
https://fpy.li/pep484

simpler and more expressive when writing code for exploring data and ideas, as in
data science, creative computing, and learning,

This chapter focuses on Python’s type hints in function signatures. Chapter 15
explores type hints in the context of classes, and other typing module features.

The major topics in this chapter are:

• A hands-on introduction to gradual typing with Mypy
• The complementary perspectives of duck typing and nominal typing
• Overview of the main categories of types that can appear in annotations—this is

about 60% of the chapter
• Type hinting variadic parameters (*args, **kwargs)
• Limitations and downsides of type hints and static typing

What’s New in This Chapter
This chapter is completely new. Type hints appeared in Python 3.5 after I wrapped up
the first edition of Fluent Python.

Given the limitations of a static type system, the best idea of PEP 484 was to intro‐
duce a gradual type system. Let’s begin by defining what that means.

About Gradual Typing
PEP 484 introduced a gradual type system to Python. Other languages with gradual
type systems are Microsoft’s TypeScript, Dart (the language of the Flutter SDK, cre‐
ated by Google), and Hack (a dialect of PHP supported by Facebook’s HHVM virtual
machine). The Mypy type checker itself started as a language: a gradually typed dia‐
lect of Python with its own interpreter. Guido van Rossum convinced the creator of
Mypy, Jukka Lehtosalo, to make it a tool for checking annotated Python code.

A gradual type system:

Is optional
By default, the type checker should not emit warnings for code that has no type
hints. Instead, the type checker assumes the Any type when it cannot determine
the type of an object. The Any type is considered compatible with all other types.

Does not catch type errors at runtime
Type hints are used by static type checkers, linters, and IDEs to raise warnings.
They do not prevent inconsistent values from being passed to functions or
assigned to variables at runtime.

254 | Chapter 8: Type Hints in Functions

2 A just-in-time compiler like the one in PyPy has much better data than type hints: it monitors the Python
program as it runs, detects the concrete types in use, and generates optimized machine code for those
concrete types.

3 For example, recursive types are not supported as of July 2021—see typing module issue #182, Define a JSON
type and Mypy issue #731, Support recursive types.

Does not enhance performance
Type annotations provide data that could, in theory, allow optimizations in the
generated bytecode, but such optimizations are not implemented in any Python
runtime that I am aware in of July 2021.2

The best usability feature of gradual typing is that annotations are always optional.

With static type systems, most type constraints are easy to express, many are cumber‐
some, some are hard, and a few are impossible.3 You may very well write an excellent
piece of Python code, with good test coverage and passing tests, but still be unable to
add type hints that satisfy a type checker. That’s OK; just leave out the problematic
type hints and ship it!

Type hints are optional at all levels: you can have entire packages with no type hints,
you can silence the type checker when you import one of those packages into a mod‐
ule where you use type hints, and you can add special comments to make the type
checker ignore specific lines in your code.

Seeking 100% coverage of type hints is likely to stimulate type hint‐
ing without proper thought, only to satisfy the metric. It will also
prevent teams from making the most of the power and flexibility of
Python. Code without type hints should naturally be accepted
when annotations would make an API less user-friendly, or unduly
complicate its implementation.

Gradual Typing in Practice
Let’s see how gradual typing works in practice, starting with a simple function and
gradually adding type hints to it, guided by Mypy.

There are several Python type checkers compatible with PEP 484,
including Google’s pytype, Microsoft’s Pyright, Facebook’s Pyre—
in addition to type checkers embedded in IDEs such as PyCharm. I
picked Mypy for the examples because it’s the best known. How‐
ever, one of the others may be a better fit for some projects or
teams. Pytype, for example, is designed to handle codebases with
no type hints and still provide useful advice. It is more lenient than
Mypy, and can also generate annotations for your code.

Gradual Typing in Practice | 255

https://fpy.li/8-2
https://fpy.li/8-2
https://fpy.li/8-3
https://fpy.li/8-4
https://fpy.li/8-5
https://fpy.li/8-6
https://fpy.li/mypy

We will annotate a show_count function that returns a string with a count and a sin‐
gular or plural word, depending on the count:

>>> show_count(99, 'bird')
'99 birds'
>>> show_count(1, 'bird')
'1 bird'
>>> show_count(0, 'bird')
'no birds'

Example 8-1 shows the source code of show_count, without annotations.

Example 8-1. show_count from messages.py without type hints

def show_count(count, word):
 if count == 1:
 return f'1 {word}'
 count_str = str(count) if count else 'no'
 return f'{count_str} {word}s'

Starting with Mypy
To begin type checking, I run the mypy command on the messages.py module:

…/no_hints/ $ pip install mypy
[lots of messages omitted...]
…/no_hints/ $ mypy messages.py
Success: no issues found in 1 source file

Mypy with default settings finds no problem with Example 8-1.

I am using Mypy 0.910, the most recent release as I review this in
July 2021. The Mypy “Introduction” warns that it “is officially beta
software. There will be occasional changes that break backward
compatibility.” Mypy is giving me at least one report that is not the
same I got when I wrote this chapter in April 2020. By the time you
read this, you may get different results than shown here.

If a function signature has no annotations, Mypy ignores it by default—unless config‐
ured otherwise.

For Example 8-2, I also have pytest unit tests. This is the code in messages_test.py.

Example 8-2. messages_test.py without type hints

from pytest import mark

from messages import show_count

256 | Chapter 8: Type Hints in Functions

https://fpy.li/8-7

@mark.parametrize('qty, expected', [
 (1, '1 part'),
 (2, '2 parts'),
])
def test_show_count(qty, expected):
 got = show_count(qty, 'part')
 assert got == expected

def test_show_count_zero():
 got = show_count(0, 'part')
 assert got == 'no parts'

Now let’s add type hints, guided by Mypy.

Making Mypy More Strict
The command-line option --disallow-untyped-defs makes Mypy flag any function
definition that does not have type hints for all its parameters and for its return value.

Using --disallow-untyped-defs on the test file produces three errors and a note:

…/no_hints/ $ mypy --disallow-untyped-defs messages_test.py
messages.py:14: error: Function is missing a type annotation
messages_test.py:10: error: Function is missing a type annotation
messages_test.py:15: error: Function is missing a return type annotation
messages_test.py:15: note: Use "-> None" if function does not return a value
Found 3 errors in 2 files (checked 1 source file)

For the first steps with gradual typing, I prefer to use another option: --disallow-
incomplete-defs. Initially, it tells me nothing:

…/no_hints/ $ mypy --disallow-incomplete-defs messages_test.py
Success: no issues found in 1 source file

Now I can add just the return type to show_count in messages.py:

def show_count(count, word) -> str:

This is enough to make Mypy look at it. Using the same command line as before to
check messages_test.py will lead Mypy to look at messages.py again:

…/no_hints/ $ mypy --disallow-incomplete-defs messages_test.py
messages.py:14: error: Function is missing a type annotation
for one or more arguments
Found 1 error in 1 file (checked 1 source file)

Now I can gradually add type hints function by function, without getting warnings
about functions that I haven’t annotated. This is a fully annotated signature that satis‐
fies Mypy:

def show_count(count: int, word: str) -> str:

Gradual Typing in Practice | 257

Instead of typing command-line options like --disallow-

incomplete-defs, you can save your favorite as described in the
Mypy configuration file documentation. You can have global set‐
tings and per-module settings. Here is a simple mypy.ini to get
started:

[mypy]
python_version = 3.9
warn_unused_configs = True
disallow_incomplete_defs = True

A Default Parameter Value
The show_count function in Example 8-1 only works with regular nouns. If the plural
can’t be spelled by appending an 's', we should let the user provide the plural form,
like this:

>>> show_count(3, 'mouse', 'mice')
'3 mice'

Let’s do a little “type-driven development.” First we add a test that uses that third
argument. Don’t forget to add the return type hint to the test function, otherwise
Mypy will not check it.

def test_irregular() -> None:
 got = show_count(2, 'child', 'children')
 assert got == '2 children'

Mypy detects the error:

…/hints_2/ $ mypy messages_test.py
messages_test.py:22: error: Too many arguments for "show_count"
Found 1 error in 1 file (checked 1 source file)

Now I edit show_count, adding the optional plural parameter in Example 8-3.

Example 8-3. showcount from hints_2/messages.py with an optional parameter

def show_count(count: int, singular: str, plural: str = '') -> str:
 if count == 1:
 return f'1 {singular}'
 count_str = str(count) if count else 'no'
 if not plural:
 plural = singular + 's'
 return f'{count_str} {plural}'

Now Mypy reports “Success.”

258 | Chapter 8: Type Hints in Functions

https://fpy.li/8-8

Here is one typing mistake that Python does not catch. Can you
spot it?

def hex2rgb(color=str) -> tuple[int, int, int]:

Mypy’s error report is not very helpful:
colors.py:24: error: Function is missing a type
 annotation for one or more arguments

The type hint for the color argument should be color: str. I
wrote color=str, which is not an annotation: it sets the default
value of color to str.
In my experience, it’s a common mistake and easy to overlook,
especially in complicated type hints.

The following details are considered good style for type hints:

• No space between the parameter name and the :; one space after the :
• Spaces on both sides of the = that precedes a default parameter value

On the other hand, PEP 8 says there should be no spaces around the = if there is no
type hint for that particular parameter.

Code Style: Use flake8 and blue
Instead of memorizing such silly rules, use tools like flake8 and blue. flake8 reports on
code styling, among many other issues, and blue rewrites source code according to
(most) rules embedded in the black code formatting tool.

Given the goal of enforcing a “standard” coding style, blue is better than black
because it follows Python’s own style of using single quotes by default, double quotes
as an alternative:

>>> "I prefer single quotes"
'I prefer single quotes'

The preference for single quotes is embedded in repr(), among other places in CPy‐
thon. The doctest module depends on repr() using single quotes by default.

One of the authors of blue is Barry Warsaw, coauthor of PEP 8, Python core devel‐
oper since 1994, and a member of Python’s Steering Council from 2019 to present
(July 2021). We are in very good company when we choose single quotes by default.

If you must use black, use the black -S option. Then it will leave your quotes as they
are.

Gradual Typing in Practice | 259

https://fpy.li/8-9
https://fpy.li/8-10
https://fpy.li/8-11
https://fpy.li/doctest
https://fpy.li/8-12

Using None as a Default
In Example 8-3, the parameter plural is annotated as str, and the default value is '',
so there is no type conflict.

I like that solution, but in other contexts None is a better default. If the optional
parameter expects a mutable type, then None is the only sensible default—as we saw
in “Mutable Types as Parameter Defaults: Bad Idea” on page 214.

To have None as the default for the plural parameter, here is what the signature
would look like:

from typing import Optional

def show_count(count: int, singular: str, plural: Optional[str] = None) -> str:

Let’s unpack that:

• Optional[str] means plural may be a str or None.
• You must explicitly provide the default value = None.

If you don’t assign a default value to plural, the Python runtime will treat it as a
required parameter. Remember: at runtime, type hints are ignored.

Note that we need to import Optional from the typing module. When importing
types, it’s good practice to use the syntax from typing import X to reduce the length
of the function signatures.

Optional is not a great name, because that annotation does not
make the parameter optional. What makes it optional is assigning a
default value to the parameter. Optional[str] just means: the type
of this parameter may be str or NoneType. In the Haskell and Elm
languages, a similar type is named Maybe.

Now that we’ve had a first practical view of gradual typing, let’s consider what the
concept of type means in practice.

Types Are Defined by Supported Operations
There are many definitions of the concept of type in the literature. Here we assume
that type is a set of values and a set of functions that one can apply to these values.

—PEP 483—The Theory of Type Hints

260 | Chapter 8: Type Hints in Functions

4 Python doesn’t provide syntax to control the set of possible values for a type—except in Enum types. For exam‐
ple, using type hints you can’t define Quantity as an integer between 1 and 1000, or AirportCode as a 3-letter
combination. NumPy offers uint8, int16, and other machine-oriented numeric types, but in the Python
standard library we only have types with very small sets of values (NoneType, bool) or extremely large sets
(float, int, str, all possible tuples, etc.).

In practice, it’s more useful to consider the set of supported operations as the defin‐
ing characteristic of a type.4

For example, from the point of view of applicable operations, what are the valid types
for x in the following function?

def double(x):
 return x * 2

The x parameter type may be numeric (int, complex, Fraction, numpy.uint32, etc.)
but it may also be a sequence (str, tuple, list, array), an N-dimensional
numpy.array, or any other type that implements or inherits a __mul__ method that
accepts an int argument.

However, consider this annotated double. Please ignore the missing return type for
now, let’s focus on the parameter type:

from collections import abc

def double(x: abc.Sequence):
 return x * 2

A type checker will reject that code. If you tell Mypy that x is of type abc.Sequence, it
will flag x * 2 as an error because the Sequence ABC does not implement or inherit
the __mul__ method. At runtime, that code will work with concrete sequences such as
str, tuple, list, array, etc., as well as numbers, because at runtime the type hints
are ignored. But the type checker only cares about what is explicitly declared, and
abc.Sequence has no __mul__.

That’s why the title of this section is “Types Are Defined by Supported Operations.”
The Python runtime accepts any object as the x argument for both versions of the
double function. The computation x * 2 may work, or it may raise TypeError if the
operation is not supported by x. In contrast, Mypy will declare x * 2 as wrong while
analyzing the annotated double source code, because it’s an unsupported operation
for the declared type: x: abc.Sequence.

In a gradual type system, we have the interplay of two different views of types:

Duck typing
The view adopted by Smalltalk—the pioneering object-oriented language—as
well as Python, JavaScript, and Ruby. Objects have types, but variables (including

Types Are Defined by Supported Operations | 261

https://fpy.li/8-13

5 Duck typing is an implicit form of structural typing, which Python ≥ 3.8 also supports with the introduction
of typing.Protocol. This is covered later in this chapter—in “Static Protocols” on page 286—with more
details in Chapter 13.

6 Inheritance is often overused and hard to justify in examples that are realistic yet simple, so please accept this
animal example as a quick illustration of subtyping.

parameters) are untyped. In practice, it doesn’t matter what the declared type of
the object is, only what operations it actually supports. If I can invoke
birdie.quack(), then birdie is a duck in this context. By definition, duck typ‐
ing is only enforced at runtime, when operations on objects are attempted. This
is more flexible than nominal typing, at the cost of allowing more errors at run‐
time.5

Nominal typing
The view adopted by C++, Java, and C#, supported by annotated Python. Objects
and variables have types. But objects only exist at runtime, and the type checker
only cares about the source code where variables (including parameters) are
annotated with type hints. If Duck is a subclass of Bird, you can assign a Duck
instance to a parameter annotated as birdie: Bird. But in the body of the func‐
tion, the type checker considers the call birdie.quack() illegal, because birdie
is nominally a Bird, and that class does not provide the .quack() method. It
doesn’t matter if the actual argument at runtime is a Duck, because nominal typ‐
ing is enforced statically. The type checker doesn’t run any part of the program, it
only reads the source code. This is more rigid than duck typing, with the advan‐
tage of catching some bugs earlier in a build pipeline, or even as the code is typed
in an IDE.

Example 8-4 is a silly example that contrasts duck typing and nominal typing, as well
as static type checking and runtime behavior.6

Example 8-4. birds.py

class Bird:
 pass

class Duck(Bird):
 def quack(self):
 print('Quack!')

def alert(birdie):
 birdie.quack()

def alert_duck(birdie: Duck) -> None:
 birdie.quack()

262 | Chapter 8: Type Hints in Functions

def alert_bird(birdie: Bird) -> None:
 birdie.quack()

Duck is a subclass of Bird.

alert has no type hints, so the type checker ignores it.

alert_duck takes one argument of type Duck.

alert_bird takes one argument of type Bird.

Type checking birds.py with Mypy, we see a problem:

…/birds/ $ mypy birds.py
birds.py:16: error: "Bird" has no attribute "quack"
Found 1 error in 1 file (checked 1 source file)

Just by analyzing the source code, Mypy sees that alert_bird is problematic: the type
hint declares the birdie parameter with type Bird, but the body of the function calls
birdie.quack()—and the Bird class has no such method.

Now let’s try to use the birds module in daffy.py in Example 8-5.

Example 8-5. daffy.py

from birds import *

daffy = Duck()
alert(daffy)
alert_duck(daffy)
alert_bird(daffy)

Valid call, because alert has no type hints.

Valid call, because alert_duck takes a Duck argument, and daffy is a Duck.

Valid call, because alert_bird takes a Bird argument, and daffy is also a Bird—
the superclass of Duck.

Running Mypy on daffy.py raises the same error about the quack call in the
alert_bird function defined in birds.py:

…/birds/ $ mypy daffy.py
birds.py:16: error: "Bird" has no attribute "quack"
Found 1 error in 1 file (checked 1 source file)

But Mypy sees no problem with daffy.py itself: the three function calls are OK.

Now, if you run daffy.py, this is what you get:

Types Are Defined by Supported Operations | 263

…/birds/ $ python3 daffy.py
Quack!
Quack!
Quack!

Everything works! Duck typing FTW!

At runtime, Python doesn’t care about declared types. It uses duck typing only. Mypy
flagged an error in alert_bird, but calling it with daffy works fine at runtime. This
may surprise many Pythonistas at first: a static type checker will sometimes find
errors in programs that we know will execute.

However, if months from now you are tasked with extending the silly bird example,
you may be grateful for Mypy. Consider this woody.py module, which also uses
birds, in Example 8-6.

Example 8-6. woody.py

from birds import *

woody = Bird()
alert(woody)
alert_duck(woody)
alert_bird(woody)

Mypy finds two errors while checking woody.py:

…/birds/ $ mypy woody.py
birds.py:16: error: "Bird" has no attribute "quack"
woody.py:5: error: Argument 1 to "alert_duck" has incompatible type "Bird";
expected "Duck"
Found 2 errors in 2 files (checked 1 source file)

The first error is in birds.py: the birdie.quack() call in alert_bird, which we’ve
seen before. The second error is in woody.py: woody is an instance of Bird, so the call
alert_duck(woody) is invalid because that function requires a Duck. Every Duck is a
Bird, but not every Bird is a Duck.

At runtime, none of the calls in woody.py succeed. The succession of failures is best
illustrated in a console session with callouts in Example 8-7.

Example 8-7. Runtime errors and how Mypy could have helped

>>> from birds import *
>>> woody = Bird()
>>> alert(woody)
Traceback (most recent call last):
 ...
AttributeError: 'Bird' object has no attribute 'quack'
>>>

264 | Chapter 8: Type Hints in Functions

>>> alert_duck(woody)
Traceback (most recent call last):
 ...
AttributeError: 'Bird' object has no attribute 'quack'
>>>
>>> alert_bird(woody)
Traceback (most recent call last):
 ...
AttributeError: 'Bird' object has no attribute 'quack'

Mypy could not detect this error because there are no type hints in alert.

Mypy reported the problem: Argument 1 to "alert_duck" has incompatible
type "Bird"; expected "Duck".

Mypy has been telling us since Example 8-4 that the body of the alert_bird
function is wrong: "Bird" has no attribute "quack".

This little experiment shows that duck typing is easier to get started and is more flexi‐
ble, but allows unsupported operations to cause errors at runtime. Nominal typing
detects errors before runtime, but sometimes can reject code that actually runs—such
as the call alert_bird(daffy) in Example 8-5. Even if it sometimes works, the
alert_bird function is misnamed: its body does require an object that supports
the .quack() method, which Bird doesn’t have.

In this silly example, the functions are one-liners. But in real code they could be
longer; they could pass the birdie argument to more functions, and the origin of the
birdie argument could be many function calls away, making it hard to pinpoint the
cause of a runtime error. The type checker prevents many such errors from ever hap‐
pening at runtime.

The value of type hints is questionable in the tiny examples that fit
in a book. The benefits grow with the size of the codebase. That’s
why companies with millions of lines of Python code—like Drop‐
box, Google, and Facebook—invested in teams and tools to sup‐
port the company-wide adoption of type hints, and have significant
and increasing portions of their Python codebases type checked in
their CI pipelines.

In this section we explored the relationship of types and operations in duck typing
and nominal typing, starting with the simple double() function—which we left
without proper type hints. Now we will tour the most important types used for anno‐
tating functions. We’ll see a good way to add type hints to double() when we reach
“Static Protocols” on page 286. But before we get to that, there are more fundamental
types to know.

Types Are Defined by Supported Operations | 265

Types Usable in Annotations
Pretty much any Python type can be used in type hints, but there are restrictions and
recommendations. In addition, the typing module introduced special constructs
with semantics that are sometimes surprising.

This section covers all the major types you can use with annotations:

• typing.Any

• Simple types and classes
• typing.Optional and typing.Union
• Generic collections, including tuples and mappings
• Abstract base classes
• Generic iterables
• Parameterized generics and TypeVar
• typing.Protocols—the key to static duck typing
• typing.Callable

• typing.NoReturn—a good way to end this list

We’ll cover each of these in turn, starting with a type that is strange, apparently use‐
less, but crucially important.

The Any Type
The keystone of any gradual type system is the Any type, also known as the dynamic
type. When a type checker sees an untyped function like this:

def double(x):
 return x * 2

it assumes this:

def double(x: Any) -> Any:
 return x * 2

That means the x argument and the return value can be of any type, including differ‐
ent types. Any is assumed to support every possible operation.

Contrast Any with object. Consider this signature:

def double(x: object) -> object:

This function also accepts arguments of every type, because every type is a subtype-of
object.

266 | Chapter 8: Type Hints in Functions

However, a type checker will reject this function:

def double(x: object) -> object:
 return x * 2

The problem is that object does not support the __mul__ operation. This is what
Mypy reports:

…/birds/ $ mypy double_object.py
double_object.py:2: error: Unsupported operand types for * ("object" and "int")
Found 1 error in 1 file (checked 1 source file)

More general types have narrower interfaces, i.e., they support fewer operations. The
object class implements fewer operations than abc.Sequence, which implements
fewer operations than abc.MutableSequence, which implements fewer operations
than list.

But Any is a magic type that sits at the top and the bottom of the type hierarchy. It’s
simultaneously the most general type—so that an argument n: Any accepts values of
every type—and the most specialized type, supporting every possible operation. At
least, that’s how the type checker understands Any.

Of course, no type can support every possible operation, so using Any prevents the
type checker from fulfilling its core mission: detecting potentially illegal operations
before your program crashes with a runtime exception.

Subtype-of versus consistent-with
Traditional object-oriented nominal type systems rely on the is subtype-of relation‐
ship. Given a class T1 and a subclass T2, then T2 is subtype-of T1.

Consider this code:

class T1:
 ...

class T2(T1):
 ...

def f1(p: T1) -> None:
 ...

o2 = T2()

f1(o2) # OK

Types Usable in Annotations | 267

7 MIT Professor, programming language designer, and Turing Award recipient. Wikipedia: Barbara Liskov.

The call f1(o2) is an application of the Liskov Substitution Principle—LSP. Barbara
Liskov7 actually defined is subtype-of in terms of supported operations: if an object of
type T2 substitutes an object of type T1 and the program still behaves correctly, then
T2 is subtype-of T1.

Continuing from the previous code, this shows a violation of the LSP:

def f2(p: T2) -> None:
 ...

o1 = T1()

f2(o1) # type error

From the point of view of supported operations, this makes perfect sense: as a sub‐
class, T2 inherits and must support all operations that T1 does. So an instance of T2
can be used anywhere an instance of T1 is expected. But the reverse is not necessarily
true: T2 may implement additional methods, so an instance of T1 may not be used
everywhere an instance of T2 is expected. This focus on supported operations is
reflected in the name behavioral subtyping, also used to refer to the LSP.

In a gradual type system, there is another relationship: consistent-with, which applies
wherever subtype-of applies, with special provisions for type Any.

The rules for consistent-with are:

1. Given T1 and a subtype T2, then T2 is consistent-with T1 (Liskov substitution).
2. Every type is consistent-with Any: you can pass objects of every type to an argu‐

ment declared of type Any.
3. Any is consistent-with every type: you can always pass an object of type Any where

an argument of another type is expected.

Considering the previous definitions of the objects o1 and o2, here are examples of
valid code, illustrating rules #2 and #3:

def f3(p: Any) -> None:
 ...

o0 = object()
o1 = T1()
o2 = T2()

f3(o0) #
f3(o1) # all OK: rule #2
f3(o2) #

268 | Chapter 8: Type Hints in Functions

https://fpy.li/8-14
https://fpy.li/8-15

def f4(): # implicit return type: `Any`
 ...

o4 = f4() # inferred type: `Any`

f1(o4) #
f2(o4) # all OK: rule #3
f3(o4) #

Every gradual type system needs a wildcard type like Any.

The verb “to infer” is a fancy synomym for “to guess,” used in the
context of type analysis. Modern type checkers in Python and other
languages don’t require type annotations everywhere because they
can infer the type of many expressions. For example, if I write x =
len(s) * 10, the type checker doesn’t need an explicit local decla‐
ration to know that x is an int, as long as it can find type hints for
the len built-in.

Now we can explore the rest of the types used in annotations.

Simple Types and Classes
Simple types like int, float, str, and bytes may be used directly in type hints. Con‐
crete classes from the standard library, external packages, or user defined—French

Deck, Vector2d, and Duck—may also be used in type hints.

Abstract base classes are also useful in type hints. We’ll get back to them as we study
collection types, and in “Abstract Base Classes” on page 278.

Among classes, consistent-with is defined like subtype-of: a subclass is consistent-with
all its superclasses.

However, “practicality beats purity,” so there is an important exception, which I dis‐
cuss in the following tip.

int Is Consistent-With complex

There is no nominal subtype relationship between the built-in
types int, float, and complex: they are direct subclasses of object.
But PEP 484 declares that int is consistent-with float, and float
is consistent-with complex. It makes sense in practice: int imple‐
ments all operations that float does, and int implements addi‐
tional ones as well—bitwise operations like &, |, <<, etc. The end
result is: int is consistent-with complex. For i = 3, i.real is 3, and
i.imag is 0.

Types Usable in Annotations | 269

https://fpy.li/cardxvi

8 To be more precise, ord only accepts str or bytes with len(s) == 1. But the type system currently can’t
express this constraint.

Optional and Union Types
We saw the Optional special type in “Using None as a Default” on page 260. It solves
the problem of having None as a default, as in this example from that section:

from typing import Optional

def show_count(count: int, singular: str, plural: Optional[str] = None) -> str:

The construct Optional[str] is actually a shortcut for Union[str, None], which
means the type of plural may be str or None.

Better Syntax for Optional and Union in Python 3.10

We can write str | bytes instead of Union[str, bytes] since
Python 3.10. It’s less typing, and there’s no need to import
Optional or Union from typing. Contrast the old and new syntax
for the type hint of the plural parameter of show_count:

plural: Optional[str] = None # before
plural: str | None = None # after

The | operator also works with isinstance and issubclass to
build the second argument: isinstance(x, int | str). For
more, see PEP 604—Complementary syntax for Union[].

The ord built-in function’s signature is a simple example of Union—it accepts str or
bytes, and returns an int:8

def ord(c: Union[str, bytes]) -> int: ...

Here is an example of a function that takes a str, but may return a str or a float:

from typing import Union

def parse_token(token: str) -> Union[str, float]:
 try:
 return float(token)
 except ValueError:
 return token

If possible, avoid creating functions that return Union types, as they put an extra bur‐
den on the user—forcing them to check the type of the returned value at runtime to
know what to do with it. But the parse_token in the preceding code is a reasonable
use case in the context of a simple expression evaluator.

270 | Chapter 8: Type Hints in Functions

https://fpy.li/pep604

9 In ABC—the language that most influenced the initial design of Python—each list was constrained to accept
values of a single type: the type of the first item you put into it.

In “Dual-Mode str and bytes APIs” on page 155, we saw functions
that accept either str or bytes arguments, but return str if the
argument was str or bytes if the arguments was bytes. In those
cases, the return type is determined by the input type, so Union is
not an accurate solution. To properly annotate such functions, we
need a type variable—presented in “Parameterized Generics and
TypeVar” on page 282—or overloading, which we’ll see in “Overloa‐
ded Signatures” on page 520.

Union[] requires at least two types. Nested Union types have the same effect as a flat‐
tened Union. So this type hint:

Union[A, B, Union[C, D, E]]

is the same as:

Union[A, B, C, D, E]

Union is more useful with types that are not consistent among themselves. For exam‐
ple: Union[int, float] is redundant because int is consistent-with float. If you just
use float to annotate the parameter, it will accept int values as well.

Generic Collections
Most Python collections are heterogeneous. For example, you can put any mixture of
different types in a list. However, in practice that’s not very useful: if you put
objects in a collection, you are likely to want to operate on them later, and usually
this means they must share at least one common method.9

Generic types can be declared with type parameters to specify the type of the items
they can handle.

For example, a list can be parameterized to constrain the type of the elements in it,
as you can see in Example 8-8.

Example 8-8. tokenize with type hints for Python ≥ 3.9

def tokenize(text: str) -> list[str]:
 return text.upper().split()

In Python ≥ 3.9, it means that tokenize returns a list where every item is of type
str.

Types Usable in Annotations | 271

The annotations stuff: list and stuff: list[Any] mean the same thing: stuff is
a list of objects of any type.

If you are using Python 3.8 or earlier, the concept is the same, but
you need more code to make it work—as explained in the optional
box “Legacy Support and Deprecated Collection Types” on page 272.

PEP 585—Type Hinting Generics In Standard Collections lists collections from the
standard library accepting generic type hints. The following list shows only those col‐
lections that use the simplest form of generic type hint, container[item]:

list collections.deque abc.Sequence abc.MutableSequence
set abc.Container abc.Set abc.MutableSet
frozenset abc.Collection

The tuple and mapping types support more complex type hints, as we’ll see in their
respective sections.

As of Python 3.10, there is no good way to annotate array.array, taking into
account the typecode constructor argument, which determines whether integers or
floats are stored in the array. An even harder problem is how to type check integer
ranges to prevent OverflowError at runtime when adding elements to arrays. For
example, an array with typecode='B' can only hold int values from 0 to 255. Cur‐
rently, Python’s static type system is not up to this challenge.

Legacy Support and Deprecated Collection Types
(You may skip this box if you only use Python 3.9 or later.)

For Python 3.7 and 3.8, you need a __future__ import to make the [] notation work
with built-in collections such as list, as shown in Example 8-9.

Example 8-9. tokenize with type hints for Python ≥ 3.7

from __future__ import annotations

def tokenize(text: str) -> list[str]:
 return text.upper().split()

The __future__ import does not work with Python 3.6 or earlier. Example 8-10
shows how to annotate tokenize in a way that works with Python ≥ 3.5.

Example 8-10. tokenize with type hints for Python ≥ 3.5

from typing import List

272 | Chapter 8: Type Hints in Functions

https://fpy.li/8-16

10 One of my contributions to the typing module documentation was to add dozens of deprecation warnings as
I reorganized the entries below “Module Contents” into subsections, under the supervision of Guido van
Rossum.

def tokenize(text: str) -> List[str]:
 return text.upper().split()

To provide the initial support for generic type hints, the authors of PEP 484 created
dozens of generic types in the typing module. Table 8-1 shows some of them. For the
full list, visit the typing documentation.

Table 8-1. Some collection types and their type hint equivalents

Collection Type hint equivalent

list typing.List

set typing.Set

frozenset typing.FrozenSet

collections.deque typing.Deque

collections.abc.MutableSequence typing.MutableSequence

collections.abc.Sequence typing.Sequence

collections.abc.Set typing.AbstractSet

collections.abc.MutableSet typing.MutableSet

PEP 585—Type Hinting Generics In Standard Collections started a multiyear process
to improve the usability of generic type hints. We can summarize that process in four
steps:

1. Introduce from __future__ import annotations in Python 3.7 to enable the
use of standard library classes as generics with list[str] notation.

2. Make that behavior the default in Python 3.9: list[str] now works without the
future import.

3. Deprecate all the redundant generic types from the typing module.10 Depreca‐
tion warnings will not be issued by the Python interpreter because type checkers
should flag the deprecated types when the checked program targets Python 3.9 or
newer.

4. Remove those redundant generic types in the first version of Python released five
years after Python 3.9. At the current cadence, that could be Python 3.14, a.k.a
Python Pi.

Now let’s see how to annotate generic tuples.

Types Usable in Annotations | 273

https://fpy.li/8-17
https://fpy.li/typing
https://fpy.li/pep585

Tuple Types
There are three ways to annotate tuple types:

• Tuples as records
• Tuples as records with named fields
• Tuples as immutable sequences

Tuples as records

If you’re using a tuple as a record, use the tuple built-in and declare the types of the
fields within [].

For example, the type hint would be tuple[str, float, str] to accept a tuple with
city name, population, and country: ('Shanghai', 24.28, 'China').

Consider a function that takes a pair of geographic coordinates and returns a Geo‐
hash, used like this:

>>> shanghai = 31.2304, 121.4737
>>> geohash(shanghai)
'wtw3sjq6q'

Example 8-11 shows how geohash is defined, using the geolib package from PyPI.

Example 8-11. coordinates.py with the geohash function

from geolib import geohash as gh # type: ignore

PRECISION = 9

def geohash(lat_lon: tuple[float, float]) -> str:
 return gh.encode(*lat_lon, PRECISION)

This comment stops Mypy from reporting that the geolib package doesn’t have
type hints.

lat_lon parameter annotated as a tuple with two float fields.

For Python < 3.9, import and use typing.Tuple in type hints. It is
deprecated but will remain in the standard library at least until
2024.

274 | Chapter 8: Type Hints in Functions

https://fpy.li/8-18
https://fpy.li/8-18

Tuples as records with named fields
To annotate a tuple with many fields, or specific types of tuple your code uses in
many places, I highly recommend using typing.NamedTuple, as seen in Chapter 5.
Example 8-12 shows a variation of Example 8-11 with NamedTuple.

Example 8-12. coordinates_named.py with the NamedTuple Coordinates and the geo
hash function

from typing import NamedTuple

from geolib import geohash as gh # type: ignore

PRECISION = 9

class Coordinate(NamedTuple):
 lat: float
 lon: float

def geohash(lat_lon: Coordinate) -> str:
 return gh.encode(*lat_lon, PRECISION)

As explained in “Overview of Data Class Builders” on page 164, typing.NamedTuple
is a factory for tuple subclasses, so Coordinate is consistent-with tuple[float,
float] but the reverse is not true—after all, Coordinate has extra methods added by
NamedTuple, like ._asdict(), and could also have user-defined methods.

In practice, this means that it is type safe to pass a Coordinate instance to the dis
play function defined in the following:

def display(lat_lon: tuple[float, float]) -> str:
 lat, lon = lat_lon
 ns = 'N' if lat >= 0 else 'S'
 ew = 'E' if lon >= 0 else 'W'
 return f'{abs(lat):0.1f}°{ns}, {abs(lon):0.1f}°{ew}'

Tuples as immutable sequences
To annotate tuples of unspecified length that are used as immutable lists, you must
specify a single type, followed by a comma and ... (that’s Python’s ellipsis token,
made of three periods, not Unicode U+2026—HORIZONTAL ELLIPSIS).

For example, tuple[int, ...] is a tuple with int items.

The ellipsis indicates that any number of elements >= 1 is acceptable. There is no way
to specify fields of different types for tuples of arbitrary length.

The annotations stuff: tuple[Any, ...] and stuff: tuple mean the same thing:
stuff is a tuple of unspecified length with objects of any type.

Types Usable in Annotations | 275

Here is a columnize function that transforms a sequence into a table of rows and cells
in the form of a list of tuples with unspecified lengths. This is useful to display items
in columns, like this:

>>> animals = 'drake fawn heron ibex koala lynx tahr xerus yak zapus'.split()
>>> table = columnize(animals)
>>> table
[('drake', 'koala', 'yak'), ('fawn', 'lynx', 'zapus'), ('heron', 'tahr'),
 ('ibex', 'xerus')]
>>> for row in table:
... print(''.join(f'{word:10}' for word in row))
...
drake koala yak
fawn lynx zapus
heron tahr
ibex xerus

Example 8-13 shows the implementation of columnize. Note the return type:

list[tuple[str, ...]]

Example 8-13. columnize.py returns a list of tuples of strings

from collections.abc import Sequence

def columnize(
 sequence: Sequence[str], num_columns: int = 0
) -> list[tuple[str, ...]]:
 if num_columns == 0:
 num_columns = round(len(sequence) ** 0.5)
 num_rows, reminder = divmod(len(sequence), num_columns)
 num_rows += bool(reminder)
 return [tuple(sequence[i::num_rows]) for i in range(num_rows)]

Generic Mappings
Generic mapping types are annotated as MappingType[KeyType, ValueType]. The
built-in dict and the mapping types in collections and collections.abc accept
that notation in Python ≥ 3.9. For earlier versions, you must use typing.Dict and
other mapping types from the typing module, as described in “Legacy Support and
Deprecated Collection Types” on page 272.

Example 8-14 shows a practical use of a function returning an inverted index to
search Unicode characters by name—a variation of Example 4-21 more suitable for
server-side code that we’ll study in Chapter 21.

Given starting and ending Unicode character codes, name_index returns a dict[str,
set[str]], which is an inverted index mapping each word to a set of characters that
have that word in their names. For example, after indexing ASCII characters from 32

276 | Chapter 8: Type Hints in Functions

https://fpy.li/8-19

to 64, here are the sets of characters mapped to the words 'SIGN' and 'DIGIT', and
how to find the character named 'DIGIT EIGHT':

>>> index = name_index(32, 65)
>>> index['SIGN']
{'$', '>', '=', '+', '<', '%', '#'}
>>> index['DIGIT']
{'8', '5', '6', '2', '3', '0', '1', '4', '7', '9'}
>>> index['DIGIT'] & index['EIGHT']
{'8'}

Example 8-14 shows the source code for charindex.py with the name_index function.
Besides a dict[] type hint, this example has three features appearing for the first
time in the book.

Example 8-14. charindex.py

import sys
import re
import unicodedata
from collections.abc import Iterator

RE_WORD = re.compile(r'\w+')
STOP_CODE = sys.maxunicode + 1

def tokenize(text: str) -> Iterator[str]:
 """return iterable of uppercased words"""
 for match in RE_WORD.finditer(text):
 yield match.group().upper()

def name_index(start: int = 32, end: int = STOP_CODE) -> dict[str, set[str]]:
 index: dict[str, set[str]] = {}
 for char in (chr(i) for i in range(start, end)):
 if name := unicodedata.name(char, ''):
 for word in tokenize(name):
 index.setdefault(word, set()).add(char)
 return index

tokenize is a generator function. Chapter 17 is about generators.

The local variable index is annotated. Without the hint, Mypy says: Need type
annotation for 'index' (hint: "index: dict[<type>, <type>] = ...").

Types Usable in Annotations | 277

11 I use := when it makes sense in a few examples, but I don’t cover it in the book. Please see PEP 572—Assign‐
ment Expressions for all the gory details.

12 Actually, dict is a virtual subclass of abc.MutableMapping. The concept of a virtual subclass is explained in
Chapter 13. For now, know that issubclass(dict, abc.MutableMapping) is True, despite the fact that dict
is implemented in C and does not inherit anything from abc.MutableMapping, but only from object.

I used the walrus operator := in the if condition. It assigns the result of the uni
codedata.name() call to name, and the whole expression evaluates to that result.
When the result is '', that’s falsy, and the index is not updated.11

When using a dict as a record, it is common to have all keys of the
str type, with values of different types depending on the keys. That
is covered in “TypedDict” on page 526.

Abstract Base Classes
Be conservative in what you send, be liberal in what you accept.

—Postel’s law, a.k.a. the Robustness Principle

Table 8-1 lists several abstract classes from collections.abc. Ideally, a function
should accept arguments of those abstract types—or their typing equivalents before
Python 3.9—and not concrete types. This gives more flexibility to the caller.

Consider this function signature:

from collections.abc import Mapping

def name2hex(name: str, color_map: Mapping[str, int]) -> str:

Using abc.Mapping allows the caller to provide an instance of dict, defaultdict,
ChainMap, a UserDict subclass, or any other type that is a subtype-of Mapping.

In contrast, consider this signature:

def name2hex(name: str, color_map: dict[str, int]) -> str:

Now color_map must be a dict or one of its subtypes, such as defaultDict or
OrderedDict. In particular, a subclass of collections.UserDict would not pass
the type check for color_map, despite being the recommended way to create
user-defined mappings, as we saw in “Subclassing UserDict Instead of dict” on page
97. Mypy would reject a UserDict or an instance of a class derived from it, because
UserDict is not a subclass of dict; they are siblings. Both are subclasses of
abc.MutableMapping.12

278 | Chapter 8: Type Hints in Functions

https://fpy.li/pep572
https://fpy.li/pep572

Therefore, in general it’s better to use abc.Mapping or abc.MutableMapping in
parameter type hints, instead of dict (or typing.Dict in legacy code). If the
name2hex function doesn’t need to mutate the given color_map, the most accurate
type hint for color_map is abc.Mapping. That way, the caller doesn’t need to provide
an object that implements methods like setdefault, pop, and update, which are part
of the MutableMapping interface, but not of Mapping. This has to do with the second
part of Postel’s law: “Be liberal in what you accept.”

Postel’s law also tells us to be conservative in what we send. The return value of a
function is always a concrete object, so the return type hint should be a concrete type,
as in the example from “Generic Collections” on page 271—which uses list[str]:

def tokenize(text: str) -> list[str]:
 return text.upper().split()

Under the entry of typing.List, the Python documentation says:

Generic version of list. Useful for annotating return types. To annotate arguments it
is preferred to use an abstract collection type such as Sequence or Iterable.

A similar comment appears in the entries for typing.Dict and typing.Set.

Remember that most ABCs from collections.abc and other concrete classes from
collections, as well as built-in collections, support generic type hint notation like
collections.deque[str] starting with Python 3.9. The corresponding typing col‐
lections are only needed to support code written in Python 3.8 or earlier. The full list
of classes that became generic appears in the “Implementation” section of PEP 585—
Type Hinting Generics In Standard Collections.

To wrap up our discussion of ABCs in type hints, we need to talk about the numbers
ABCs.

The fall of the numeric tower

The numbers package defines the so-called numeric tower described in PEP 3141—A
Type Hierarchy for Numbers. The tower is linear hierarchy of ABCs, with Number at
the top:

• Number

• Complex

• Real

• Rational

• Integral

Types Usable in Annotations | 279

https://fpy.li/8-20
https://fpy.li/8-21
https://fpy.li/8-22
https://fpy.li/8-16
https://fpy.li/pep585
https://fpy.li/pep585
https://fpy.li/8-24
https://fpy.li/pep3141
https://fpy.li/pep3141

Those ABCs work perfectly well for runtime type checking, but they are not sup‐
ported for static type checking. The “Numeric Tower” section of PEP 484 rejects the
numbers ABCs and dictates that the built-in types complex, float, and int should
be treated as special cases, as explained in “int Is Consistent-With complex” on page
269.

We’ll come back to this issue in “The numbers ABCs and Numeric Protocols” on
page 478, in Chapter 13, which is devoted to contrasting protocols and ABCs.

In practice, if you want to annotate numeric arguments for static type checking, you
have a few options:

1. Use one of the concrete types int, float, or complex—as recommended by PEP
488.

2. Declare a union type like Union[float, Decimal, Fraction].
3. If you want to avoid hardcoding concrete types, use numeric protocols like Sup

portsFloat, covered in “Runtime Checkable Static Protocols” on page 468.

The upcoming section “Static Protocols” on page 286 is a prerequisite for understand‐
ing the numeric protocols.

Meanwhile, let’s get to one of the most useful ABCs for type hints: Iterable.

Iterable
The typing.List documentation I just quoted recommends Sequence and Iterable
for function parameter type hints.

One example of the Iterable argument appears in the math.fsum function from the
standard library:

def fsum(__seq: Iterable[float]) -> float:

Stub Files and the Typeshed Project

As of Python 3.10, the standard library has no annotations, but
Mypy, PyCharm, etc. can find the necessary type hints in the
Typeshed project, in the form of stub files: special source files with
a .pyi extension that have annotated function and method signa‐
tures, without the implementation—much like header files in C.
The signature for math.fsum is in /stdlib/2and3/math.pyi. The lead‐
ing underscores in __seq are a PEP 484 convention for positional-
only parameters, explained in “Annotating Positional Only and
Variadic Parameters” on page 295.

280 | Chapter 8: Type Hints in Functions

https://fpy.li/cardxvi
https://fpy.li/8-20
https://fpy.li/8-26
https://fpy.li/8-27

Example 8-15 is another example using an Iterable parameter that produces items
that are tuple[str, str]. Here is how the function is used:

>>> l33t = [('a', '4'), ('e', '3'), ('i', '1'), ('o', '0')]
>>> text = 'mad skilled noob powned leet'
>>> from replacer import zip_replace
>>> zip_replace(text, l33t)
'm4d sk1ll3d n00b p0wn3d l33t'

Example 8-15 shows how it’s implemented.

Example 8-15. replacer.py

from collections.abc import Iterable

FromTo = tuple[str, str]

def zip_replace(text: str, changes: Iterable[FromTo]) -> str:
 for from_, to in changes:
 text = text.replace(from_, to)
 return text

FromTo is a type alias: I assigned tuple[str, str] to FromTo, to make the signa‐
ture of zip_replace more readable.

changes needs to be an Iterable[FromTo]; that’s the same as Itera

ble[tuple[str, str]], but shorter and easier to read.

Explicit TypeAlias in Python 3.10

PEP 613—Explicit Type Aliases introduced a special type, TypeA
lias, to make the assignments that create type aliases more visible
and easier to type check. Starting with Python 3.10, this is the pre‐
ferred way to create type aliases:

from typing import TypeAlias

FromTo: TypeAlias = tuple[str, str]

abc.Iterable versus abc.Sequence

Both math.fsum and replacer.zip_replace must iterate over the entire Iterable
arguments to return a result. Given an endless iterable such as the itertools.cycle
generator as input, these functions would consume all memory and crash the Python
process. Despite this potential danger, it is fairly common in modern Python to offer
functions that accept an Iterable input even if they must process it completely to
return a result. That gives the caller the option of providing input data as a generator

Types Usable in Annotations | 281

https://fpy.li/pep613

instead of a prebuilt sequence, potentially saving a lot of memory if the number of
input items is large.

On the other hand, the columnize function from Example 8-13 needs a Sequence
parameter, and not an Iterable, because it must get the len() of the input to com‐
pute the number of rows up front.

Like Sequence, Iterable is best used as a parameter type. It’s too vague as a return
type. A function should be more precise about the concrete type it returns.

Closely related to Iterable is the Iterator type, used as a return type in
Example 8-14. We’ll get back to it in Chapter 17, which is about generators and
classic iterators.

Parameterized Generics and TypeVar
A parameterized generic is a generic type, written as list[T], where T is a type vari‐
able that will be bound to a specific type with each usage. This allows a parameter
type to be reflected on the result type.

Example 8-16 defines sample, a function that takes two arguments: a Sequence of ele‐
ments of type T, and an int. It returns a list of elements of the same type T, picked
at random from the first argument.

Example 8-16 shows the implementation.

Example 8-16. sample.py

from collections.abc import Sequence
from random import shuffle
from typing import TypeVar

T = TypeVar('T')

def sample(population: Sequence[T], size: int) -> list[T]:
 if size < 1:
 raise ValueError('size must be >= 1')
 result = list(population)
 shuffle(result)
 return result[:size]

Here are two examples of why I used a type variable in sample:

• If called with a tuple of type tuple[int, ...]—which is consistent-with
Sequence[int]—then the type parameter is int, so the return type is list[int].

282 | Chapter 8: Type Hints in Functions

13 The implementation here is simpler than the one in the Python standard library statistics module.

• If called with a str—which is consistent-with Sequence[str]—then the type
parameter is str, so the return type is list[str].

Why Is TypeVar Needed?

The authors of PEP 484 wanted to introduce type hints by adding
the typing module and not changing anything else in the language.
With clever metaprogramming they could make the [] operator
work on classes like Sequence[T]. But the name of the T variable
inside the brackets must be defined somewhere—otherwise the
Python interpreter would need deep changes to support generic
type notation as special use of []. That’s why the typing.TypeVar
constructor is needed: to introduce the variable name in the cur‐
rent namespace. Languages such as Java, C#, and TypeScript don’t
require the name of type variable to be declared beforehand, so
they have no equivalent of Python’s TypeVar class.

Another example is the statistics.mode function from the standard library, which
returns the most common data point from a series.

Here is one usage example from the documentation:

>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
3

Without using a TypeVar, mode could have the signature shown in Example 8-17.

Example 8-17. mode_float.py: mode that operates on float and subtypes13

from collections import Counter
from collections.abc import Iterable

def mode(data: Iterable[float]) -> float:
 pairs = Counter(data).most_common(1)
 if len(pairs) == 0:
 raise ValueError('no mode for empty data')
 return pairs[0][0]

Many uses of mode involve int or float values, but Python has other numerical
types, and it is desirable that the return type follows the element type of the given
Iterable. We can improve that signature using TypeVar. Let’s start with a simple,
but wrong, parameterized signature:

Types Usable in Annotations | 283

https://fpy.li/8-29
https://fpy.li/8-28

from collections.abc import Iterable
from typing import TypeVar

T = TypeVar('T')

def mode(data: Iterable[T]) -> T:

When it first appears in the signature, the type parameter T can be any type. The sec‐
ond time it appears, it will mean the same type as the first.

Therefore, every iterable is consistent-with Iterable[T], including iterables of
unhashable types that collections.Counter cannot handle. We need to restrict the
possible types assigned to T. We’ll see two ways of doing that in the next two sections.

Restricted TypeVar

TypeVar accepts extra positional arguments to restrict the type parameter. We can
improve the signature of mode to accept specific number types, like this:

from collections.abc import Iterable
from decimal import Decimal
from fractions import Fraction
from typing import TypeVar

NumberT = TypeVar('NumberT', float, Decimal, Fraction)

def mode(data: Iterable[NumberT]) -> NumberT:

That’s better than before, and it was the signature for mode in the statistics.pyi stub file
on typeshed on May 25, 2020.

However, the statistics.mode documentation includes this example:

>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
'red'

In a hurry, we could just add str to the NumberT definition:

NumberT = TypeVar('NumberT', float, Decimal, Fraction, str)

That certainly works, but NumberT is badly misnamed if it accepts str. More impor‐
tantly, we can’t keep listing types forever, as we realize mode can deal with them. We
can do better with another feature of TypeVar, introduced next.

Bounded TypeVar

Looking at the body of mode in Example 8-17, we see that the Counter class is used for
ranking. Counter is based on dict, therefore the element type of the data iterable
must be hashable.

At first, this signature may seem to work:

284 | Chapter 8: Type Hints in Functions

https://fpy.li/8-30
https://fpy.li/8-28

14 I contributed this solution to typeshed, and that’s how mode is annotated on statistics.pyi as of May 26, 2020.

from collections.abc import Iterable, Hashable

def mode(data: Iterable[Hashable]) -> Hashable:

Now the problem is that the type of the returned item is Hashable: an ABC that
implements only the __hash__ method. So the type checker will not let us do any‐
thing with the return value except call hash() on it. Not very useful.

The solution is another optional parameter of TypeVar: the bound keyword parame‐
ter. It sets an upper boundary for the acceptable types. In Example 8-18, we have
bound=Hashable, which means the type parameter may be Hashable or any subtype-
of it.14

Example 8-18. mode_hashable.py: same as Example 8-17, with a more flexible
signature

from collections import Counter
from collections.abc import Iterable, Hashable
from typing import TypeVar

HashableT = TypeVar('HashableT', bound=Hashable)

def mode(data: Iterable[HashableT]) -> HashableT:
 pairs = Counter(data).most_common(1)
 if len(pairs) == 0:
 raise ValueError('no mode for empty data')
 return pairs[0][0]

To summarize:

• A restricted type variable will be set to one of the types named in the TypeVar
declaration.

• A bounded type variable will be set to the inferred type of the expression—as
long as the inferred type is consistent-with the boundary declared in the bound=
keyword argument of TypeVar.

It is unfortunate that the keyword argument to declare a bounded
TypeVar is named bound=, because the verb “to bind” is commonly
used to mean setting the value of a variable, which in the reference
semantics of Python is best described as binding a name to the
value. It would have been less confusing if the keyword argument
was named boundary=.

Types Usable in Annotations | 285

https://fpy.li/8-32

The typing.TypeVar constructor has other optional parameters—covariant and con
travariant—that we’ll cover in Chapter 15, “Variance” on page 544.

Let’s conclude this introduction to TypeVar with AnyStr.

The AnyStr predefined type variable

The typing module includes a predefined TypeVar named AnyStr. It’s defined like
this:

AnyStr = TypeVar('AnyStr', bytes, str)

AnyStr is used in many functions that accept either bytes or str, and return values
of the given type.

Now, on to typing.Protocol, a new feature of Python 3.8 that can support more
Pythonic use of type hints.

Static Protocols

In object-oriented programming, the concept of a “protocol” as an
informal interface is as old as Smalltalk, and is an essential part of
Python from the beginning. However, in the context of type hints,
a protocol is a typing.Protocol subclass defining an interface that
a type checker can verify. Both kinds of protocols are covered in
Chapter 13. This is just a brief introduction in the context of func‐
tion annotations.

The Protocol type, as presented in PEP 544—Protocols: Structural subtyping (static
duck typing), is similar to interfaces in Go: a protocol type is defined by specifying
one or more methods, and the type checker verifies that those methods are imple‐
mented where that protocol type is required.

In Python, a protocol definition is written as a typing.Protocol subclass. However,
classes that implement a protocol don’t need to inherit, register, or declare any rela‐
tionship with the class that defines the protocol. It’s up to the type checker to find the
available protocol types and enforce their usage.

Here is a problem that can be solved with the help of Protocol and TypeVar. Suppose
you want to create a function top(it, n) that returns the largest n elements of the
iterable it:

>>> top([4, 1, 5, 2, 6, 7, 3], 3)
[7, 6, 5]
>>> l = 'mango pear apple kiwi banana'.split()
>>> top(l, 3)
['pear', 'mango', 'kiwi']

286 | Chapter 8: Type Hints in Functions

https://fpy.li/pep544
https://fpy.li/pep544

15 How wonderful it is to open an interactive console and rely on duck typing to explore language features like I
just did. I badly miss this kind of exploration when I use languages that don’t support it.

>>>
>>> l2 = [(len(s), s) for s in l]
>>> l2
[(5, 'mango'), (4, 'pear'), (5, 'apple'), (4, 'kiwi'), (6, 'banana')]
>>> top(l2, 3)
[(6, 'banana'), (5, 'mango'), (5, 'apple')]

A parameterized generic top would look like what’s shown in Example 8-19.

Example 8-19. top function with an undefined T type parameter

def top(series: Iterable[T], length: int) -> list[T]:
 ordered = sorted(series, reverse=True)
 return ordered[:length]

The problem is how to constrain T? It cannot be Any or object, because the series
must work with sorted. The sorted built-in actually accepts Iterable[Any], but
that’s because the optional parameter key takes a function that computes an arbitrary
sort key from each element. What happens if you give sorted a list of plain objects
but don’t provide a key argument? Let’s try that:

>>> l = [object() for _ in range(4)]
>>> l
[<object object at 0x10fc2fca0>, <object object at 0x10fc2fbb0>,
<object object at 0x10fc2fbc0>, <object object at 0x10fc2fbd0>]
>>> sorted(l)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: '<' not supported between instances of 'object' and 'object'

The error message shows that sorted uses the < operator on the elements of the itera‐
ble. Is this all it takes? Let’s do another quick experiment:15

>>> class Spam:
... def __init__(self, n): self.n = n
... def __lt__(self, other): return self.n < other.n
... def __repr__(self): return f'Spam({self.n})'
...
>>> l = [Spam(n) for n in range(5, 0, -1)]
>>> l
[Spam(5), Spam(4), Spam(3), Spam(2), Spam(1)]
>>> sorted(l)
[Spam(1), Spam(2), Spam(3), Spam(4), Spam(5)]

That confirms it: I can sort a list of Spam because Spam implements __lt__—the spe‐
cial method that supports the < operator.

Types Usable in Annotations | 287

So the T type parameter in Example 8-19 should be limited to types that implement
__lt__. In Example 8-18 we needed a type parameter that implemented __hash__, so
we were able to use typing.Hashable as the upper bound for the type parameter. But
now there is no suitable type in typing or abc to use, so we need to create it.

Example 8-20 shows the new SupportsLessThan type, a Protocol.

Example 8-20. comparable.py: definition of a SupportsLessThan Protocol type

from typing import Protocol, Any

class SupportsLessThan(Protocol):
 def __lt__(self, other: Any) -> bool: ...

A protocol is a subclass of typing.Protocol.

The body of the protocol has one or more method definitions, with ... in their
bodies.

A type T is consistent-with a protocol P if T implements all the methods defined in P,
with matching type signatures.

Given SupportsLessThan, we can now define this working version of top in
Example 8-21.

Example 8-21. top.py: definition of the top function using a TypeVar with bound=Sup
portsLessThan

from collections.abc import Iterable
from typing import TypeVar

from comparable import SupportsLessThan

LT = TypeVar('LT', bound=SupportsLessThan)

def top(series: Iterable[LT], length: int) -> list[LT]:
 ordered = sorted(series, reverse=True)
 return ordered[:length]

Let’s test-drive top. Example 8-22 shows part of a test suite for use with pytest. It
tries calling top first with a generator expression that yields tuple[int, str], and
then with a list of object. With the list of object, we expect to get a TypeError
exception.

288 | Chapter 8: Type Hints in Functions

16 Without this type hint, Mypy would infer the type of series as Generator[Tuple[builtins.int, buil
tins.str*], None, None], which is verbose but consistent-with Iterator[tuple[int, str]], as we’ll see in
“Generic Iterable Types” on page 639.

Example 8-22. top_test.py: partial listing of the test suite for top

from collections.abc import Iterator
from typing import TYPE_CHECKING

import pytest

from top import top

several lines omitted

def test_top_tuples() -> None:
 fruit = 'mango pear apple kiwi banana'.split()
 series: Iterator[tuple[int, str]] = (
 (len(s), s) for s in fruit)
 length = 3
 expected = [(6, 'banana'), (5, 'mango'), (5, 'apple')]
 result = top(series, length)
 if TYPE_CHECKING:
 reveal_type(series)
 reveal_type(expected)
 reveal_type(result)
 assert result == expected

intentional type error
def test_top_objects_error() -> None:
 series = [object() for _ in range(4)]
 if TYPE_CHECKING:
 reveal_type(series)
 with pytest.raises(TypeError) as excinfo:
 top(series, 3)
 assert "'<' not supported" in str(excinfo.value)

The typing.TYPE_CHECKING constant is always False at runtime, but type check‐
ers pretend it is True when they are type checking.

Explicit type declaration for the series variable, to make the Mypy output easier
to read.16

This if prevents the next three lines from executing when the test runs.

reveal_type() cannot be called at runtime, because it is not a regular function
but a Mypy debugging facility—that’s why there is no import for it. Mypy will

Types Usable in Annotations | 289

output one debugging message for each reveal_type() pseudofunction call,
showing the inferred type of the argument.

This line will be flagged as an error by Mypy.

The preceding tests pass—but they would pass anyway, with or without type hints in
top.py. More to the point, if I check that test file with Mypy, I see that the TypeVar is
working as intended. See the mypy command output in Example 8-23.

As of Mypy 0.910 (July 2021), the output of reveal_type does not
show precisely the types I declared in some cases, but compatible
types instead. For example, I did not use typing.Iterator but
used abc.Iterator. Please ignore this detail. The Mypy output is
still useful. I will pretend this issue of Mypy is fixed when discus‐
sing the output.

Example 8-23. Output of mypy top_test.py (lines split for readability)

…/comparable/ $ mypy top_test.py
top_test.py:32: note:
 Revealed type is "typing.Iterator[Tuple[builtins.int, builtins.str]]"
top_test.py:33: note:
 Revealed type is "builtins.list[Tuple[builtins.int, builtins.str]]"
top_test.py:34: note:
 Revealed type is "builtins.list[Tuple[builtins.int, builtins.str]]"
top_test.py:41: note:
 Revealed type is "builtins.list[builtins.object*]"
top_test.py:43: error:
 Value of type variable "LT" of "top" cannot be "object"
Found 1 error in 1 file (checked 1 source file)

In test_top_tuples, reveal_type(series) shows it is an Iterator[tuple[int,
str]]—which I explicitly declared.

reveal_type(result) confirms that the type returned by the top call is what I
wanted: given the type of series, the result is list[tuple[int, str]].

In test_top_objects_error, reveal_type(series) shows it is list[object*].
Mypy puts a * after any type that was inferred: I did not annotate the type of
series in this test.

Mypy flags the error that this test intentionally triggers: the element type of the
Iterable series cannot be object (it must be of type SupportsLessThan).

A key advantage of a protocol type over ABCs is that a type doesn’t need any special
declaration to be consistent-with a protocol type. This allows a protocol to be created

290 | Chapter 8: Type Hints in Functions

17 I don’t know who invented the term static duck typing, but it became more popular with the Go language,
which has interface semantics that are more like Python’s protocols than the nominal interfaces of Java.

leveraging preexisting types, or types implemented in code that we do not control. I
don’t need to derive or register str, tuple, float, set, etc. with SupportsLessThan to
use them where a SupportsLessThan parameter is expected. They only need to
implement __lt__. And the type checker will still be able do its job, because Support
sLessThan is explicitly defined as a Protocol—in contrast with the implicit protocols
that are common with duck typing, which are invisible to the type checker.

The special Protocol class was introduced in PEP 544—Protocols: Structural subtyp‐
ing (static duck typing). Example 8-21 demonstrates why this feature is known as
static duck typing: the solution to annotate the series parameter of top was to say
“The nominal type of series doesn’t matter, as long as it implements the __lt__
method.” Python’s duck typing always allowed us to say that implicitly, leaving static
type checkers clueless. A type checker can’t read CPython’s source code in C, or per‐
form console experiments to find out that sorted only requires that the elements
support <.

Now we can make duck typing explicit for static type checkers. That’s why it makes
sense to say that typing.Protocol gives us static duck typing.17

There’s more to see about typing.Protocol. We’ll come back to it in Part IV, where
Chapter 13 contrasts structural typing, duck typing, and ABCs—another approach to
formalizing protocols. In addition, “Overloaded Signatures” on page 520 (Chapter 15)
explains how to declare overloaded function signatures with @typing.overload, and
includes an extensive example using typing.Protocol and a bounded TypeVar.

typing.Protocol makes it possible to annotate the double func‐
tion presented in “Types Are Defined by Supported Operations”
on page 260 without losing functionality. The key is to define a
protocol class with the __mul__ method. I invite you to do that as
an exercise. The solution appears in “The Typed double Function”
on page 466 (Chapter 13).

Callable
To annotate callback parameters or callable objects returned by higher-order func‐
tions, the collections.abc module provides the Callable type, available in the typ
ing module for those not yet using Python 3.9. A Callable type is parameterized like
this:

Callable[[ParamType1, ParamType2], ReturnType]

Types Usable in Annotations | 291

https://fpy.li/pep544
https://fpy.li/pep544

18 REPL stands for Read-Eval-Print-Loop, the basic behavior of interactive interpreters.

The parameter list—[ParamType1, ParamType2]—can have zero or more types.

Here is an example in the context of a repl function, part of a simple interactive
interpreter we’ll see in “Pattern Matching in lis.py: A Case Study” on page 669:18

def repl(input_fn: Callable[[Any], str] = input]) -> None:

During normal usage, the repl function uses Python’s input built-in to read expres‐
sions from the user. However, for automated testing or for integration with other
input sources, repl accepts an optional input_fn parameter: a Callable with the
same parameter and return types as input.

The built-in input has this signature on typeshed:

def input(__prompt: Any = ...) -> str: ...

The input signature is consistent-with this Callable type hint:

Callable[[Any], str]

There is no syntax to annotate optional or keyword argument types. The documenta‐
tion of typing.Callable says “such function types are rarely used as callback types.”
If you need a type hint to match a function with a flexible signature, replace the
whole parameter list with ...—like this:

Callable[..., ReturnType]

The interaction of generic type parameters with a type hierarchy introduces a new
typing concept: variance.

Variance in Callable types

Imagine a temperature control system with a simple update function as shown in
Example 8-24. The update function calls the probe function to get the current tem‐
perature, and calls display to show the temperature to the user. Both probe and dis
play are passed as arguments to update for didactic reasons. The goal of the example
is to contrast two Callable annotations: one with a return type, the other with a
parameter type.

Example 8-24. Illustrating variance.

from collections.abc import Callable

def update(
 probe: Callable[[], float],
 display: Callable[[float], None]

292 | Chapter 8: Type Hints in Functions

https://fpy.li/8-34
https://fpy.li/8-34

) -> None:
 temperature = probe()
 # imagine lots of control code here
 display(temperature)

def probe_ok() -> int:
 return 42

def display_wrong(temperature: int) -> None:
 print(hex(temperature))

update(probe_ok, display_wrong) # type error

def display_ok(temperature: complex) -> None:
 print(temperature)

update(probe_ok, display_ok) # OK

update takes two callables as arguments.

probe must be a callable that takes no arguments and returns a float.

display takes a float argument and returns None.

probe_ok is consistent-with Callable[[], float] because returning an int does
not break code that expects a float.

display_wrong is not consistent-with Callable[[float], None] because there’s
no guarantee that a function that expects an int can handle a float; for example,
Python’s hex function accepts an int but rejects a float.

Mypy flags this line because display_wrong is incompatible with the type hint in
the display parameter of update.

display_ok is consistent-with Callable[[float], None] because a function that
accepts a complex can also handle a float argument.

Mypy is happy with this line.

To summarize, it’s OK to provide a callback that returns an int when the code
expects a callback that returns a float, because an int value can always be used
where a float is expected.

Formally, we say that Callable[[], int] is subtype-of Callable[[], float]—as
int is subtype-of float. This means that Callable is covariant on the return type

Types Usable in Annotations | 293

because the subtype-of relationship of the types int and float is in the same direc‐
tion as the relationship of the Callable types that use them as return types.

On the other hand, it’s a type error to provide a callback that takes a int argument
when a callback that handles a float is required.

Formally, Callable[[int], None] is not a subtype-of Callable[[float], None].
Although int is subtype-of float, in the parameterized Callable type the relation‐
ship is reversed: Callable[[float], None] is subtype-of Callable[[int], None].
Therefore we say that Callable is contravariant on the declared parameter types.

“Variance” on page 544 in Chapter 15 explains variance with more details and examples
of invariant, covariant, and contravariant types.

For now, rest assured that most parameterized generic types are
invariant, therefore simpler. For example, if I declare scores:
list[float], that tells me exactly what I can assign to scores. I
can’t assign objects declared as list[int] or list[complex]:

• A list[int] object is not acceptable because it cannot hold
float values which my code may need to put into scores.

• A list[complex] object is not acceptable because my code
may need to sort scores to find the median, but complex does
not provide __lt__, therefore list[complex] is not sortable.

Now we get to the last special type we’ll cover in this chapter.

NoReturn
This is a special type used only to annotate the return type of functions that never
return. Usually, they exist to raise exceptions. There are dozens of such functions in
the standard library.

For example, sys.exit() raises SystemExit to terminate the Python process.

Its signature in typeshed is:

def exit(__status: object = ...) -> NoReturn: ...

The __status parameter is positional only, and it has a default value. Stub files don’t
spell out the default values, they use ... instead. The type of __status is object,
which means it may also be None, therefore it would be redundant to mark it
Optional[object].

294 | Chapter 8: Type Hints in Functions

In Chapter 24, Example 24-6 uses NoReturn in the __flag_unknown_attrs, a method
designed to produce a user-friendly and comprehensive error message, and then raise
AttributeError.

The last section in this epic chapter is about positional and variadic parameters.

Annotating Positional Only and Variadic Parameters
Recall the tag function from Example 7-9. The last time we saw its signature was in
“Positional-Only Parameters” on page 242:

def tag(name, /, *content, class_=None, **attrs):

Here is tag, fully annotated, written in several lines—a common convention for long
signatures, with line breaks the way the blue formatter would do it:

from typing import Optional

def tag(
 name: str,
 /,
 *content: str,
 class_: Optional[str] = None,
 **attrs: str,
) -> str:

Note the type hint *content: str for the arbitrary positional parameters; this means
all those arguments must be of type str. The type of the content local variable in the
function body will be tuple[str, ...].

The type hint for the arbitrary keyword arguments is **attrs: str in this example,
therefore the type of attrs inside the function will be dict[str, str]. For a
type hint like **attrs: float, the type of attrs in the function would be
dict[str, float].``

If the attrs parameter must accept values of different types, you’ll need to use a
Union[] or Any: **attrs: Any.

The / notation for positional-only parameters is only available in Python ≥ 3.8. In
Python 3.7 or earlier, that’s a syntax error. The PEP 484 convention is to prefix each
positional-only parameter name with two underscores. Here is the tag signature
again, now in two lines, using the PEP 484 convention:

from typing import Optional

def tag(__name: str, *content: str, class_: Optional[str] = None,
 **attrs: str) -> str:

Mypy understands and enforces both ways of declaring positional-only parameters.

Annotating Positional Only and Variadic Parameters | 295

https://fpy.li/8-10
https://fpy.li/8-36

To close this chapter, let’s briefly consider the limits of type hints and the static type
system they support.

Imperfect Typing and Strong Testing
Maintainers of large corporate codebases report that many bugs are found by static
type checkers and fixed more cheaply than if the bugs were discovered only after the
code is running in production. However, it’s essential to note that automated testing
was standard practice and widely adopted long before static typing was introduced in
the companies that I know about.

Even in the contexts where they are most beneficial, static typing cannot be trusted as
the ultimate arbiter of correctness. It’s not hard to find:

False positives
Tools report type errors on code that is correct.

False negatives
Tools don’t report type errors on code that is incorrect.

Also, if we are forced to type check everything, we lose some of the expressive power
of Python:

• Some handy features can’t be statically checked; for example, argument unpack‐
ing like config(**settings).

• Advanced features like properties, descriptors, metaclasses, and metaprogram‐
ming in general are poorly supported or beyond comprehension for type
checkers.

• Type checkers lag behind Python releases, rejecting or even crashing while ana‐
lyzing code with new language features—for more than a year in some cases.

Common data constraints cannot be expressed in the type system—even simple ones.
For example, type hints are unable to ensure “quantity must be an integer > 0” or
“label must be a string with 6 to 12 ASCII letters.” In general, type hints are not help‐
ful to catch errors in business logic.

Given those caveats, type hints cannot be the mainstay of software quality, and mak‐
ing them mandatory without exception would amplify the downsides.

Consider a static type checker as one of the tools in a modern CI pipeline, along with
test runners, linters, etc. The point of a CI pipeline is to reduce software failures, and
automated tests catch many bugs that are beyond the reach of type hints. Any code
you can write in Python, you can test in Python—with or without type hints.

296 | Chapter 8: Type Hints in Functions

The title and conclusion of this section were inspired by Bruce
Eckel’s article “Strong Typing vs. Strong Testing”, also published in
the anthology The Best Software Writing I, edited by Joel Spolsky
(Apress). Bruce is a fan of Python and author of books about C++,
Java, Scala, and Kotlin. In that post, he tells how he was a static typ‐
ing advocate until he learned Python and concluded: “If a Python
program has adequate unit tests, it can be as robust as a C++, Java,
or C# program with adequate unit tests (although the tests in
Python will be faster to write).”

This wraps up our coverage of Python’s type hints for now. They are also the main
focus of Chapter 15, which covers generic classes, variance, overloaded signatures,
type casting, and more. Meanwhile, type hints will make guest appearances in several
examples throughout the book.

Chapter Summary
We started with a brief introduction to the concept of gradual typing and then
switched to a hands-on approach. It’s hard to see how gradual typing works without a
tool that actually reads the type hints, so we developed an annotated function guided
by Mypy error reports.

Back to the idea of gradual typing, we explored how it is a hybrid of Python’s tradi‐
tional duck typing and the nominal typing more familiar to users of Java, C++, and
other statically typed languages.

Most of the chapter was devoted to presenting the major groups of types used in
annotations. Many of the types we covered are related to familiar Python object
types, such as collections, tuples, and callables—extended to support generic notation
like Sequence[float]. Many of those types are temporary surrogates implemented in
the typing module before the standard types were changed to support generics in
Python 3.9.

Some of the types are special entities. Any, Optional, Union, and NoReturn have noth‐
ing to do with actual objects in memory, but exist only in the abstract domain of the
type system.

We studied parameterized generics and type variables, which bring more flexibility to
type hints without sacrificing type safety.

Parameterized generics become even more expressive with the use of Protocol.
Because it appeared only in Python 3.8, Protocol is not widely used yet—but it is
hugely important. Protocol enables static duck typing: the essential bridge between
Python’s duck-typed core and the nominal typing that allows static type checkers to
catch bugs.

Chapter Summary | 297

https://fpy.li/8-37
https://fpy.li/8-38

19 “Benevolent Dictator For Life.” See Guido van van Rossum on the “Origin of BDFL”.

20 From the YouTube video, “Type Hints by Guido van Rossum (March 2015)”. Quote starts at 13’40”. I did
some light editing for clarity.

While covering some of these types, we experimented with Mypy to see type checking
errors and inferred types with the help of Mypy’s magic reveal_type() function.

The final section covered how to annotate positional-only and variadic parameters.

Type hints are a complex and evolving topic. Fortunately, they are an optional
feature. Let us keep Python accessible to the widest user base and stop preaching that
all Python code should have type hints—as I’ve seen in public sermons by typing
evangelists.

Our BDFL19 emeritus led this push toward type hints in Python, so it’s only fair that
this chapter starts and ends with his words:

I wouldn’t like a version of Python where I was morally obligated to add type hints all
the time. I really do think that type hints have their place but there are also plenty of
times that it’s not worth it, and it’s so wonderful that you can choose to use them.20

—Guido van Rossum

Further Reading
Bernát Gábor wrote in his excellent post, “The state of type hints in Python”:

Type hints should be used whenever unit tests are worth writing.

I am a big fan of testing, but I also do a lot of exploratory coding. When I am explor‐
ing, tests and type hints are not helpful. They are a drag.

Gábor’s post is one of the best introductions to Python’s type hints that I found,
along with Geir Arne Hjelle’s “Python Type Checking (Guide)”. “Hypermodern
Python Chapter 4: Typing” by Claudio Jolowicz is a shorter introduction that also
covers runtime type checking validation.

For deeper coverage, the Mypy documentation is the best source. It is valuable
regardless of the type checker you are using, because it has tutorial and reference
pages about Python typing in general—not just about the Mypy tool itself. There you
will also find a handy cheat sheets and a very useful page about common issues and
solutions.

The typing module documentation is a good quick reference, but it doesn’t go into
much detail. PEP 483—The Theory of Type Hints includes a deep explanation about
variance, using Callable to illustrate contravariance. The ultimate references are the
PEP documents related to typing. There are more than 20 of them already. The

298 | Chapter 8: Type Hints in Functions

https://fpy.li/bdfl
https://fpy.li/8-39
https://fpy.li/8-40
https://fpy.li/8-41
https://fpy.li/8-42
https://fpy.li/8-43
https://fpy.li/8-43
https://fpy.li/8-44
https://fpy.li/8-45
https://fpy.li/8-46
https://fpy.li/8-46
https://fpy.li/typing
https://fpy.li/pep483

intended audience of PEPs are Python core developers and Python’s Steering Coun‐
cil, so they assume a lot of prior knowledge and are certainly not light reading.

As mentioned, Chapter 15 covers more typing topics, and “Further Reading” on page
555 provides additional references, including Table 15-1, listing typing PEPs approved
or under discussion as of late 2021.

“Awesome Python Typing” is a valuable collection of links to tools and references.

Soapbox

Just Ride

Forget the ultralight, uncomfortable bikes, flashy jerseys, clunky shoes that clip onto
tiny pedals, the grinding out of endless miles. Instead, ride like you did when you
were a kid—just get on your bike and discover the pure joy of riding it.

—Grant Petersen, Just Ride: A Radically Practical Guide to Riding Your Bike
(Workman Publishing)

If coding is not your whole profession, but a useful tool in your profession, or some‐
thing you do to learn, tinker, and enjoy, you probably don’t need type hints any more
than most bikers need shoes with stiff soles and metal cleats.

Just code.

The Cognitive Effect of Typing

I worry about the effect type hints will have on Python coding style.

I agree that users of most APIs benefit from type hints. But Python attracted me—
among other reasons—because it provides functions that are so powerful that they
replace entire APIs, and we can write similarly powerful functions ourselves. Con‐
sider the max() built-in. It’s powerful, yet easy to understand. But I will show in “Max
Overload” on page 521 that it takes 14 lines of type hints to properly annotate it—not
counting a typing.Protocol and a few TypeVar definitions to support those type
hints.

I am concerned that strict enforcement of type hints in libraries will discourage pro‐
grammers from even considering writing such functions in the future.

According to the English Wikipedia, “linguistic relativity”—a.k.a. the Sapir–Whorf
hypothesis— is a “principle claiming that the structure of a language affects its speak‐
ers’ world view or cognition.” Wikipedia further explains:

• The strong version says that language determines thought and that linguistic cate‐
gories limit and determine cognitive categories.

Further Reading | 299

https://fpy.li/8-47
https://fpy.li/8-48
https://fpy.li/8-49

• The weak version says that linguistic categories and usage only influence thought
and decisions.

Linguists generally agree the strong version is false, but there is empirical evidence
supporting the weak version.

I am not aware of specific studies with programming languages, but in my experience
they’ve had a big impact on how I approach problems. The first programming lan‐
guage I used professionally was Applesoft BASIC in the age of 8-bit computers.
Recursion was not directly supported by BASIC—you had to roll your own call stack
to use it. So I never considered using recursive algorithms or data structures. I knew
at some conceptual level such things existed, but they weren’t part of my problem-
solving toolbox.

Decades later when I started with Elixir, I enjoyed solving problems with recursion
and overused it—until I discovered that many of my solutions would be simpler if I
used existing functions from the Elixir Enum and Stream modules. I learned that
idiomatic Elixir application-level code rarely has explicit recursive calls, but uses
enums and streams that implement recursion under the hood.

Linguistic relativity could explain the widespread idea (also unproven) that learning
different programming languages makes you a better programmer, particularly when
the languages support different programming paradigms. Practicing Elixir made me
more likely to apply functional patterns when I write Python or Go code.

Now, back to Earth.

The requests package would probably have a very different API if Kenneth Reitz was
determined (or told by his boss) to annotate all its functions. His goal was to write an
API that was easy to use, flexible, and powerful. He succeeded, given the amazing
popularity of requests—in May 2020, it’s #4 on PyPI Stats, with 2.6 million down‐
loads a day. #1 is urllib3, a dependency of requests.

In 2017, the requests maintainers decided not to spend their time writing type hints.
One of the maintainers, Cory Benfield, had written an e-mail stating:

I think that libraries with Pythonic APIs are the least likely to take up this typing sys‐
tem because it will provide the least value to them.

In that message, Benfield gave this extreme example of a tentative type definition for
the files keyword argument of requests.request():

Optional[
 Union[
 Mapping[
 basestring,
 Union[
 Tuple[basestring, Optional[Union[basestring, file]]],
 Tuple[basestring, Optional[Union[basestring, file]],
 Optional[basestring]],

300 | Chapter 8: Type Hints in Functions

https://fpy.li/8-50
https://fpy.li/8-51
https://fpy.li/8-52
https://fpy.li/8-53

 Tuple[basestring, Optional[Union[basestring, file]],
 Optional[basestring], Optional[Headers]]
]
],
 Iterable[
 Tuple[
 basestring,
 Union[
 Tuple[basestring, Optional[Union[basestring, file]]],
 Tuple[basestring, Optional[Union[basestring, file]],
 Optional[basestring]],
 Tuple[basestring, Optional[Union[basestring, file]],
 Optional[basestring], Optional[Headers]]
]
]
]
]

And that assumes this definition:

Headers = Union[
 Mapping[basestring, basestring],
 Iterable[Tuple[basestring, basestring]],
]

Do you think requests would be the way it is if the maintainers insisted on 100%
type hint coverage? SQLAlchemy is another important package that doesn’t play well
with type hints.

What makes these libraries great is embracing the dynamic nature of Python.

While there are benefits to type hints, there is also a price to pay.

First, there is the significant investment of understanding how the type system works.
That’s a one-time cost.

But there is also a recurring cost, forever.

We lose some of the expressive power of Python if we insist on type checking every‐
thing. Beautiful features like argument unpacking—e.g., config(**settings)—are
beyond comprehension for type checkers.

If you want to have a call like config(**settings) type checked, you must spell
every argument out. That brings me memories of Turbo Pascal code I wrote 35 years
ago.

Libraries that use metaprogramming are hard or impossible to annotate. Surely meta‐
programming can be abused, but it’s also what makes many Python packages a joy
to use.

If type hints are mandated top-down without exceptions in large companies, I bet
soon we’ll see people using code generation to reduce boilerplate in Python source-
code—a common practice with less dynamic languages.

Further Reading | 301

21 Source: “A Conversation with Alan Kay”.

For some projects and contexts, type hints just don’t make sense. Even in contexts
where they mostly make sense, they don’t make sense all the time. Any reasonable
policy about the use of type hints must have exceptions.

Alan Kay, the Turing Award laureate who pioneered object-oriented programming,
once said:

Some people are completely religious about type systems and as a mathematician I
love the idea of type systems, but nobody has ever come up with one that has enough
scope.21

Thank Guido for optional typing. Let’s use it as intended, and not aim to annotate
everything into strict conformity to a coding style that looks like Java 1.5.

Duck Typing FTW

Duck typing fits my brain, and static duck typing is a good compromise allowing
static type checking without losing a lot of flexibility that some nominal type systems
only provide with a lot of complexity—if ever.

Before PEP 544, this whole idea of type hints seemed utterly unPythonic to me. I was
very glad to see typing.Protocol land in Python. It brings balance to the force.

Generics or Specifics?

From a Python perspective, the typing usage of the term “generic” is backward. Com‐
mon meanings of “generic” are “applicable to an entire class or group” or “without a
brand name.”

Consider list versus list[str]. The first is generic: it accepts any object. The sec‐
ond is specific: it only accepts str.

The term makes sense in Java, though. Before Java 1.5, all Java collections (except the
magic array) were “specific”: they could only hold Object references, so we had to
cast the items that came out of a collection to use them. With Java 1.5, collections got
type parameters, and became “generic.”

302 | Chapter 8: Type Hints in Functions

https://fpy.li/8-54

1 That’s the 1995 Design Patterns book by the so-called Gang of Four (Gamma et al., Addison-Wesley).

CHAPTER 9

Decorators and Closures

There’s been a number of complaints about the choice of the name “decorator” for this
feature. The major one is that the name is not consistent with its use in the GoF book.1
The name decorator probably owes more to its use in the compiler area—a syntax tree
is walked and annotated.

—PEP 318—Decorators for Functions and Methods

Function decorators let us “mark” functions in the source code to enhance their
behavior in some way. This is powerful stuff, but mastering it requires understanding
closures—which is what we get when functions capture variables defined outside of
their bodies.

The most obscure reserved keyword in Python is nonlocal, introduced in Python 3.0.
You can have a profitable life as a Python programmer without ever using it if you
adhere to a strict regimen of class-centered object orientation. However, if you want
to implement your own function decorators, you must understand closures, and then
the need for nonlocal becomes obvious.

Aside from their application in decorators, closures are also essential for any type of
programming using callbacks, and for coding in a functional style when it makes
sense.

The end goal of this chapter is to explain exactly how function decorators work, from
the simplest registration decorators to the rather more complicated parameterized
ones. However, before we reach that goal we need to cover:

303

2 If you replace “function” with “class” in the previous sentence, you have a brief description of what a class
decorator does. Class decorators are covered in Chapter 24.

• How Python evaluates decorator syntax
• How Python decides whether a variable is local
• Why closures exist and how they work
• What problem is solved by nonlocal

With this grounding, we can tackle further decorator topics:

• Implementing a well-behaved decorator
• Powerful decorators in the standard library: @cache, @lru_cache, and @single
dispatch

• Implementing a parameterized decorator

What’s New in This Chapter
The caching decorator functools.cache—new in Python 3.9—is simpler than the
traditional functools.lru_cache, so I present it first. The latter is covered in “Using
lru_cache” on page 323, including the simplified form added in Python 3.8.

“Single Dispatch Generic Functions” on page 324 was expanded and now uses type
hints, the preferred way to use functools.singledispatch since Python 3.7.

“Parameterized Decorators” on page 329 now includes a class-based example,
Example 9-27.

I moved Chapter 10, “Design Patterns with First-Class Functions” to the end of
Part II to improve the flow of the book. “Decorator-Enhanced Strategy Pattern” on
page 353 is now in that chapter, along with other variations of the Strategy design pat‐
tern using callables.

We start with a very gentle introduction to decorators, and then proceed with the rest
of the items listed in the chapter opening.

Decorators 101
A decorator is a callable that takes another function as an argument (the decorated
function).

A decorator may perform some processing with the decorated function, and returns
it or replaces it with another function or callable object.2

304 | Chapter 9: Decorators and Closures

In other words, assuming an existing decorator named decorate, this code:

@decorate
def target():
 print('running target()')

has the same effect as writing this:

def target():
 print('running target()')

target = decorate(target)

The end result is the same: at the end of either of these snippets, the target name is
bound to whatever function is returned by decorate(target)—which may be the
function initially named target, or may be a different function.

To confirm that the decorated function is replaced, see the console session in
Example 9-1.

Example 9-1. A decorator usually replaces a function with a different one

>>> def deco(func):
... def inner():
... print('running inner()')
... return inner
...
>>> @deco
... def target():
... print('running target()')
...
>>> target()
running inner()
>>> target
<function deco.<locals>.inner at 0x10063b598>

deco returns its inner function object.

target is decorated by deco.

Invoking the decorated target actually runs inner.

Inspection reveals that target is a now a reference to inner.

Strictly speaking, decorators are just syntactic sugar. As we just saw, you can always
simply call a decorator like any regular callable, passing another function. Sometimes
that is actually convenient, especially when doing metaprogramming—changing pro‐
gram behavior at runtime.

Decorators 101 | 305

Three essential facts make a good summary of decorators:

• A decorator is a function or another callable.
• A decorator may replace the decorated function with a different one.
• Decorators are executed immediately when a module is loaded.

Now let’s focus on the third point.

When Python Executes Decorators
A key feature of decorators is that they run right after the decorated function is
defined. That is usually at import time (i.e., when a module is loaded by Python).
Consider registration.py in Example 9-2.

Example 9-2. The registration.py module

registry = []

def register(func):
 print(f'running register({func})')
 registry.append(func)
 return func

@register
def f1():
 print('running f1()')

@register
def f2():
 print('running f2()')

def f3():
 print('running f3()')

def main():
 print('running main()')
 print('registry ->', registry)
 f1()
 f2()
 f3()

if __name__ == '__main__':
 main()

registry will hold references to functions decorated by @register.

register takes a function as an argument.

306 | Chapter 9: Decorators and Closures

Display what function is being decorated, for demonstration.

Include func in registry.

Return func: we must return a function; here we return the same received as
argument.

f1 and f2 are decorated by @register.

f3 is not decorated.

main displays the registry, then calls f1(), f2(), and f3().

main() is only invoked if registration.py runs as a script.

The output of running registration.py as a script looks like this:

$ python3 registration.py
running register(<function f1 at 0x100631bf8>)
running register(<function f2 at 0x100631c80>)
running main()
registry -> [<function f1 at 0x100631bf8>, <function f2 at 0x100631c80>]
running f1()
running f2()
running f3()

Note that register runs (twice) before any other function in the module. When reg
ister is called, it receives the decorated function object as an argument—for exam‐
ple, <function f1 at 0x100631bf8>.

After the module is loaded, the registry list holds references to the two decorated
functions: f1 and f2. These functions, as well as f3, are only executed when explicitly
called by main.

If registration.py is imported (and not run as a script), the output is this:

>>> import registration
running register(<function f1 at 0x10063b1e0>)
running register(<function f2 at 0x10063b268>)

At this time, if you inspect registry, this is what you see:

>>> registration.registry
[<function f1 at 0x10063b1e0>, <function f2 at 0x10063b268>]

The main point of Example 9-2 is to emphasize that function decorators are executed
as soon as the module is imported, but the decorated functions only run when they
are explicitly invoked. This highlights the difference between what Pythonistas call
import time and runtime.

When Python Executes Decorators | 307

Registration Decorators
Considering how decorators are commonly employed in real code, Example 9-2 is
unusual in two ways:

• The decorator function is defined in the same module as the decorated functions.
A real decorator is usually defined in one module and applied to functions in
other modules.

• The register decorator returns the same function passed as an argument. In
practice, most decorators define an inner function and return it.

Even though the register decorator in Example 9-2 returns the decorated function
unchanged, that technique is not useless. Similar decorators are used in many Python
frameworks to add functions to some central registry—for example, a registry map‐
ping URL patterns to functions that generate HTTP responses. Such registration dec‐
orators may or may not change the decorated function.

We will see a registration decorator applied in “Decorator-Enhanced Strategy Pat‐
tern” on page 353 (Chapter 10).

Most decorators do change the decorated function. They usually do it by defining an
inner function and returning it to replace the decorated function. Code that uses
inner functions almost always depends on closures to operate correctly. To under‐
stand closures, we need to take a step back and review how variable scopes work in
Python.

Variable Scope Rules
In Example 9-3, we define and test a function that reads two variables: a local variable
a—defined as function parameter—and variable b that is not defined anywhere in the
function.

Example 9-3. Function reading a local and a global variable

>>> def f1(a):
... print(a)
... print(b)
...
>>> f1(3)
3
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 3, in f1
NameError: global name 'b' is not defined

308 | Chapter 9: Decorators and Closures

The error we got is not surprising. Continuing from Example 9-3, if we assign a value
to a global b and then call f1, it works:

>>> b = 6
>>> f1(3)
3
6

Now, let’s see an example that may surprise you.

Take a look at the f2 function in Example 9-4. Its first two lines are the same as f1 in
Example 9-3, then it makes an assignment to b. But it fails at the second print, before
the assignment is made.

Example 9-4. Variable b is local, because it is assigned a value in the body of the
function

>>> b = 6
>>> def f2(a):
... print(a)
... print(b)
... b = 9
...
>>> f2(3)
3
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 3, in f2
UnboundLocalError: local variable 'b' referenced before assignment

Note that the output starts with 3, which proves that the print(a) statement was exe‐
cuted. But the second one, print(b), never runs. When I first saw this I was sur‐
prised, thinking that 6 should be printed, because there is a global variable b and the
assignment to the local b is made after print(b).

But the fact is, when Python compiles the body of the function, it decides that b is a
local variable because it is assigned within the function. The generated bytecode
reflects this decision and will try to fetch b from the local scope. Later, when the call
f2(3) is made, the body of f2 fetches and prints the value of the local variable a, but
when trying to fetch the value of local variable b, it discovers that b is unbound.

This is not a bug, but a design choice: Python does not require you to declare vari‐
ables, but assumes that a variable assigned in the body of a function is local. This is
much better than the behavior of JavaScript, which does not require variable declara‐
tions either, but if you do forget to declare that a variable is local (with var), you may
clobber a global variable without knowing.

Variable Scope Rules | 309

If we want the interpreter to treat b as a global variable and still assign a new value to
it within the function, we use the global declaration:

>>> b = 6
>>> def f3(a):
... global b
... print(a)
... print(b)
... b = 9
...
>>> f3(3)
3
6
>>> b
9

In the preceding examples, we can see two scopes in action:

The module global scope
Made of names assigned to values outside of any class or function block.

The f3 function local scope
Made of names assigned to values as parameters, or directly in the body of the
function.

There is one other scope where variables can come from, which we call nonlocal and
is fundamental for closures; we’ll see it in a bit.

After this closer look at how variable scopes work in Python, we can tackle closures in
the next section, “Closures” on page 311. If you are curious about the bytecode differ‐
ences between the functions in Examples 9-3 and 9-4, see the following sidebar.

Comparing Bytecodes
The dis module provides an easy way to disassemble the bytecode of Python func‐
tions. Read Examples 9-5 and 9-6 to see the bytecodes for f1 and f2 from Examples
9-3 and 9-4.

Example 9-5. Disassembly of the f1 function from Example 9-3

>>> from dis import dis
>>> dis(f1)

 2 0 LOAD_GLOBAL 0 (print)

 3 LOAD_FAST 0 (a)
 6 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
 9 POP_TOP

 3 10 LOAD_GLOBAL 0 (print)

 13 LOAD_GLOBAL 1 (b)
 16 CALL_FUNCTION 1 (1 positional, 0 keyword pair)

310 | Chapter 9: Decorators and Closures

 19 POP_TOP
 20 LOAD_CONST 0 (None)
 23 RETURN_VALUE

Load global name print.

Load local name a.

Load global name b.

Contrast the bytecode for f1 shown in Example 9-5 with the bytecode for f2 in
Example 9-6.

Example 9-6. Disassembly of the f2 function from Example 9-4

>>> dis(f2)
 2 0 LOAD_GLOBAL 0 (print)
 3 LOAD_FAST 0 (a)
 6 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
 9 POP_TOP

 3 10 LOAD_GLOBAL 0 (print)

 13 LOAD_FAST 1 (b)
 16 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
 19 POP_TOP

 4 20 LOAD_CONST 1 (9)
 23 STORE_FAST 1 (b)
 26 LOAD_CONST 0 (None)
 29 RETURN_VALUE

Load local name b. This shows that the compiler considers b a local variable, even
if the assignment to b occurs later, because the nature of the variable—whether it
is local or not—cannot change in the body of the function.

The CPython virtual machine (VM) that runs the bytecode is a stack machine, so
LOAD and POP operations refer to the stack. It is beyond the scope of this book to fur‐
ther describe the Python opcodes, but they are documented along with the dis mod‐
ule in “dis—Disassembler for Python bytecode”.

Closures
In the blogosphere, closures are sometimes confused with anonymous functions.
Many confuse them because of the parallel history of those features: defining func‐
tions inside functions is not so common or convenient, until you have anonymous
functions. And closures only matter when you have nested functions. So a lot of peo‐
ple learn both concepts at the same time.

Closures | 311

https://fpy.li/9-1

Actually, a closure is a function—let’s call it f—with an extended scope that encom‐
passes variables referenced in the body of f that are not global variables or local vari‐
ables of f. Such variables must come from the local scope of an outer function that
encompasses f.

It does not matter whether the function is anonymous or not; what matters is that it
can access nonglobal variables that are defined outside of its body.

This is a challenging concept to grasp, and is better approached through an example.

Consider an avg function to compute the mean of an ever-growing series of values;
for example, the average closing price of a commodity over its entire history. Every
day a new price is added, and the average is computed taking into account all prices
so far.

Starting with a clean slate, this is how avg could be used:

>>> avg(10)
10.0
>>> avg(11)
10.5
>>> avg(12)
11.0

Where does avg come from, and where does it keep the history of previous values?

For starters, Example 9-7 is a class-based implementation.

Example 9-7. average_oo.py: a class to calculate a running average

class Averager():

 def __init__(self):
 self.series = []

 def __call__(self, new_value):
 self.series.append(new_value)
 total = sum(self.series)
 return total / len(self.series)

The Averager class creates instances that are callable:

>>> avg = Averager()
>>> avg(10)
10.0
>>> avg(11)
10.5
>>> avg(12)
11.0

312 | Chapter 9: Decorators and Closures

Now, Example 9-8 is a functional implementation, using the higher-order function
make_averager.

Example 9-8. average.py: a higher-order function to calculate a running average

def make_averager():
 series = []

 def averager(new_value):
 series.append(new_value)
 total = sum(series)
 return total / len(series)

 return averager

When invoked, make_averager returns an averager function object. Each time an
averager is called, it appends the passed argument to the series, and computes the
current average, as shown in Example 9-9.

Example 9-9. Testing Example 9-8

>>> avg = make_averager()
>>> avg(10)
10.0
>>> avg(11)
10.5
>>> avg(15)
12.0

Note the similarities of the examples: we call Averager() or make_averager() to get
a callable object avg that will update the historical series and calculate the current
mean. In Example 9-7, avg is an instance of Averager, and in Example 9-8, it is the
inner function, averager. Either way, we just call avg(n) to include n in the series
and get the updated mean.

It’s obvious where the avg of the Averager class keeps the history: the self.series
instance attribute. But where does the avg function in the second example find the
series?

Note that series is a local variable of make_averager because the assignment series
= [] happens in the body of that function. But when avg(10) is called,
make_averager has already returned, and its local scope is long gone.

Within averager, series is a free variable. This is a technical term meaning a vari‐
able that is not bound in the local scope. See Figure 9-1.

Closures | 313

Figure 9-1. The closure for averager extends the scope of that function to include the
binding for the free variable series.

Inspecting the returned averager object shows how Python keeps the names of local
and free variables in the __code__ attribute that represents the compiled body of the
function. Example 9-10 demonstrates.

Example 9-10. Inspecting the function created by make_averager in Example 9-8

>>> avg.__code__.co_varnames
('new_value', 'total')
>>> avg.__code__.co_freevars
('series',)

The value for series is kept in the __closure__ attribute of the returned function
avg. Each item in avg.__closure__ corresponds to a name in avg. __code__

.co_freevars. These items are cells, and they have an attribute called cell_con
tents where the actual value can be found. Example 9-11 shows these attributes.

Example 9-11. Continuing from Example 9-9

>>> avg.__code__.co_freevars
('series',)
>>> avg.__closure__
(<cell at 0x107a44f78: list object at 0x107a91a48>,)
>>> avg.__closure__[0].cell_contents
[10, 11, 12]

To summarize: a closure is a function that retains the bindings of the free variables
that exist when the function is defined, so that they can be used later when the func‐
tion is invoked and the defining scope is no longer available.

Note that the only situation in which a function may need to deal with external vari‐
ables that are nonglobal is when it is nested in another function and those variables
are part of the local scope of the outer function.

314 | Chapter 9: Decorators and Closures

The nonlocal Declaration
Our previous implementation of make_averager was not efficient. In Example 9-8,
we stored all the values in the historical series and computed their sum every time
averager was called. A better implementation would only store the total and the
number of items so far, and compute the mean from these two numbers.

Example 9-12 is a broken implementation, just to make a point. Can you see where it
breaks?

Example 9-12. A broken higher-order function to calculate a running average without
keeping all history

def make_averager():
 count = 0
 total = 0

 def averager(new_value):
 count += 1
 total += new_value
 return total / count

 return averager

If you try Example 9-12, here is what you get:

>>> avg = make_averager()
>>> avg(10)
Traceback (most recent call last):
 ...
UnboundLocalError: local variable 'count' referenced before assignment
>>>

The problem is that the statement count += 1 actually means the same as count =
count + 1, when count is a number or any immutable type. So we are actually
assigning to count in the body of averager, and that makes it a local variable. The
same problem affects the total variable.

We did not have this problem in Example 9-8 because we never assigned to the ser
ies name; we only called series.append and invoked sum and len on it. So we took
advantage of the fact that lists are mutable.

But with immutable types like numbers, strings, tuples, etc., all you can do is read,
never update. If you try to rebind them, as in count = count + 1, then you are
implicitly creating a local variable count. It is no longer a free variable, and therefore
it is not saved in the closure.

The nonlocal Declaration | 315

3 Thanks to tech reviewer Leonardo Rochael for suggesting this summary.

4 Python does not have a program global scope, only module global scopes.

To work around this, the nonlocal keyword was introduced in Python 3. It lets you
declare a variable as a free variable even when it is assigned within the function. If a
new value is assigned to a nonlocal variable, the binding stored in the closure is
changed. A correct implementation of our newest make_averager looks like
Example 9-13.

Example 9-13. Calculate a running average without keeping all history (fixed with the
use of nonlocal)

def make_averager():
 count = 0
 total = 0

 def averager(new_value):
 nonlocal count, total
 count += 1
 total += new_value
 return total / count

 return averager

After studying the use of nonlocal, let’s summarize how Python’s variable lookup
works.

Variable Lookup Logic
When a function is defined, the Python bytecode compiler determines how to fetch a
variable x that appears in it, based on these rules:3

• If there is a global x declaration, x comes from and is assigned to the x global
variable module.4

• If there is a nonlocal x declaration, x comes from and is assigned to the x local
variable of the nearest surrounding function where x is defined.

• If x is a parameter or is assigned a value in the function body, then x is the local
variable.

• If x is referenced but is not assigned and is not a parameter:
— x will be looked up in the local scopes of the surrounding function bodies

(nonlocal scopes).

316 | Chapter 9: Decorators and Closures

— If not found in surrounding scopes, it will be read from the module global
scope.

— If not found in the global scope, it will be read from __builtins__.__dict__.

Now that we have Python closures covered, we can effectively implement decorators
with nested functions.

Implementing a Simple Decorator
Example 9-14 is a decorator that clocks every invocation of the decorated function
and displays the elapsed time, the arguments passed, and the result of the call.

Example 9-14. clockdeco0.py: simple decorator to show the running time of functions

import time

def clock(func):
 def clocked(*args):
 t0 = time.perf_counter()
 result = func(*args)
 elapsed = time.perf_counter() - t0
 name = func.__name__
 arg_str = ', '.join(repr(arg) for arg in args)
 print(f'[{elapsed:0.8f}s] {name}({arg_str}) -> {result!r}')
 return result
 return clocked

Define inner function clocked to accept any number of positional arguments.

This line only works because the closure for clocked encompasses the func free
variable.

Return the inner function to replace the decorated function.

Example 9-15 demonstrates the use of the clock decorator.

Example 9-15. Using the clock decorator

import time
from clockdeco0 import clock

@clock
def snooze(seconds):
 time.sleep(seconds)

@clock

Implementing a Simple Decorator | 317

def factorial(n):
 return 1 if n < 2 else n*factorial(n-1)

if __name__ == '__main__':
 print('*' * 40, 'Calling snooze(.123)')
 snooze(.123)
 print('*' * 40, 'Calling factorial(6)')
 print('6! =', factorial(6))

The output of running Example 9-15 looks like this:

$ python3 clockdeco_demo.py
** Calling snooze(.123)
[0.12363791s] snooze(0.123) -> None
** Calling factorial(6)
[0.00000095s] factorial(1) -> 1
[0.00002408s] factorial(2) -> 2
[0.00003934s] factorial(3) -> 6
[0.00005221s] factorial(4) -> 24
[0.00006390s] factorial(5) -> 120
[0.00008297s] factorial(6) -> 720
6! = 720

How It Works
Remember that this code:

@clock
def factorial(n):
 return 1 if n < 2 else n*factorial(n-1)

actually does this:

def factorial(n):
 return 1 if n < 2 else n*factorial(n-1)

factorial = clock(factorial)

So, in both examples, clock gets the factorial function as its func argument (see
Example 9-14). It then creates and returns the clocked function, which the Python
interpreter assigns to factorial (behind the scenes, in the first example). In fact, if
you import the clockdeco_demo module and check the __name__ of factorial, this
is what you get:

>>> import clockdeco_demo
>>> clockdeco_demo.factorial.__name__
'clocked'
>>>

So factorial now actually holds a reference to the clocked function. From now on,
each time factorial(n) is called, clocked(n) gets executed. In essence, clocked
does the following:

318 | Chapter 9: Decorators and Closures

1. Records the initial time t0.
2. Calls the original factorial function, saving the result.
3. Computes the elapsed time.
4. Formats and displays the collected data.
5. Returns the result saved in step 2.

This is the typical behavior of a decorator: it replaces the decorated function with a
new function that accepts the same arguments and (usually) returns whatever the
decorated function was supposed to return, while also doing some extra processing.

In Design Patterns by Gamma et al., the short description of the
decorator pattern starts with: “Attach additional responsibilities to
an object dynamically.” Function decorators fit that description.
But at the implementation level, Python decorators bear little
resemblance to the classic decorator described in the original
Design Patterns work. “Soapbox” on page 338 has more on this
subject.

The clock decorator implemented in Example 9-14 has a few shortcomings: it does
not support keyword arguments, and it masks the __name__ and __doc__ of the deco‐
rated function. Example 9-16 uses the functools.wraps decorator to copy the rele‐
vant attributes from func to clocked. Also, in this new version, keyword arguments
are correctly handled.

Example 9-16. clockdeco.py: an improved clock decorator

import time
import functools

def clock(func):
 @functools.wraps(func)
 def clocked(*args, **kwargs):
 t0 = time.perf_counter()
 result = func(*args, **kwargs)
 elapsed = time.perf_counter() - t0
 name = func.__name__
 arg_lst = [repr(arg) for arg in args]
 arg_lst.extend(f'{k}={v!r}' for k, v in kwargs.items())
 arg_str = ', '.join(arg_lst)
 print(f'[{elapsed:0.8f}s] {name}({arg_str}) -> {result!r}')
 return result
 return clocked

Implementing a Simple Decorator | 319

5 To clarify, this is not a typo: memoization is a computer science term vaguely related to “memorization,” but
not the same.

functools.wraps is just one of the ready-to-use decorators in the standard library. In
the next section, we’ll meet the most impressive decorator that functools provides:
cache.

Decorators in the Standard Library
Python has three built-in functions that are designed to decorate methods: property,
classmethod, and staticmethod. We’ll discuss property in “Using a Property for
Attribute Validation” on page 857 and the others in “classmethod Versus staticmethod”
on page 369.

In Example 9-16 we saw another important decorator: functools.wraps, a helper for
building well-behaved decorators. Some of the most interesting decorators in the
standard library are cache, lru_cache, and singledispatch—all from the functools
module. We’ll cover them next.

Memoization with functools.cache
The functools.cache decorator implements memoization:5 an optimization techni‐
que that works by saving the results of previous invocations of an expensive function,
avoiding repeat computations on previously used arguments.

functools.cache was added in Python 3.9. If you need to run
these examples in Python 3.8, replace @cache with @lru_cache. For
prior versions of Python, you must invoke the decorator, writing
@lru_cache(), as explained in “Using lru_cache” on page 323.

A good demonstration is to apply @cache to the painfully slow recursive function to
generate the nth number in the Fibonacci sequence, as shown in Example 9-17.

Example 9-17. The very costly recursive way to compute the nth number in the
Fibonacci series

from clockdeco import clock

@clock
def fibonacci(n):
 if n < 2:
 return n

320 | Chapter 9: Decorators and Closures

https://fpy.li/9-2

 return fibonacci(n - 2) + fibonacci(n - 1)

if __name__ == '__main__':
 print(fibonacci(6))

Here is the result of running fibo_demo.py. Except for the last line, all output is gen‐
erated by the clock decorator:

$ python3 fibo_demo.py
[0.00000042s] fibonacci(0) -> 0
[0.00000049s] fibonacci(1) -> 1
[0.00006115s] fibonacci(2) -> 1
[0.00000031s] fibonacci(1) -> 1
[0.00000035s] fibonacci(0) -> 0
[0.00000030s] fibonacci(1) -> 1
[0.00001084s] fibonacci(2) -> 1
[0.00002074s] fibonacci(3) -> 2
[0.00009189s] fibonacci(4) -> 3
[0.00000029s] fibonacci(1) -> 1
[0.00000027s] fibonacci(0) -> 0
[0.00000029s] fibonacci(1) -> 1
[0.00000959s] fibonacci(2) -> 1
[0.00001905s] fibonacci(3) -> 2
[0.00000026s] fibonacci(0) -> 0
[0.00000029s] fibonacci(1) -> 1
[0.00000997s] fibonacci(2) -> 1
[0.00000028s] fibonacci(1) -> 1
[0.00000030s] fibonacci(0) -> 0
[0.00000031s] fibonacci(1) -> 1
[0.00001019s] fibonacci(2) -> 1
[0.00001967s] fibonacci(3) -> 2
[0.00003876s] fibonacci(4) -> 3
[0.00006670s] fibonacci(5) -> 5
[0.00016852s] fibonacci(6) -> 8
8

The waste is obvious: fibonacci(1) is called eight times, fibonacci(2) five times,
etc. But adding just two lines to use cache, performance is much improved. See
Example 9-18.

Example 9-18. Faster implementation using caching

import functools

from clockdeco import clock

@functools.cache
@clock
def fibonacci(n):

Decorators in the Standard Library | 321

 if n < 2:
 return n
 return fibonacci(n - 2) + fibonacci(n - 1)

if __name__ == '__main__':
 print(fibonacci(6))

This line works with Python 3.9 or later. See “Using lru_cache” on page 323 for
alternatives supporting earlier versions of Python.

This is an example of stacked decorators: @cache is applied on the function
returned by @clock.

Stacked Decorators

To make sense of stacked decorators, recall that the @ is syntax
sugar for applying the decorator function to the function below it.
If there’s more than one decorator, they behave like nested func‐
tion calls. This:

@alpha
@beta
def my_fn():
 ...

is the same as this:
my_fn = alpha(beta(my_fn))

In other words, the beta decorator is applied first, and the function
it returns is then passed to alpha.

Using cache in Example 9-18, the fibonacci function is called only once for each
value of n:

$ python3 fibo_demo_lru.py
[0.00000043s] fibonacci(0) -> 0
[0.00000054s] fibonacci(1) -> 1
[0.00006179s] fibonacci(2) -> 1
[0.00000070s] fibonacci(3) -> 2
[0.00007366s] fibonacci(4) -> 3
[0.00000057s] fibonacci(5) -> 5
[0.00008479s] fibonacci(6) -> 8
8

In another test, to compute fibonacci(30), Example 9-18 made the 31 calls needed
in 0.00017s (total time), while the uncached Example 9-17 took 12.09s on an Intel
Core i7 notebook, because it called fibonacci(1) 832,040 times, in a total of
2,692,537 calls.

322 | Chapter 9: Decorators and Closures

All the arguments taken by the decorated function must be hashable, because the
underlying lru_cache uses a dict to store the results, and the keys are made from the
positional and keyword arguments used in the calls.

Besides making silly recursive algorithms viable, @cache really shines in applications
that need to fetch information from remote APIs.

functools.cache can consume all available memory if there is a
very large number of cache entries. I consider it more suitable for
use in short-lived command-line scripts. In long-running pro‐
cesses, I recommend using functools.lru_cache with a suitable
maxsize parameter, as explained in the next section.

Using lru_cache
The functools.cache decorator is actually a simple wrapper around the older func
tools.lru_cache function, which is more flexible and compatible with Python 3.8
and earlier versions.

The main advantage of @lru_cache is that its memory usage is bounded by the
maxsize parameter, which has a rather conservative default value of 128—which
means the cache will hold at most 128 entries at any time.

The acronym LRU stands for Least Recently Used, meaning that older entries that
have not been read for a while are discarded to make room for new ones.

Since Python 3.8, lru_cache can be applied in two ways. This is how to use it in the
simplest way:

@lru_cache
def costly_function(a, b):
 ...

The other way—available since Python 3.2—is to invoke it as a function, with ():

@lru_cache()
def costly_function(a, b):
 ...

In both cases, the default parameters would be used. These are:

maxsize=128

Sets the maximum number of entries to be stored. After the cache is full, the least
recently used entry is discarded to make room for each new entry. For optimal
performance, maxsize should be a power of 2. If you pass maxsize=None, the
LRU logic is disabled, so the cache works faster but entries are never discarded,
which may consume too much memory. That’s what @functools.cache does.

Decorators in the Standard Library | 323

typed=False

Determines whether the results of different argument types are stored separately.
For example, in the default setting, float and integer arguments that are consid‐
ered equal are stored only once, so there would be a single entry for the calls f(1)
and f(1.0). If typed=True, those arguments would produce different entries,
possibly storing distinct results.

Here is an example invoking @lru_cache with nondefault parameters:

@lru_cache(maxsize=2**20, typed=True)
def costly_function(a, b):
 ...

Now let’s study another powerful decorator: functools.singledispatch.

Single Dispatch Generic Functions
Imagine we are creating a tool to debug web applications. We want to generate
HTML displays for different types of Python objects.

We could start with a function like this:

import html

def htmlize(obj):
 content = html.escape(repr(obj))
 return f'<pre>{content}</pre>'

That will work for any Python type, but now we want to extend it to generate custom
displays for some types. Some examples:

str

Replace embedded newline characters with '
\n' and use <p> tags instead
of <pre>.

int

Show the number in decimal and hexadecimal (with a special case for bool).

list

Output an HTML list, formatting each item according to its type.

float and Decimal
Output the value as usual, but also in the form of a fraction (why not?).

The behavior we want is shown in Example 9-19.

324 | Chapter 9: Decorators and Closures

Example 9-19. htmlize() generates HTML tailored to different object types

>>> htmlize({1, 2, 3})
'<pre>{1, 2, 3}</pre>'
>>> htmlize(abs)
'<pre><built-in function abs></pre>'
>>> htmlize('Heimlich & Co.\n- a game')
'<p>Heimlich & Co.
\n- a game</p>'
>>> htmlize(42)
'<pre>42 (0x2a)</pre>'
>>> print(htmlize(['alpha', 66, {3, 2, 1}]))

<p>alpha</p>
<pre>66 (0x42)</pre>
<pre>{1, 2, 3}</pre>

>>> htmlize(True)
'<pre>True</pre>'
>>> htmlize(fractions.Fraction(2, 3))
'<pre>2/3</pre>'
>>> htmlize(2/3)
'<pre>0.6666666666666666 (2/3)</pre>'
>>> htmlize(decimal.Decimal('0.02380952'))
'<pre>0.02380952 (1/42)</pre>'

The original function is registered for object, so it serves as a catch-all to handle
argument types that don’t match the other implementations.

str objects are also HTML-escaped but wrapped in <p></p>, with
 line
breaks inserted before each '\n'.

An int is shown in decimal and hexadecimal, inside <pre></pre>.

Each list item is formatted according to its type, and the whole sequence is ren‐
dered as an HTML list.

Although bool is an int subtype, it gets special treatment.

Show Fraction as a fraction.

Show float and Decimal with an approximate fractional equivalent.

Function singledispatch
Because we don’t have Java-style method overloading in Python, we can’t simply cre‐
ate variations of htmlize with different signatures for each data type we want to han‐
dle differently. A possible solution in Python would be to turn htmlize into a

Decorators in the Standard Library | 325

dispatch function, with a chain of if/elif/… or match/case/… calling specialized
functions like htmlize_str, htmlize_int, etc. This is not extensible by users of our
module, and is unwieldy: over time, the htmlize dispatcher would become too big,
and the coupling between it and the specialized functions would be very tight.

The functools.singledispatch decorator allows different modules to contribute to
the overall solution, and lets you easily provide specialized functions even for types
that belong to third-party packages that you can’t edit. If you decorate a plain func‐
tion with @singledispatch, it becomes the entry point for a generic function: a group
of functions to perform the same operation in different ways, depending on the type
of the first argument. This is what is meant by the term single dispatch. If more argu‐
ments were used to select the specific functions, we’d have multiple dispatch.
Example 9-20 shows how.

functools.singledispatch exists since Python 3.4, but it only
supports type hints since Python 3.7. The last two functions in
Example 9-20 illustrate the syntax that works in all versions of
Python since 3.4.

Example 9-20. @singledispatch creates a custom @htmlize.register to bundle
several functions into a generic function

from functools import singledispatch
from collections import abc
import fractions
import decimal
import html
import numbers

@singledispatch
def htmlize(obj: object) -> str:
 content = html.escape(repr(obj))
 return f'<pre>{content}</pre>'

@htmlize.register
def _(text: str) -> str:
 content = html.escape(text).replace('\n', '
\n')
 return f'<p>{content}</p>'

@htmlize.register
def _(seq: abc.Sequence) -> str:
 inner = '\n'.join(htmlize(item) for item in seq)
 return '\n' + inner + '\n'

@htmlize.register
def _(n: numbers.Integral) -> str:
 return f'<pre>{n} (0x{n:x})</pre>'

326 | Chapter 9: Decorators and Closures

6 Unfortunately, Mypy 0.770 complains when it sees multiple functions with the same name.

7 Despite the warning in “The fall of the numeric tower” on page 279, the number ABCs are not deprecated and
you find them in Python 3 code.

@htmlize.register
def _(n: bool) -> str:
 return f'<pre>{n}</pre>'

@htmlize.register(fractions.Fraction)
def _(x) -> str:
 frac = fractions.Fraction(x)
 return f'<pre>{frac.numerator}/{frac.denominator}</pre>'

@htmlize.register(decimal.Decimal)
@htmlize.register(float)
def _(x) -> str:
 frac = fractions.Fraction(x).limit_denominator()
 return f'<pre>{x} ({frac.numerator}/{frac.denominator})</pre>'

@singledispatch marks the base function that handles the object type.

Each specialized function is decorated with @«base».register.

The type of the first argument given at runtime determines when this particular
function definition will be used. The name of the specialized functions is irrele‐
vant; _ is a good choice to make this clear.6

For each additional type to get special treatment, register a new function with a
matching type hint in the first parameter.

The numbers ABCs are useful for use with singledispatch.7

bool is a subtype-of numbers.Integral, but the singledispatch logic seeks the
implementation with the most specific matching type, regardless of the order
they appear in the code.

Decorators in the Standard Library | 327

8 Maybe one day you’ll also be able to express this with single unparameterized @htmlize.register and type
hint using Union, but when I tried, Python raised a TypeError with a message saying that Union is not a class.
So, although PEP 484 syntax is supported by @singledispatch, the semantics are not there yet.

9 NumPy, for example, implements several machine-oriented integer and floating-point types.

If you don’t want to, or cannot, add type hints to the decorated function, you can
pass a type to the @«base».register decorator. This syntax works in Python 3.4
or later.

The @«base».register decorator returns the undecorated function, so it’s possi‐
ble to stack them to register two or more types on the same implementation.8

When possible, register the specialized functions to handle ABCs (abstract classes)
such as numbers.Integral and abc.MutableSequence, instead of concrete imple‐
mentations like int and list. This allows your code to support a greater variety of
compatible types. For example, a Python extension can provide alternatives to the
int type with fixed bit lengths as subclasses of numbers.Integral.9

Using ABCs or typing.Protocol with @singledispatch allows
your code to support existing or future classes that are actual or
virtual subclasses of those ABCs, or that implement those proto‐
cols. The use of ABCs and the concept of a virtual subclass are sub‐
jects of Chapter 13.

A notable quality of the singledispatch mechanism is that you can register special‐
ized functions anywhere in the system, in any module. If you later add a module with
a new user-defined type, you can easily provide a new custom function to handle that
type. And you can write custom functions for classes that you did not write and can’t
change.

singledispatch is a well-thought-out addition to the standard library, and it offers
more features than I can describe here. PEP 443—Single-dispatch generic functions is
a good reference, but it doesn’t mention the use of type hints, which were added later.
The functools module documentation has improved and has more up-to-date cov‐
erage with several examples in its singledispatch entry.

328 | Chapter 9: Decorators and Closures

https://fpy.li/9-3
https://fpy.li/pep443
https://fpy.li/9-4

@singledispatch is not designed to bring Java-style method over‐
loading to Python. A single class with many overloaded variations
of a method is better than a single function with a lengthy stretch
of if/elif/elif/elif blocks. But both solutions are flawed
because they concentrate too much responsibility in a single code
unit—the class or the function. The advantage of @singledispatch
is supporting modular extension: each module can register a speci‐
alized function for each type it supports. In a realistic use case, you
would not have all the implementations of generic functions in the
same module as in Example 9-20.

We’ve seen some decorators that take arguments, for example, @lru_cache() and
htmlize.register(float), created by @singledispatch in Example 9-20. The next
section shows how to build decorators that accept parameters.

Parameterized Decorators
When parsing a decorator in source code, Python takes the decorated function and
passes it as the first argument to the decorator function. So how do you make a deco‐
rator accept other arguments? The answer is: make a decorator factory that takes
those arguments and returns a decorator, which is then applied to the function to be
decorated. Confusing? Sure. Let’s start with an example based on the simplest decora‐
tor we’ve seen: register in Example 9-21.

Example 9-21. Abridged registration.py module from Example 9-2, repeated here for
convenience

registry = []

def register(func):
 print(f'running register({func})')
 registry.append(func)
 return func

@register
def f1():
 print('running f1()')

print('running main()')
print('registry ->', registry)
f1()

A Parameterized Registration Decorator
To make it easy to enable or disable the function registration performed by register,
we’ll make it accept an optional active parameter which, if False, skips registering

Parameterized Decorators | 329

the decorated function. Example 9-22 shows how. Conceptually, the new register
function is not a decorator but a decorator factory. When called, it returns the actual
decorator that will be applied to the target function.

Example 9-22. To accept parameters, the new register decorator must be called as a
function

registry = set()

def register(active=True):
 def decorate(func):
 print('running register'
 f'(active={active})->decorate({func})')
 if active:
 registry.add(func)
 else:
 registry.discard(func)

 return func
 return decorate

@register(active=False)
def f1():
 print('running f1()')

@register()
def f2():
 print('running f2()')

def f3():
 print('running f3()')

registry is now a set, so adding and removing functions is faster.

register takes an optional keyword argument.

The decorate inner function is the actual decorator; note how it takes a function
as an argument.

Register func only if the active argument (retrieved from the closure) is True.

If not active and func in registry, remove it.

Because decorate is a decorator, it must return a function.

register is our decorator factory, so it returns decorate.

330 | Chapter 9: Decorators and Closures

The @register factory must be invoked as a function, with the desired
parameters.

If no parameters are passed, register must still be called as a function—@regis

ter()—i.e., to return the actual decorator, decorate.

The main point is that register() returns decorate, which is then applied to the
decorated function.

The code in Example 9-22 is in a registration_param.py module. If we import it, this
is what we get:

>>> import registration_param
running register(active=False)->decorate(<function f1 at 0x10063c1e0>)
running register(active=True)->decorate(<function f2 at 0x10063c268>)
>>> registration_param.registry
[<function f2 at 0x10063c268>]

Note how only the f2 function appears in the registry; f1 does not appear because
active=False was passed to the register decorator factory, so the decorate that
was applied to f1 did not add it to the registry.

If, instead of using the @ syntax, we used register as a regular function, the syntax
needed to decorate a function f would be register()(f) to add f to the registry, or
register(active=False)(f) to not add it (or remove it). See Example 9-23 for a
demo of adding and removing functions to the registry.

Example 9-23. Using the registration_param module listed in Example 9-22

>>> from registration_param import *
running register(active=False)->decorate(<function f1 at 0x10073c1e0>)
running register(active=True)->decorate(<function f2 at 0x10073c268>)
>>> registry
{<function f2 at 0x10073c268>}
>>> register()(f3)
running register(active=True)->decorate(<function f3 at 0x10073c158>)
<function f3 at 0x10073c158>
>>> registry
{<function f3 at 0x10073c158>, <function f2 at 0x10073c268>}
>>> register(active=False)(f2)
running register(active=False)->decorate(<function f2 at 0x10073c268>)
<function f2 at 0x10073c268>
>>> registry
{<function f3 at 0x10073c158>}

When the module is imported, f2 is in the registry.

The register() expression returns decorate, which is then applied to f3.

Parameterized Decorators | 331

The previous line added f3 to the registry.

This call removes f2 from the registry.

Confirm that only f3 remains in the registry.

The workings of parameterized decorators are fairly involved, and the one we’ve just
discussed is simpler than most. Parameterized decorators usually replace the decora‐
ted function, and their construction requires yet another level of nesting. Now we will
explore the architecture of one such function pyramid.

The Parameterized Clock Decorator
In this section, we’ll revisit the clock decorator, adding a feature: users may pass a
format string to control the output of the clocked function report. See Example 9-24.

For simplicity, Example 9-24 is based on the initial clock imple‐
mentation from Example 9-14, and not the improved one from
Example 9-16 that uses @functools.wraps, adding yet another
function layer.

Example 9-24. Module clockdeco_param.py: the parameterized clock decorator

import time

DEFAULT_FMT = '[{elapsed:0.8f}s] {name}({args}) -> {result}'

def clock(fmt=DEFAULT_FMT):
 def decorate(func):
 def clocked(*_args):
 t0 = time.perf_counter()
 _result = func(*_args)
 elapsed = time.perf_counter() - t0
 name = func.__name__
 args = ', '.join(repr(arg) for arg in _args)
 result = repr(_result)
 print(fmt.format(**locals()))
 return _result
 return clocked
 return decorate

if __name__ == '__main__':

 @clock()
 def snooze(seconds):
 time.sleep(seconds)

332 | Chapter 9: Decorators and Closures

10 Tech reviewer Miroslav Šedivý noted: “It also means that code linters will complain about unused variables
since they tend to ignore uses of locals().” Yes, that’s yet another example of how static checking tools dis‐
courage the use of the dynamic features that attracted me and countless programmers to Python in the first
place. To make the linter happy, I could spell out each local variable twice in the call: fmt.format(elapsed=
elapsed, name=name, args=args, result=result). I’d rather not. If you use static checking tools, it’s very
important to know when to ignore them.

 for i in range(3):
 snooze(.123)

clock is our parameterized decorator factory.

decorate is the actual decorator.

clocked wraps the decorated function.

_result is the actual result of the decorated function.

_args holds the actual arguments of clocked, while args is str used for display.

result is the str representation of _result, for display.

Using **locals() here allows any local variable of clocked to be referenced in
the fmt.10

clocked will replace the decorated function, so it should return whatever that
function returns.

decorate returns clocked.

clock returns decorate.

In this self test, clock() is called without arguments, so the decorator applied
will use the default format str.

If you run Example 9-24 from the shell, this is what you get:

$ python3 clockdeco_param.py
[0.12412500s] snooze(0.123) -> None
[0.12411904s] snooze(0.123) -> None
[0.12410498s] snooze(0.123) -> None

To exercise the new functionality, let’s have a look at Examples 9-25 and 9-26, which
are two other modules using clockdeco_param, and the outputs they generate.

Parameterized Decorators | 333

Example 9-25. clockdeco_param_demo1.py

import time
from clockdeco_param import clock

@clock('{name}: {elapsed}s')
def snooze(seconds):
 time.sleep(seconds)

for i in range(3):
 snooze(.123)

Output of Example 9-25:

$ python3 clockdeco_param_demo1.py
snooze: 0.12414693832397461s
snooze: 0.1241159439086914s
snooze: 0.12412118911743164s

Example 9-26. clockdeco_param_demo2.py

import time
from clockdeco_param import clock

@clock('{name}({args}) dt={elapsed:0.3f}s')
def snooze(seconds):
 time.sleep(seconds)

for i in range(3):
 snooze(.123)

Output of Example 9-26:

$ python3 clockdeco_param_demo2.py
snooze(0.123) dt=0.124s
snooze(0.123) dt=0.124s
snooze(0.123) dt=0.124s

Lennart Regebro—a technical reviewer for the first edition—argues
that decorators are best coded as classes implementing __call__,
and not as functions like the examples in this chapter. I agree that
approach is better for nontrivial decorators, but to explain the basic
idea of this language feature, functions are easier to understand.
See “Further Reading” on page 336, in particular, Graham Dumple‐
ton’s blog and wrapt module for industrial-strength techniques
when building decorators.

The next section shows an example in the style recommended by Regebro and
Dumpleton.

334 | Chapter 9: Decorators and Closures

A Class-Based Clock Decorator
As a final example, Example 9-27 lists the implementation of a parameterized clock
decorator implemented as a class with __call__. Contrast Example 9-24 with
Example 9-27. Which one do you prefer?

Example 9-27. Module clockdeco_cls.py: parameterized clock decorator implemented as
class

import time

DEFAULT_FMT = '[{elapsed:0.8f}s] {name}({args}) -> {result}'

class clock:

 def __init__(self, fmt=DEFAULT_FMT):
 self.fmt = fmt

 def __call__(self, func):
 def clocked(*_args):
 t0 = time.perf_counter()
 _result = func(*_args)
 elapsed = time.perf_counter() - t0
 name = func.__name__
 args = ', '.join(repr(arg) for arg in _args)
 result = repr(_result)
 print(self.fmt.format(**locals()))
 return _result
 return clocked

Instead of a clock outer function, the clock class is our parameterized decorator
factory. I named it with a lowercase c to make clear that this implementation is a
drop-in replacement for the one in Example 9-24.

The argument passed in the clock(my_format) is assigned to the fmt parameter
here. The class constructor returns an instance of clock, with my_format stored
in self.fmt.

__call__ makes the clock instance callable. When invoked, the instance replaces
the decorated function with clocked.

clocked wraps the decorated function.

This ends our exploration of function decorators. We’ll see class decorators in
Chapter 24.

Parameterized Decorators | 335

11 I wanted to make the code as simple as possible, so I did not follow Slatkin’s excellent advice in all examples.

Chapter Summary
We covered some difficult terrain in this chapter. I tried to make the journey as
smooth as possible, but we definitely entered the realm of metaprogramming.

We started with a simple @register decorator without an inner function, and fin‐
ished with a parameterized @clock() involving two levels of nested functions.

Registration decorators, though simple in essence, have real applications in Python
frameworks. We will apply the registration idea in one implementation of the Strat‐
egy design pattern in Chapter 10.

Understanding how decorators actually work required covering the difference
between import time and runtime, then diving into variable scoping, closures, and the
new nonlocal declaration. Mastering closures and nonlocal is valuable not only to
build decorators, but also to code event-oriented programs for GUIs or asynchronous
I/O with callbacks, and to adopt a functional style when it makes sense.

Parameterized decorators almost always involve at least two nested functions, maybe
more if you want to use @functools.wraps to produce a decorator that provides bet‐
ter support for more advanced techniques. One such technique is stacked decorators,
which we saw in Example 9-18. For more sophisticated decorators, a class-based
implementation may be easier to read and maintain.

As examples of parameterized decorators in the standard library, we visited the pow‐
erful @cache and @singledispatch from the functools module.

Further Reading
Item #26 of Brett Slatkin’s Effective Python, 2nd ed. (Addison-Wesley), covers best
practices for function decorators and recommends always using functools.wraps—
which we saw in Example 9-16.11

Graham Dumpleton has a series of in-depth blog posts about techniques for imple‐
menting well-behaved decorators, starting with “How you implemented your Python
decorator is wrong”. His deep expertise in this matter is also nicely packaged in the
wrapt module he wrote to simplify the implementation of decorators and dynamic
function wrappers, which support introspection and behave correctly when further
decorated, when applied to methods, and when used as attribute descriptors. Chap‐
ter 23 in Part III is about descriptors.

Chapter 9, “Metaprogramming”, of the Python Cookbook, 3rd ed. by David Beazley
and Brian K. Jones (O’Reilly), has several recipes, from elementary decorators to very

336 | Chapter 9: Decorators and Closures

https://fpy.li/effectpy
https://fpy.li/9-5
https://fpy.li/9-6
https://fpy.li/9-6
https://fpy.li/9-7
https://fpy.li/9-8

sophisticated ones, including one that can be called as a regular decorator or as a dec‐
orator factory, e.g., @clock or @clock(). That’s “Recipe 9.6. Defining a Decorator
That Takes an Optional Argument” in that cookbook.

Michele Simionato authored a package aiming to “simplify the usage of decorators
for the average programmer, and to popularize decorators by showing various
nontrivial examples,” according to the docs. It’s available on PyPI as the decorator
package.

Created when decorators were still a new feature in Python, the Python Decorator
Library wiki page has dozens of examples. Because that page started years ago, some
of the techniques shown have been superseded, but the page is still an excellent
source of inspiration.

“Closures in Python” is a short blog post by Fredrik Lundh that explains the termi‐
nology of closures.

PEP 3104—Access to Names in Outer Scopes describes the introduction of the
nonlocal declaration to allow rebinding of names that are neither local nor global. It
also includes an excellent overview of how this issue is resolved in other dynamic lan‐
guages (Perl, Ruby, JavaScript, etc.) and the pros and cons of the design options avail‐
able to Python.

On a more theoretical level, PEP 227—Statically Nested Scopes documents the intro‐
duction of lexical scoping as an option in Python 2.1 and as a standard in Python 2.2,
explaining the rationale and design choices for the implementation of closures in
Python.

PEP 443 provides the rationale and a detailed description of the single-dispatch
generic functions’ facility. An old (March 2005) blog post by Guido van Rossum,
“Five-Minute Multimethods in Python”, walks through an implementation of generic
functions (a.k.a. multimethods) using decorators. His code supports multiple-
dispatch (i.e., dispatch based on more than one positional argument). Guido’s multi‐
methods code is interesting, but it’s a didactic example. For a modern, production-
ready implementation of multiple dispatch generic functions, check out Reg by
Martijn Faassen—author of the model-driven and REST-savvy Morepath web
framework.

Further Reading | 337

https://fpy.li/9-9
https://fpy.li/9-9
https://fpy.li/9-10
https://fpy.li/9-10
https://fpy.li/9-11
https://fpy.li/9-12
https://fpy.li/9-13
https://fpy.li/9-14
https://fpy.li/9-15
https://fpy.li/9-16
https://fpy.li/9-17

Soapbox

Dynamic Scope Versus Lexical Scope

The designer of any language with first-class functions faces this issue: being a first-
class object, a function is defined in a certain scope but may be invoked in other
scopes. The question is: how to evaluate the free variables? The first and simplest
answer is “dynamic scope.” This means that free variables are evaluated by looking
into the environment where the function is invoked.

If Python had dynamic scope and no closures, we could improvise avg—similar to
Example 9-8—like this:

>>> ### this is not a real Python console session! ###
>>> avg = make_averager()

>>> series = []
>>> avg(10)
10.0

>>> avg(11)
10.5
>>> avg(12)
11.0

>>> series = [1]
>>> avg(5)
3.0

Before using avg, we have to define series = [] ourselves, so we must know
that averager (inside make_averager) refers to a list named series.

Behind the scenes, series accumulates the values to be averaged.

When series = [1] is executed, the previous list is lost. This could happen by
accident, when handling two independent running averages at the same time.

Functions should be opaque, with their implementation hidden from users. But with
dynamic scope, if a function uses free variables, the programmer has to know its
internals to set up an environment where it works correctly. After years of struggling
with the LaTeX document preparation language, the excellent Practical LaTeX book
by George Grätzer (Springer) taught me that LaTeX variables use dynamic scope.
That’s why they were so confusing to me!

Emacs Lisp also uses dynamic scope, at least by default. See “Dynamic Binding” in the
Emacs Lisp manual for a short explanation.

Dynamic scope is easier to implement, which is probably why it was the path taken by
John McCarthy when he created Lisp, the first language to have first-class functions.
Paul Graham’s article “The Roots of Lisp” is an accessible explanation of John

338 | Chapter 9: Decorators and Closures

https://fpy.li/9-18
https://fpy.li/9-19

McCarthy’s original paper about the Lisp language, "Recursive Functions of Symbolic
Expressions and Their Computation by Machine, Part I”. McCarthy’s paper is a mas‐
terpiece as great as Beethoven’s 9th Symphony. Paul Graham translated it for the rest
of us, from mathematics to English and running code.

Paul Graham’s commentary explains how tricky dynamic scoping is. Quoting from
“The Roots of Lisp”:

It’s an eloquent testimony to the dangers of dynamic scope that even the very first
example of higher-order Lisp functions was broken because of it. It may be that
McCarthy was not fully aware of the implications of dynamic scope in 1960.
Dynamic scope remained in Lisp implementations for a surprisingly long time—
until Sussman and Steele developed Scheme in 1975. Lexical scope does not compli‐
cate the definition of eval very much, but it may make compilers harder to write.

Today, lexical scope is the norm: free variables are evaluated considering the environ‐
ment where the function is defined. Lexical scope complicates the implementation of
languages with first-class functions, because it requires the support of closures. On
the other hand, lexical scope makes source code easier to read. Most languages inven‐
ted since Algol have lexical scope. One notable exception is JavaScript, where the spe‐
cial variable this is confusing because it can be lexically or dynamically scoped,
depending on how the code is written.

For many years, Python lambdas did not provide closures, contributing to the bad
name of this feature among functional-programming geeks in the blogosphere. This
was fixed in Python 2.2 (December 2001), but the blogosphere has a long memory.
Since then, lambda is embarrassing only because of its limited syntax.

Python Decorators and the Decorator Design Pattern

Python function decorators fit the general description of decorator given by Gamma
et al. in Design Patterns: “Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for extending functionality.”

At the implementation level, Python decorators do not resemble the classic decorator
design pattern, but an analogy can be made.

In the design pattern, Decorator and Component are abstract classes. An instance of a
concrete decorator wraps an instance of a concrete component in order to add behav‐
iors to it. Quoting from Design Patterns:

The decorator conforms to the interface of the component it decorates so that its
presence is transparent to the component’s clients. The decorator forwards requests
to the component and may perform additional actions (such as drawing a border)
before or after forwarding. Transparency lets you nest decorators recursively, thereby
allowing an unlimited number of added responsibilities.” (p. 175)

In Python, the decorator function plays the role of a concrete Decorator subclass,
and the inner function it returns is a decorator instance. The returned function wraps

Further Reading | 339

https://fpy.li/9-20
https://fpy.li/9-20
https://fpy.li/9-21

the function to be decorated, which is analogous to the component in the design pat‐
tern. The returned function is transparent because it conforms to the interface of the
component by accepting the same arguments. It forwards calls to the component and
may perform additional actions either before or after it. Borrowing from the previous
citation, we can adapt the last sentence to say that “Transparency lets you stack deco‐
rators, thereby allowing an unlimited number of added behaviors.”

Note that I am not suggesting that function decorators should be used to implement
the decorator pattern in Python programs. Although this can be done in specific sit‐
uations, in general the decorator pattern is best implemented with classes to represent
the decorator and the components it will wrap.

340 | Chapter 9: Decorators and Closures

1 From a slide in the talk “Root Cause Analysis of Some Faults in Design Patterns,” presented by Ralph Johnson
at IME/CCSL, Universidade de São Paulo, Nov. 15, 2014.

CHAPTER 10

Design Patterns with First-Class Functions

Conformity to patterns is not a measure of goodness.
—Ralph Johnson, coauthor of the Design Patterns classic1

In software engineering, a design pattern is a general recipe for solving a common
design problem. You don’t need to know design patterns to follow this chapter. I will
explain the patterns used in the examples.

The use of design patterns in programming was popularized by the landmark book
Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley) by
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides—a.k.a. “the Gang
of Four.” The book is a catalog of 23 patterns consisting of arrangements of classes
exemplified with code in C++, but assumed to be useful in other object-oriented lan‐
guages as well.

Although design patterns are language independent, that does not mean every pat‐
tern applies to every language. For example, Chapter 17 will show that it doesn’t
make sense to emulate the recipe of the Iterator pattern in Python, because the pat‐
tern is embedded in the language and ready to use in the form of generators—which
don’t need classes to work, and require less code than the classic recipe.

The authors of Design Patterns acknowledge in their introduction that the implemen‐
tation language determines which patterns are relevant:

The choice of programming language is important because it influences one’s point of
view. Our patterns assume Smalltalk/C++-level language features, and that choice
determines what can and cannot be implemented easily. If we assumed procedural

341

https://fpy.li/10-1
https://fpy.li/10-2

2 Quoted from page 4 of Design Patterns.

languages, we might have included design patterns called “Inheritance,” “Encapsula‐
tion,” and “Polymorphism.” Similarly, some of our patterns are supported directly by
the less common object-oriented languages. CLOS has multi-methods, for example,
which lessen the need for a pattern such as Visitor.2

In his 1996 presentation, “Design Patterns in Dynamic Languages”, Peter Norvig
states that 16 out of the 23 patterns in the original Design Patterns book become
either “invisible or simpler” in a dynamic language (slide 9). He’s talking about the
Lisp and Dylan languages, but many of the relevant dynamic features are also present
in Python. In particular, in the context of languages with first-class functions, Norvig
suggests rethinking the classic patterns known as Strategy, Command, Template
Method, and Visitor.

The goal of this chapter is to show how—in some cases—functions can do the same
work as classes, with code that is more readable and concise. We will refactor an
implementation of Strategy using functions as objects, removing a lot of boilerplate
code. We’ll also discuss a similar approach to simplifying the Command pattern.

What’s New in This Chapter
I moved this chapter to the end of Part III so I could apply a registration decorator in
“Decorator-Enhanced Strategy Pattern” on page 353 and also use type hints in the
examples. Most type hints used in this chapter are not complicated, and they do help
with readability.

Case Study: Refactoring Strategy
Strategy is a good example of a design pattern that can be simpler in Python if you
leverage functions as first-class objects. In the following section, we describe and
implement Strategy using the “classic” structure described in Design Patterns. If you
are familiar with the classic pattern, you can skip to “Function-Oriented Strategy” on
page 347 where we refactor the code using functions, significantly reducing the line
count.

Classic Strategy
The UML class diagram in Figure 10-1 depicts an arrangement of classes that exem‐
plifies the Strategy pattern.

342 | Chapter 10: Design Patterns with First-Class Functions

https://fpy.li/norvigdp

Figure 10-1. UML class diagram for order discount processing implemented with the
Strategy design pattern.

The Strategy pattern is summarized like this in Design Patterns:

Define a family of algorithms, encapsulate each one, and make them interchangeable.
Strategy lets the algorithm vary independently from clients that use it.

A clear example of Strategy applied in the ecommerce domain is computing dis‐
counts to orders according to the attributes of the customer or inspection of the
ordered items.

Consider an online store with these discount rules:

• Customers with 1,000 or more fidelity points get a global 5% discount per order.
• A 10% discount is applied to each line item with 20 or more units in the same

order.
• Orders with at least 10 distinct items get a 7% global discount.

For brevity, let’s assume that only one discount may be applied to an order.

The UML class diagram for the Strategy pattern is depicted in Figure 10-1. Its partici‐
pants are:

Case Study: Refactoring Strategy | 343

Context
Provides a service by delegating some computation to interchangeable compo‐
nents that implement alternative algorithms. In the ecommerce example, the
context is an Order, which is configured to apply a promotional discount accord‐
ing to one of several algorithms.

Strategy
The interface common to the components that implement the different algo‐
rithms. In our example, this role is played by an abstract class called Promotion.

Concrete strategy
One of the concrete subclasses of Strategy. FidelityPromo, BulkPromo, and
LargeOrderPromo are the three concrete strategies implemented.

The code in Example 10-1 follows the blueprint in Figure 10-1. As described in
Design Patterns, the concrete strategy is chosen by the client of the context class. In
our example, before instantiating an order, the system would somehow select a pro‐
motional discount strategy and pass it to the Order constructor. The selection of the
strategy is outside the scope of the pattern.

Example 10-1. Implementation of the Order class with pluggable discount strategies

from abc import ABC, abstractmethod
from collections.abc import Sequence
from decimal import Decimal
from typing import NamedTuple, Optional

class Customer(NamedTuple):
 name: str
 fidelity: int

class LineItem(NamedTuple):
 product: str
 quantity: int
 price: Decimal

 def total(self) -> Decimal:
 return self.price * self.quantity

class Order(NamedTuple): # the Context
 customer: Customer
 cart: Sequence[LineItem]
 promotion: Optional['Promotion'] = None

 def total(self) -> Decimal:
 totals = (item.total() for item in self.cart)

344 | Chapter 10: Design Patterns with First-Class Functions

 return sum(totals, start=Decimal(0))

 def due(self) -> Decimal:
 if self.promotion is None:
 discount = Decimal(0)
 else:
 discount = self.promotion.discount(self)
 return self.total() - discount

 def __repr__(self):
 return f'<Order total: {self.total():.2f} due: {self.due():.2f}>'

class Promotion(ABC): # the Strategy: an abstract base class
 @abstractmethod
 def discount(self, order: Order) -> Decimal:
 """Return discount as a positive dollar amount"""

class FidelityPromo(Promotion): # first Concrete Strategy
 """5% discount for customers with 1000 or more fidelity points"""

 def discount(self, order: Order) -> Decimal:
 rate = Decimal('0.05')
 if order.customer.fidelity >= 1000:
 return order.total() * rate
 return Decimal(0)

class BulkItemPromo(Promotion): # second Concrete Strategy
 """10% discount for each LineItem with 20 or more units"""

 def discount(self, order: Order) -> Decimal:
 discount = Decimal(0)
 for item in order.cart:
 if item.quantity >= 20:
 discount += item.total() * Decimal('0.1')
 return discount

class LargeOrderPromo(Promotion): # third Concrete Strategy
 """7% discount for orders with 10 or more distinct items"""

 def discount(self, order: Order) -> Decimal:
 distinct_items = {item.product for item in order.cart}
 if len(distinct_items) >= 10:
 return order.total() * Decimal('0.07')
 return Decimal(0)

Note that in Example 10-1, I coded Promotion as an abstract base class (ABC) to use
the @abstractmethod decorator and make the pattern more explicit.

Case Study: Refactoring Strategy | 345

Example 10-2 shows doctests used to demonstrate and verify the operation of a mod‐
ule implementing the rules described earlier.

Example 10-2. Sample usage of Order class with different promotions applied

 >>> joe = Customer('John Doe', 0)
 >>> ann = Customer('Ann Smith', 1100)
 >>> cart = (LineItem('banana', 4, Decimal('.5')),
 ... LineItem('apple', 10, Decimal('1.5')),
 ... LineItem('watermelon', 5, Decimal(5)))
 >>> Order(joe, cart, FidelityPromo())
 <Order total: 42.00 due: 42.00>
 >>> Order(ann, cart, FidelityPromo())
 <Order total: 42.00 due: 39.90>
 >>> banana_cart = (LineItem('banana', 30, Decimal('.5')),
 ... LineItem('apple', 10, Decimal('1.5')))
 >>> Order(joe, banana_cart, BulkItemPromo())
 <Order total: 30.00 due: 28.50>
 >>> long_cart = tuple(LineItem(str(sku), 1, Decimal(1))
 ... for sku in range(10))
 >>> Order(joe, long_cart, LargeOrderPromo())
 <Order total: 10.00 due: 9.30>
 >>> Order(joe, cart, LargeOrderPromo())
 <Order total: 42.00 due: 42.00>

Two customers: joe has 0 fidelity points, ann has 1,100.

One shopping cart with three line items.

The FidelityPromo promotion gives no discount to joe.

ann gets a 5% discount because she has at least 1,000 points.

The banana_cart has 30 units of the "banana" product and 10 apples.

Thanks to the BulkItemPromo, joe gets a $1.50 discount on the bananas.

long_cart has 10 different items at $1.00 each.

joe gets a 7% discount on the whole order because of LargerOrderPromo.

Example 10-1 works perfectly well, but the same functionality can be implemented
with less code in Python by using functions as objects. The next section shows how.

346 | Chapter 10: Design Patterns with First-Class Functions

3 I had to reimplement Order with @dataclass due to a bug in Mypy. You may ignore this detail, because this
class works with NamedTuple as well, just like in Example 10-1. If Order is a NamedTuple, Mypy 0.910 crashes
when checking the type hint for promotion. I tried adding # type ignore to that specific line, but Mypy
crashed anyway. Mypy handles the same type hint correctly if Order is built with @dataclass. Issue #9397 is
unresolved as of July 19, 2021. Hopefully it will be fixed by the time you read this.

Function-Oriented Strategy
Each concrete strategy in Example 10-1 is a class with a single method, discount.
Furthermore, the strategy instances have no state (no instance attributes). You could
say they look a lot like plain functions, and you would be right. Example 10-3 is a
refactoring of Example 10-1, replacing the concrete strategies with simple functions
and removing the Promo abstract class. Only small adjustments are needed in the
Order class.3

Example 10-3. Order class with discount strategies implemented as functions

from collections.abc import Sequence
from dataclasses import dataclass
from decimal import Decimal
from typing import Optional, Callable, NamedTuple

class Customer(NamedTuple):
 name: str
 fidelity: int

class LineItem(NamedTuple):
 product: str
 quantity: int
 price: Decimal

 def total(self):
 return self.price * self.quantity

@dataclass(frozen=True)
class Order: # the Context
 customer: Customer
 cart: Sequence[LineItem]
 promotion: Optional[Callable[['Order'], Decimal]] = None

 def total(self) -> Decimal:
 totals = (item.total() for item in self.cart)
 return sum(totals, start=Decimal(0))

 def due(self) -> Decimal:
 if self.promotion is None:

Case Study: Refactoring Strategy | 347

https://fpy.li/10-3

 discount = Decimal(0)
 else:
 discount = self.promotion(self)
 return self.total() - discount

 def __repr__(self):
 return f'<Order total: {self.total():.2f} due: {self.due():.2f}>'

def fidelity_promo(order: Order) -> Decimal:
 """5% discount for customers with 1000 or more fidelity points"""
 if order.customer.fidelity >= 1000:
 return order.total() * Decimal('0.05')
 return Decimal(0)

def bulk_item_promo(order: Order) -> Decimal:
 """10% discount for each LineItem with 20 or more units"""
 discount = Decimal(0)
 for item in order.cart:
 if item.quantity >= 20:
 discount += item.total() * Decimal('0.1')
 return discount

def large_order_promo(order: Order) -> Decimal:
 """7% discount for orders with 10 or more distinct items"""
 distinct_items = {item.product for item in order.cart}
 if len(distinct_items) >= 10:
 return order.total() * Decimal('0.07')
 return Decimal(0)

This type hint says: promotion may be None, or it may be a callable that takes an
Order argument and returns a Decimal.

To compute a discount, call the self.promotion callable, passing self as an
argument. See the following tip for the reason.

No abstract class.

Each strategy is a function.

348 | Chapter 10: Design Patterns with First-Class Functions

Why self.promotion(self)?

In the Order class, promotion is not a method. It’s an instance
attribute that happens to be callable. So the first part of the expres‐
sion, self.promotion, retrieves that callable. To invoke it, we must
provide an instance of Order, which in this case is self. That’s why
self appears twice in that expression.
“Methods Are Descriptors” on page 898 will explain the mechanism
that binds methods to instances automatically. It does not apply to
promotion because it is not a method.

The code in Example 10-3 is shorter than Example 10-1. Using the new Order is also
a bit simpler, as shown in the Example 10-4 doctests.

Example 10-4. Sample usage of Order class with promotions as functions

 >>> joe = Customer('John Doe', 0)
 >>> ann = Customer('Ann Smith', 1100)
 >>> cart = [LineItem('banana', 4, Decimal('.5')),
 ... LineItem('apple', 10, Decimal('1.5')),
 ... LineItem('watermelon', 5, Decimal(5))]
 >>> Order(joe, cart, fidelity_promo)
 <Order total: 42.00 due: 42.00>
 >>> Order(ann, cart, fidelity_promo)
 <Order total: 42.00 due: 39.90>
 >>> banana_cart = [LineItem('banana', 30, Decimal('.5')),
 ... LineItem('apple', 10, Decimal('1.5'))]
 >>> Order(joe, banana_cart, bulk_item_promo)
 <Order total: 30.00 due: 28.50>
 >>> long_cart = [LineItem(str(item_code), 1, Decimal(1))
 ... for item_code in range(10)]
 >>> Order(joe, long_cart, large_order_promo)
 <Order total: 10.00 due: 9.30>
 >>> Order(joe, cart, large_order_promo)
 <Order total: 42.00 due: 42.00>

Same test fixtures as Example 10-1.

To apply a discount strategy to an Order, just pass the promotion function as an
argument.

A different promotion function is used here and in the next test.

Note the callouts in Example 10-4—there is no need to instantiate a new promotion
object with each new order: the functions are ready to use.

Case Study: Refactoring Strategy | 349

4 See page 323 of Design Patterns.

5 Ibid., p. 196.

It is interesting to note that in Design Patterns, the authors suggest: “Strategy objects
often make good flyweights.”4 A definition of the Flyweight pattern in another part of
that work states: “A flyweight is a shared object that can be used in multiple contexts
simultaneously.”5 The sharing is recommended to reduce the cost of creating a new
concrete strategy object when the same strategy is applied over and over again with
every new context—with every new Order instance, in our example. So, to overcome
a drawback of the Strategy pattern—its runtime cost—the authors recommend apply‐
ing yet another pattern. Meanwhile, the line count and maintenance cost of your
code are piling up.

A thornier use case, with complex concrete strategies holding internal state, may
require all the pieces of the Strategy and Flyweight design patterns combined. But
often concrete strategies have no internal state; they only deal with data from the
context. If that is the case, then by all means use plain old functions instead of coding
single-method classes implementing a single-method interface declared in yet
another class. A function is more lightweight than an instance of a user-defined class,
and there is no need for Flyweight because each strategy function is created just once
per Python process when it loads the module. A plain function is also “a shared
object that can be used in multiple contexts simultaneously.”

Now that we have implemented the Strategy pattern with functions, other possibili‐
ties emerge. Suppose you want to create a “metastrategy” that selects the best avail‐
able discount for a given Order. In the following sections we study additional
refactorings that implement this requirement using a variety of approaches that lev‐
erage functions and modules as objects.

Choosing the Best Strategy: Simple Approach
Given the same customers and shopping carts from the tests in Example 10-4, we
now add three additional tests in Example 10-5.

Example 10-5. The best_promo function applies all discounts and returns the largest

 >>> Order(joe, long_cart, best_promo)
 <Order total: 10.00 due: 9.30>
 >>> Order(joe, banana_cart, best_promo)
 <Order total: 30.00 due: 28.50>
 >>> Order(ann, cart, best_promo)
 <Order total: 42.00 due: 39.90>

350 | Chapter 10: Design Patterns with First-Class Functions

best_promo selected the larger_order_promo for customer joe.

Here joe got the discount from bulk_item_promo for ordering lots of bananas.

Checking out with a simple cart, best_promo gave loyal customer ann the dis‐
count for the fidelity_promo.

The implementation of best_promo is very simple. See Example 10-6.

Example 10-6. best_promo finds the maximum discount iterating over a list of
functions

promos = [fidelity_promo, bulk_item_promo, large_order_promo]

def best_promo(order: Order) -> Decimal:
 """Compute the best discount available"""
 return max(promo(order) for promo in promos)

promos: list of the strategies implemented as functions.

best_promo takes an instance of Order as argument, as do the other *_promo
functions.

Using a generator expression, we apply each of the functions from promos to the
order, and return the maximum discount computed.

Example 10-6 is straightforward: promos is a list of functions. Once you get used to
the idea that functions are first-class objects, it naturally follows that building data
structures holding functions often makes sense.

Although Example 10-6 works and is easy to read, there is some duplication that
could lead to a subtle bug: to add a new promotion strategy, we need to code the
function and remember to add it to the promos list, or else the new promotion will
work when explicitly passed as an argument to Order, but will not be considered by
best_promotion.

Read on for a couple of solutions to this issue.

Finding Strategies in a Module
Modules in Python are also first-class objects, and the standard library provides sev‐
eral functions to handle them. The built-in globals is described as follows in the
Python docs:

Case Study: Refactoring Strategy | 351

6 flake8 and VS Code both complain that these names are imported but not used. By definition, static analysis
tools cannot understand the dynamic nature of Python. If we heed every advice from such tools, we’ll soon be
writing grim and verbose Java-like code with Python syntax.

globals()

Return a dictionary representing the current global symbol table. This is always
the dictionary of the current module (inside a function or method, this is the
module where it is defined, not the module from which it is called).

Example 10-7 is a somewhat hackish way of using globals to help best_promo auto‐
matically find the other available *_promo functions.

Example 10-7. The promos list is built by introspection of the module global namespace

from decimal import Decimal
from strategy import Order
from strategy import (
 fidelity_promo, bulk_item_promo, large_order_promo
)

promos = [promo for name, promo in globals().items()
 if name.endswith('_promo') and
 name != 'best_promo'
]

def best_promo(order: Order) -> Decimal:
 """Compute the best discount available"""
 return max(promo(order) for promo in promos)

Import the promotion functions so they are available in the global namespace.6

Iterate over each item in the dict returned by globals().

Select only values where the name ends with the _promo suffix and…

…filter out best_promo itself, to avoid an infinite recursion when best_promo is
called.

No changes in best_promo.

Another way of collecting the available promotions would be to create a module and
put all the strategy functions there, except for best_promo.

In Example 10-8, the only significant change is that the list of strategy functions
is built by introspection of a separate module called promotions. Note that

352 | Chapter 10: Design Patterns with First-Class Functions

Example 10-8 depends on importing the promotions module as well as inspect,
which provides high-level introspection functions.

Example 10-8. The promos list is built by introspection of a new promotions module

from decimal import Decimal
import inspect

from strategy import Order
import promotions

promos = [func for _, func in inspect.getmembers(promotions, inspect.isfunction)]

def best_promo(order: Order) -> Decimal:
 """Compute the best discount available"""
 return max(promo(order) for promo in promos)

The function inspect.getmembers returns the attributes of an object—in this case,
the promotions module—optionally filtered by a predicate (a boolean function). We
use inspect.isfunction to get only the functions from the module.

Example 10-8 works regardless of the names given to the functions; all that matters is
that the promotions module contains only functions that calculate discounts given
orders. Of course, this is an implicit assumption of the code. If someone were to cre‐
ate a function with a different signature in the promotions module, then best_promo
would break while trying to apply it to an order.

We could add more stringent tests to filter the functions, by inspecting their argu‐
ments for instance. The point of Example 10-8 is not to offer a complete solution, but
to highlight one possible use of module introspection.

A more explicit alternative to dynamically collecting promotional discount functions
would be to use a simple decorator. That’s next.

Decorator-Enhanced Strategy Pattern
Recall that our main issue with Example 10-6 is the repetition of the function names
in their definitions and then in the promos list used by the best_promo function to
determine the highest discount applicable. The repetition is problematic because
someone may add a new promotional strategy function and forget to manually add it
to the promos list—in which case, best_promo will silently ignore the new strategy,
introducing a subtle bug in the system. Example 10-9 solves this problem with the
technique covered in “Registration Decorators” on page 308.

Decorator-Enhanced Strategy Pattern | 353

Example 10-9. The promos list is filled by the Promotion decorator

Promotion = Callable[[Order], Decimal]

promos: list[Promotion] = []

def promotion(promo: Promotion) -> Promotion:
 promos.append(promo)
 return promo

def best_promo(order: Order) -> Decimal:
 """Compute the best discount available"""
 return max(promo(order) for promo in promos)

@promotion
def fidelity(order: Order) -> Decimal:
 """5% discount for customers with 1000 or more fidelity points"""
 if order.customer.fidelity >= 1000:
 return order.total() * Decimal('0.05')
 return Decimal(0)

@promotion
def bulk_item(order: Order) -> Decimal:
 """10% discount for each LineItem with 20 or more units"""
 discount = Decimal(0)
 for item in order.cart:
 if item.quantity >= 20:
 discount += item.total() * Decimal('0.1')
 return discount

@promotion
def large_order(order: Order) -> Decimal:
 """7% discount for orders with 10 or more distinct items"""
 distinct_items = {item.product for item in order.cart}
 if len(distinct_items) >= 10:
 return order.total() * Decimal('0.07')
 return Decimal(0)

The promos list is a module global, and starts empty.

Promotion is a registration decorator: it returns the promo function unchanged,
after appending it to the promos list.

No changes needed to best_promo, because it relies on the promos list.

354 | Chapter 10: Design Patterns with First-Class Functions

Any function decorated by @promotion will be added to promos.

This solution has several advantages over the others presented before:

• The promotion strategy functions don’t have to use special names—no need for
the _promo suffix.

• The @promotion decorator highlights the purpose of the decorated function, and
also makes it easy to temporarily disable a promotion: just comment out the
decorator.

• Promotional discount strategies may be defined in other modules, anywhere in
the system, as long as the @promotion decorator is applied to them.

In the next section, we discuss Command—another design pattern that is sometimes
implemented via single-method classes when plain functions would do.

The Command Pattern
Command is another design pattern that can be simplified by the use of functions
passed as arguments. Figure 10-2 shows the arrangement of classes in the Command
pattern.

Figure 10-2. UML class diagram for menu-driven text editor implemented with the
Command design pattern. Each command may have a different receiver: the object that
implements the action. For PasteCommand, the receiver is the Document. For OpenCom
mand, the receiver is the application.

The Command Pattern | 355

The goal of Command is to decouple an object that invokes an operation (the
invoker) from the provider object that implements it (the receiver). In the example
from Design Patterns, each invoker is a menu item in a graphical application, and the
receivers are the document being edited or the application itself.

The idea is to put a Command object between the two, implementing an interface with
a single method, execute, which calls some method in the receiver to perform the
desired operation. That way the invoker does not need to know the interface of the
receiver, and different receivers can be adapted through different Command subclasses.
The invoker is configured with a concrete command and calls its execute method to
operate it. Note in Figure 10-2 that MacroCommand may store a sequence of com‐
mands; its execute() method calls the same method in each command stored.

Quoting from Design Patterns, “Commands are an object-oriented replacement for
callbacks.” The question is: do we need an object-oriented replacement for callbacks?
Sometimes yes, but not always.

Instead of giving the invoker a Command instance, we can simply give it a function.
Instead of calling command.execute(), the invoker can just call command(). The Macro
Command can be implemented with a class implementing __call__. Instances of
MacroCommand would be callables, each holding a list of functions for future invoca‐
tion, as implemented in Example 10-10.

Example 10-10. Each instance of MacroCommand has an internal list of commands

class MacroCommand:
 """A command that executes a list of commands"""

 def __init__(self, commands):
 self.commands = list(commands)

 def __call__(self):
 for command in self.commands:
 command()

Building a list from the commands arguments ensures that it is iterable and keeps
a local copy of the command references in each MacroCommand instance.

When an instance of MacroCommand is invoked, each command in self.commands
is called in sequence.

More advanced uses of the Command pattern—to support undo, for example—may
require more than a simple callback function. Even then, Python provides a couple of
alternatives that deserve consideration:

356 | Chapter 10: Design Patterns with First-Class Functions

7 “Root Cause Analysis of Some Faults in Design Patterns,” presented by Johnson at IME-USP, November 15,
2014.

• A callable instance like MacroCommand in Example 10-10 can keep whatever state
is necessary, and provide extra methods in addition to __call__.

• A closure can be used to hold the internal state of a function between calls.

This concludes our rethinking of the Command pattern with first-class functions. At
a high level, the approach here was similar to the one we applied to Strategy: replac‐
ing with callables the instances of a participant class that implemented a single-
method interface. After all, every Python callable implements a single-method
interface, and that method is named __call__.

Chapter Summary
As Peter Norvig pointed out a couple of years after the classic Design Patterns book
appeared, “16 of 23 patterns have qualitatively simpler implementation in Lisp or
Dylan than in C++ for at least some uses of each pattern” (slide 9 of Norvig’s “Design
Patterns in Dynamic Languages” presentation). Python shares some of the dynamic
features of the Lisp and Dylan languages, in particular, first-class functions, our focus
in this part of the book.

From the same talk quoted at the start of this chapter, in reflecting on the 20th anni‐
versary of Design Patterns: Elements of Reusable Object-Oriented Software, Ralph
Johnson has stated that one of the failings of the book is: “Too much emphasis on
patterns as end-points instead of steps in the design process.”7 In this chapter, we
used the Strategy pattern as a starting point: a working solution that we could sim‐
plify using first-class functions.

In many cases, functions or callable objects provide a more natural way of imple‐
menting callbacks in Python than mimicking the Strategy or the Command patterns
as described by Gamma, Helm, Johnson, and Vlissides in Design Patterns. The refac‐
toring of Strategy and the discussion of Command in this chapter are examples of a
more general insight: sometimes you may encounter a design pattern or an API that
requires that components implement an interface with a single method, and that
method has a generic-sounding name such as “execute,” “run,” or “do_it.” Such pat‐
terns or APIs often can be implemented with less boilerplate code in Python using
functions as first-class objects.

Chapter Summary | 357

https://fpy.li/10-4
https://fpy.li/10-4

Further Reading
“Recipe 8.21. Implementing the Visitor Pattern,” in the Python Cookbook, 3rd ed.,
presents an elegant implementation of the Visitor pattern in which a NodeVisitor
class handles methods as first-class objects.

On the general topic of design patterns, the choice of readings for the Python pro‐
grammer is not as broad as what is available to other language communities.

Learning Python Design Patterns, by Gennadiy Zlobin (Packt), is the only book that I
have seen entirely devoted to patterns in Python. But Zlobin’s work is quite short
(100 pages) and covers 8 of the original 23 design patterns.

Expert Python Programming, by Tarek Ziadé (Packt), is one of the best intermediate-
level Python books in the market, and its final chapter, “Useful Design Patterns,”
presents several of the classic patterns from a Pythonic perspective.

Alex Martelli has given several talks about Python design patterns. There is a video of
his EuroPython 2011 presentation and a set of slides on his personal website. I’ve
found different slide decks and videos over the years, of varying lengths, so it is
worthwhile to do a thorough search for his name with the words “Python Design Pat‐
terns.” A publisher told me Martelli is working on a book about this subject. I will
certainly get it when it comes out.

There are many books about design patterns in the context of Java, but among them
the one I like most is Head First Design Patterns, 2nd ed., by Eric Freeman and Elisa‐
beth Robson (O’Reilly). It explains 16 of the 23 classic patterns. If you like the wacky
style of the Head First series and need an introduction to this topic, you will love that
work. It is Java-centric, but the second edition was updated to reflect the addition of
first-class functions in Java, making some of the examples closer to code we’d write in
Python.

For a fresh look at patterns from the point of view of a dynamic language with duck
typing and first-class functions, Design Patterns in Ruby by Russ Olsen (Addison-
Wesley) has many insights that are also applicable to Python. In spite of their many
syntactic differences, at the semantic level Python and Ruby are closer to each other
than to Java or C++.

In “Design Patterns in Dynamic Languages” (slides), Peter Norvig shows how first-
class functions (and other dynamic features) make several of the original design pat‐
terns either simpler or unnecessary.

The introduction of the original Design Patterns book by Gamma et al. is worth the
price of the book—more than the catalog of 23 patterns, which includes recipes rang‐
ing from very important to rarely useful. The widely quoted design principles,

358 | Chapter 10: Design Patterns with First-Class Functions

https://fpy.li/pycook3
https://fpy.li/10-5
https://fpy.li/10-6
https://fpy.li/norvigdp

“Program to an interface, not an implementation” and “Favor object composition
over class inheritance,” both come from that introduction.

The application of patterns to design originated with the architect Christopher
Alexander et al., presented in the book A Pattern Language (Oxford University
Press). Alexander’s idea is to create a standard vocabulary allowing teams to share
common design decisions while designing buildings. M. J. Dominus wrote “‘Design
Patterns’ Aren’t”, an intriguing slide deck and postscript text arguing that
Alexander’s original vision of patterns is more profound, more human, and also
applicable to software engineering.

Soapbox
Python has first-class functions and first-class types, features that Norvig claims affect
10 of the 23 patterns (slide 10 of “Design Patterns in Dynamic Languages”). In Chap‐
ter 9, we saw that Python also has generic functions (“Single Dispatch Generic Func‐
tions” on page 324), a limited form of the CLOS multimethods that Gamma et al.
suggest as a simpler way to implement the classic Visitor pattern. Norvig, on the
other hand, says that multimethods simplify the Builder pattern (slide 10). Matching
design patterns to language features is not an exact science.

In classrooms around the world, design patterns are frequently taught using Java
examples. I’ve heard more than one student claim that they were led to believe that
the original design patterns are useful in any implementation language. It turns out
that the “classic” 23 patterns from Design Patterns apply to “classic” Java very well in
spite of being originally presented mostly in the context of C++—a few have Small‐
talk examples in the book. But that does not mean every one of those patterns applies
equally well in any language. The authors are explicit right at the beginning of their
book that “some of our patterns are supported directly by the less common object-
oriented languages” (recall full quote on the first page of this chapter).

The Python bibliography about design patterns is very thin, compared to that of Java,
C++, or Ruby. In “Further Reading” on page 358 I mentioned Learning Python
Design Patterns by Gennadiy Zlobin, which was published as recently as November
2013. In contrast, Russ Olsen’s Design Patterns in Ruby was published in 2007 and
has 384 pages—284 more than Zlobin’s work.

Now that Python is becoming increasingly popular in academia, let’s hope more will
be written about design patterns in the context of this language. Also, Java 8 intro‐
duced method references and anonymous functions, and those highly anticipated
features are likely to prompt fresh approaches to patterns in Java—recognizing that as
languages evolve, so must our understanding of how to apply the classic design
patterns.

Further Reading | 359

https://fpy.li/10-7
https://fpy.li/10-7
https://fpy.li/norvigdp

The call of the Wild

As we collaborated to put the final touches to this book, tech reviewer Leonardo
Rochael wondered:

If functions have a __call__ method, and methods are also callable, do __call__
methods also have a __call__ method?

I don’t know if his discovery is useful, but it is a fun fact:

>>> def turtle():
... return 'eggs'
...
>>> turtle()
'eggs'
>>> turtle.__call__()
'eggs'
>>> turtle.__call__.__call__()
'eggs'
>>> turtle.__call__.__call__.__call__()
'eggs'
>>> turtle.__call__.__call__.__call__.__call__()
'eggs'
>>> turtle.__call__.__call__.__call__.__call__.__call__()
'eggs'
>>> turtle.__call__.__call__.__call__.__call__.__call__.__call__()
'eggs'
>>> turtle.__call__.__call__.__call__.__call__.__call__.__call__.__call__()
'eggs'

Turtles all the way down!

360 | Chapter 10: Design Patterns with First-Class Functions

https://fpy.li/10-8

PART III

Classes and Protocols

1 From Faassen’s blog post, “What is Pythonic?”

CHAPTER 11

A Pythonic Object

For a library or framework to be Pythonic is to make it as easy and natural as possible
for a Python programmer to pick up how to perform a task.

—Martijn Faassen, creator of Python and JavaScript frameworks.1

Thanks to the Python Data Model, your user-defined types can behave as naturally as
the built-in types. And this can be accomplished without inheritance, in the spirit of
duck typing: you just implement the methods needed for your objects to behave as
expected.

In previous chapters, we studied the behavior of many built-in objects. We will now
build user-defined classes that behave as real Python objects. Your application classes
probably don’t need and should not implement as many special methods as the
examples in this chapter. But if you are writing a library or a framework, the pro‐
grammers who will use your classes may expect them to behave like the classes that
Python provides. Fulfilling that expectation is one way of being “Pythonic.”

This chapter starts where Chapter 1 ended, by showing how to implement several
special methods that are commonly seen in Python objects of many different types.

In this chapter, we will see how to:

• Support the built-in functions that convert objects to other types (e.g., repr(),
bytes(), complex(), etc.)

• Implement an alternative constructor as a class method
• Extend the format mini-language used by f-strings, the format() built-in, and

the str.format() method

363

https://fpy.li/11-1

• Provide read-only access to attributes
• Make an object hashable for use in sets and as dict keys
• Save memory with the use of __slots__

We’ll do all that as we develop Vector2d, a simple two-dimensional Euclidean vector
type. This code will be the foundation of an N-dimensional vector class in
Chapter 12.

The evolution of the example will be paused to discuss two conceptual topics:

• How and when to use the @classmethod and @staticmethod decorators
• Private and protected attributes in Python: usage, conventions, and limitations

What’s New in This Chapter
I added a new epigraph and a few words in the second paragraph of the chapter to
address the concept of “Pythonic”—which was only discussed at the very end in the
first edition.

“Formatted Displays” on page 370 was updated to mention f-strings, introduced in
Python 3.6. It’s a small change because f-strings support the same formatting mini-
language as the format() built-in and the str.format() method, so any previously
implemented __format__ methods simply work with f-strings.

The rest of the chapter barely changed—the special methods are mostly the same
since Python 3.0, and the core ideas appeared in Python 2.2.

Let’s get started with the object representation methods.

Object Representations
Every object-oriented language has at least one standard way of getting a string repre‐
sentation from any object. Python has two:

repr()

Return a string representing the object as the developer wants to see it. It’s what
you get when the Python console or a debugger shows an object.

str()

Return a string representing the object as the user wants to see it. It’s what you
get when you print() an object.

The special methods __repr__ and __str__ support repr() and str(), as we saw in
Chapter 1.

364 | Chapter 11: A Pythonic Object

There are two additional special methods to support alternative representations of
objects: __bytes__ and __format__. The __bytes__ method is analogous to __str__:
it’s called by bytes() to get the object represented as a byte sequence. Regarding
__format__, it is used by f-strings, by the built-in function format(), and by the
str.format() method. They call obj.__format__(format_spec) to get string dis‐
plays of objects using special formatting codes. We’ll cover __bytes__ in the next
example, and __format__ after that.

If you’re coming from Python 2, remember that in Python 3
__repr__, __str__, and __format__ must always return Unicode
strings (type str). Only __bytes__ is supposed to return a byte
sequence (type bytes).

Vector Class Redux
In order to demonstrate the many methods used to generate object representations,
we’ll use a Vector2d class similar to the one we saw in Chapter 1. We will build on it
in this and future sections. Example 11-1 illustrates the basic behavior we expect
from a Vector2d instance.

Example 11-1. Vector2d instances have several representations

 >>> v1 = Vector2d(3, 4)
 >>> print(v1.x, v1.y)
 3.0 4.0
 >>> x, y = v1
 >>> x, y
 (3.0, 4.0)
 >>> v1
 Vector2d(3.0, 4.0)
 >>> v1_clone = eval(repr(v1))
 >>> v1 == v1_clone
 True
 >>> print(v1)
 (3.0, 4.0)
 >>> octets = bytes(v1)
 >>> octets
 b'd\\x00\\x00\\x00\\x00\\x00\\x00\\x08@\\x00\\x00\\x00\\x00\\x00\\x00\\x10@'
 >>> abs(v1)
 5.0
 >>> bool(v1), bool(Vector2d(0, 0))
 (True, False)

Vector Class Redux | 365

2 I used eval to clone the object here just to make a point about repr; to clone an instance, the copy.copy
function is safer and faster.

The components of a Vector2d can be accessed directly as attributes (no getter
method calls).

A Vector2d can be unpacked to a tuple of variables.

The repr of a Vector2d emulates the source code for constructing the instance.

Using eval here shows that the repr of a Vector2d is a faithful representation of
its constructor call.2

Vector2d supports comparison with ==; this is useful for testing.

print calls str, which for Vector2d produces an ordered pair display.

bytes uses the __bytes__ method to produce a binary representation.

abs uses the __abs__ method to return the magnitude of the Vector2d.

bool uses the __bool__ method to return False for a Vector2d of zero magni‐
tude or True otherwise.

Vector2d from Example 11-1 is implemented in vector2d_v0.py (Example 11-2). The
code is based on Example 1-2, except for the methods for the + and * operations,
which we’ll see later in Chapter 16. We’ll add the method for == since it’s useful for
testing. At this point, Vector2d uses several special methods to provide operations
that a Pythonista expects in a well-designed object.

Example 11-2. vector2d_v0.py: methods so far are all special methods

from array import array
import math

class Vector2d:
 typecode = 'd'

 def __init__(self, x, y):
 self.x = float(x)
 self.y = float(y)

 def __iter__(self):
 return (i for i in (self.x, self.y))

366 | Chapter 11: A Pythonic Object

3 This line could also be written as yield self.x; yield.self.y. I have a lot more to say about the __iter__
special method, generator expressions, and the yield keyword in Chapter 17.

 def __repr__(self):
 class_name = type(self).__name__
 return '{}({!r}, {!r})'.format(class_name, *self)

 def __str__(self):
 return str(tuple(self))

 def __bytes__(self):
 return (bytes([ord(self.typecode)]) +
 bytes(array(self.typecode, self)))

 def __eq__(self, other):
 return tuple(self) == tuple(other)

 def __abs__(self):
 return math.hypot(self.x, self.y)

 def __bool__(self):
 return bool(abs(self))

typecode is a class attribute we’ll use when converting Vector2d instances to/
from bytes.

Converting x and y to float in __init__ catches errors early, which is helpful in
case Vector2d is called with unsuitable arguments.

__iter__ makes a Vector2d iterable; this is what makes unpacking work (e.g, x,
y = my_vector). We implement it simply by using a generator expression to
yield the components one after the other.3

__repr__ builds a string by interpolating the components with {!r} to get their
repr; because Vector2d is iterable, *self feeds the x and y components to
format.

From an iterable Vector2d, it’s easy to build a tuple for display as an ordered
pair.

To generate bytes, we convert the typecode to bytes and concatenate…

…bytes converted from an array built by iterating over the instance.

Vector Class Redux | 367

To quickly compare all components, build tuples out of the operands. This works
for operands that are instances of Vector2d, but has issues. See the following
warning.

The magnitude is the length of the hypotenuse of the right triangle formed by the
x and y components.

__bool__ uses abs(self) to compute the magnitude, then converts it to bool, so
0.0 becomes False, nonzero is True.

Method __eq__ in Example 11-2 works for Vector2d operands but
also returns True when comparing Vector2d instances to other
iterables holding the same numeric values (e.g., Vector(3, 4) ==
[3, 4]). This may be considered a feature or a bug. Further discus‐
sion needs to wait until Chapter 16, when we cover operator over‐
loading.

We have a fairly complete set of basic methods, but we still need a way to rebuild a
Vector2d from the binary representation produced by bytes().

An Alternative Constructor
Since we can export a Vector2d as bytes, naturally we need a method that imports a
Vector2d from a binary sequence. Looking at the standard library for inspiration, we
find that array.array has a class method named .frombytes that suits our purpose
—we saw it in “Arrays” on page 59. We adopt its name and use its functionality in a
class method for Vector2d in vector2d_v1.py (Example 11-3).

Example 11-3. Part of vector2d_v1.py: this snippet shows only the frombytes class
method, added to the Vector2d definition in vector2d_v0.py (Example 11-2)

 @classmethod
 def frombytes(cls, octets):
 typecode = chr(octets[0])
 memv = memoryview(octets[1:]).cast(typecode)
 return cls(*memv)

The classmethod decorator modifies a method so it can be called directly on a
class.

No self argument; instead, the class itself is passed as the first argument—con‐
ventionally named cls.

368 | Chapter 11: A Pythonic Object

4 We had a brief introduction to memoryview, explaining its .cast method, in “Memory Views” on page 62.

Read the typecode from the first byte.

Create a memoryview from the octets binary sequence and use the typecode to
cast it.4

Unpack the memoryview resulting from the cast into the pair of arguments
needed for the constructor.

I just used a classmethod decorator and it is very Python specific, so let’s have a word
about it.

classmethod Versus staticmethod
The classmethod decorator is not mentioned in the Python tutorial, and neither is
staticmethod. Anyone who has learned OO in Java may wonder why Python has
both of these decorators and not just one of them.

Let’s start with classmethod. Example 11-3 shows its use: to define a method that
operates on the class and not on instances. classmethod changes the way the method
is called, so it receives the class itself as the first argument, instead of an instance. Its
most common use is for alternative constructors, like frombytes in Example 11-3.
Note how the last line of frombytes actually uses the cls argument by invoking it to
build a new instance: cls(*memv).

In contrast, the staticmethod decorator changes a method so that it receives no spe‐
cial first argument. In essence, a static method is just like a plain function that hap‐
pens to live in a class body, instead of being defined at the module level.
Example 11-4 contrasts the operation of classmethod and staticmethod.

Example 11-4. Comparing behaviors of classmethod and staticmethod

>>> class Demo:
... @classmethod
... def klassmeth(*args):
... return args
... @staticmethod
... def statmeth(*args):
... return args
...
>>> Demo.klassmeth()
(<class '__main__.Demo'>,)
>>> Demo.klassmeth('spam')

classmethod Versus staticmethod | 369

5 Leonardo Rochael, one of the technical reviewers of this book, disagrees with my low opinion of staticme
thod, and recommends the blog post “The Definitive Guide on How to Use Static, Class or Abstract Methods
in Python” by Julien Danjou as a counterargument. Danjou’s post is very good; I do recommend it. But it
wasn’t enough to change my mind about staticmethod. You’ll have to decide for yourself.

(<class '__main__.Demo'>, 'spam')
>>> Demo.statmeth()
()
>>> Demo.statmeth('spam')
('spam',)

klassmeth just returns all positional arguments.

statmeth does the same.

No matter how you invoke it, Demo.klassmeth receives the Demo class as the first
argument.

Demo.statmeth behaves just like a plain old function.

The classmethod decorator is clearly useful, but good use cases for
staticmethod are very rare in my experience. Maybe the function
is closely related even if it never touches the class, so you may want
to place it nearby in the code. Even then, defining the function
right before or after the class in the same module is close enough
most of the time.5

Now that we’ve seen what classmethod is good for (and that staticmethod is not
very useful), let’s go back to the issue of object representation and see how to support
formatted output.

Formatted Displays
The f-strings, the format() built-in function, and the str.format() method delegate
the actual formatting to each type by calling their .__format__(format_spec)
method. The format_spec is a formatting specifier, which is either:

• The second argument in format(my_obj, format_spec), or
• Whatever appears after the colon in a replacement field delimited with {} inside

an f-string or the fmt in fmt.str.format()

370 | Chapter 11: A Pythonic Object

https://fpy.li/11-2
https://fpy.li/11-2

For example:

>>> brl = 1 / 4.82 # BRL to USD currency conversion rate
>>> brl
0.20746887966804978
>>> format(brl, '0.4f')
'0.2075'
>>> '1 BRL = {rate:0.2f} USD'.format(rate=brl)
'1 BRL = 0.21 USD'
>>> f'1 USD = {1 / brl:0.2f} BRL'
'1 USD = 4.82 BRL'

Formatting specifier is '0.4f'.

Formatting specifier is '0.2f'. The rate part in the replacement field is not part
of the formatting specifier. It determines which keyword argument of .format()
goes into that replacement field.

Again, the specifier is '0.2f'. The 1 / brl expression is not part of it.

The second and third callouts make an important point: a format string such as
'{0.mass:5.3e}' actually uses two separate notations. The '0.mass' to the left of the
colon is the field_name part of the replacement field syntax, and it can be an arbi‐
trary expression in an f-string. The '5.3e' after the colon is the formatting specifier.
The notation used in the formatting specifier is called the Format Specification Mini-
Language.

If f-strings, format(), and str.format() are new to you, classroom
experience tells me it’s best to study the format() built-in function
first, which uses just the Format Specification Mini-Language.
After you get the gist of that, read “Formatted string literals” and
“Format String Syntax” to learn about the {:} replacement field
notation, used in f-strings and the str.format() method (includ‐
ing the !s, !r, and !a conversion flags). F-strings don’t make
str.format() obsolete: most of the time f-strings solve the prob‐
lem, but sometimes it’s better to specify the formatting string else‐
where, and not where it will be rendered.

A few built-in types have their own presentation codes in the Format Specification
Mini-Language. For example—among several other codes—the int type supports b
and x for base 2 and base 16 output, respectively, while float implements f for a
fixed-point display and % for a percentage display:

>>> format(42, 'b')
'101010'

Formatted Displays | 371

https://fpy.li/11-3
https://fpy.li/11-3
https://fpy.li/fmtspec
https://fpy.li/11-4
https://fpy.li/11-5

>>> format(2 / 3, '.1%')
'66.7%'

The Format Specification Mini-Language is extensible because each class gets to
interpret the format_spec argument as it likes. For instance, the classes in the date
time module use the same format codes in the strftime() functions and in their
__format__ methods. Here are a couple of examples using the format() built-in and
the str.format() method:

>>> from datetime import datetime
>>> now = datetime.now()
>>> format(now, '%H:%M:%S')
'18:49:05'
>>> "It's now {:%I:%M %p}".format(now)
"It's now 06:49 PM"

If a class has no __format__, the method inherited from object returns
str(my_object). Because Vector2d has a __str__, this works:

>>> v1 = Vector2d(3, 4)
>>> format(v1)
'(3.0, 4.0)'

However, if you pass a format specifier, object.__format__ raises TypeError:

>>> format(v1, '.3f')
Traceback (most recent call last):
 ...
TypeError: non-empty format string passed to object.__format__

We will fix that by implementing our own format mini-language. The first step will
be to assume the format specifier provided by the user is intended to format each
float component of the vector. This is the result we want:

>>> v1 = Vector2d(3, 4)
>>> format(v1)
'(3.0, 4.0)'
>>> format(v1, '.2f')
'(3.00, 4.00)'
>>> format(v1, '.3e')
'(3.000e+00, 4.000e+00)'

Example 11-5 implements __format__ to produce the displays just shown.

Example 11-5. Vector2d.__format__ method, take #1

 # inside the Vector2d class

 def __format__(self, fmt_spec=''):
 components = (format(c, fmt_spec) for c in self)
 return '({}, {})'.format(*components)

372 | Chapter 11: A Pythonic Object

Use the format built-in to apply the fmt_spec to each vector component, build‐
ing an iterable of formatted strings.

Plug the formatted strings in the formula '(x, y)'.

Now let’s add a custom formatting code to our mini-language: if the format specifier
ends with a 'p', we’ll display the vector in polar coordinates: <r, θ>, where r is the
magnitude and θ (theta) is the angle in radians. The rest of the format specifier
(whatever comes before the 'p') will be used as before.

When choosing the letter for the custom format code, I avoided
overlapping with codes used by other types. In Format Specifica‐
tion Mini-Language, we see that integers use the codes 'bcdoxXn',
floats use 'eEfFgGn%', and strings use 's'. So I picked 'p' for
polar coordinates. Because each class interprets these codes inde‐
pendently, reusing a code letter in a custom format for a new type
is not an error, but may be confusing to users.

To generate polar coordinates, we already have the __abs__ method for the magni‐
tude, and we’ll code a simple angle method using the math.atan2() function to get
the angle. This is the code:

 # inside the Vector2d class

 def angle(self):
 return math.atan2(self.y, self.x)

With that, we can enhance our __format__ to produce polar coordinates. See
Example 11-6.

Example 11-6. Vector2d.__format__ method, take #2, now with polar coordinates

 def __format__(self, fmt_spec=''):
 if fmt_spec.endswith('p'):
 fmt_spec = fmt_spec[:-1]
 coords = (abs(self), self.angle())
 outer_fmt = '<{}, {}>'
 else:
 coords = self
 outer_fmt = '({}, {})'
 components = (format(c, fmt_spec) for c in coords)
 return outer_fmt.format(*components)

Format ends with 'p': use polar coordinates.

Remove 'p' suffix from fmt_spec.

Formatted Displays | 373

https://fpy.li/11-3
https://fpy.li/11-3

Build tuple of polar coordinates: (magnitude, angle).

Configure outer format with angle brackets.

Otherwise, use x, y components of self for rectangular coordinates.

Configure outer format with parentheses.

Generate iterable with components as formatted strings.

Plug formatted strings into outer format.

With Example 11-6, we get results similar to these:

>>> format(Vector2d(1, 1), 'p')
'<1.4142135623730951, 0.7853981633974483>'
>>> format(Vector2d(1, 1), '.3ep')
'<1.414e+00, 7.854e-01>'
>>> format(Vector2d(1, 1), '0.5fp')
'<1.41421, 0.78540>'

As this section shows, it’s not hard to extend the Format Specification Mini-
Language to support user-defined types.

Now let’s move to a subject that’s not just about appearances: we will make our
Vector2d hashable, so we can build sets of vectors, or use them as dict keys.

A Hashable Vector2d
As defined, so far our Vector2d instances are unhashable, so we can’t put them in a
set:

>>> v1 = Vector2d(3, 4)
>>> hash(v1)
Traceback (most recent call last):
 ...
TypeError: unhashable type: 'Vector2d'
>>> set([v1])
Traceback (most recent call last):
 ...
TypeError: unhashable type: 'Vector2d'

To make a Vector2d hashable, we must implement __hash__ (__eq__ is also
required, and we already have it). We also need to make vector instances immutable,
as we’ve seen in “What Is Hashable” on page 84.

374 | Chapter 11: A Pythonic Object

6 The pros and cons of private attributes are the subject of the upcoming “Private and ‘Protected’ Attributes in
Python” on page 382.

Right now, anyone can do v1.x = 7, and there is nothing in the code to suggest that
changing a Vector2d is forbidden. This is the behavior we want:

>>> v1.x, v1.y
(3.0, 4.0)
>>> v1.x = 7
Traceback (most recent call last):
 ...
AttributeError: can't set attribute

We’ll do that by making the x and y components read-only properties in
Example 11-7.

Example 11-7. vector2d_v3.py: only the changes needed to make Vector2d immutable
are shown here; see full listing in Example 11-11

class Vector2d:
 typecode = 'd'

 def __init__(self, x, y):
 self.__x = float(x)
 self.__y = float(y)

 @property
 def x(self):
 return self.__x

 @property
 def y(self):
 return self.__y

 def __iter__(self):
 return (i for i in (self.x, self.y))

 # remaining methods: same as previous Vector2d

Use exactly two leading underscores (with zero or one trailing underscore) to
make an attribute private.6

The @property decorator marks the getter method of a property.

The getter method is named after the public property it exposes: x.

Just return self.__x.

A Hashable Vector2d | 375

Repeat the same formula for y property.

Every method that just reads the x, y components can stay as it was, reading the
public properties via self.x and self.y instead of the private attribute, so this
listing omits the rest of the code for the class.

Vector.x and Vector.y are examples of read-only properties.
Read/write properties will be covered in Chapter 22, where we dive
deeper into @property.

Now that our vectors are reasonably safe from accidental mutation, we can imple‐
ment the __hash__ method. It should return an int and ideally take into account the
hashes of the object attributes that are also used in the __eq__ method, because
objects that compare equal should have the same hash. The __hash__ special method
documentation suggests computing the hash of a tuple with the components, so
that’s what we do in Example 11-8.

Example 11-8. vector2d_v3.py: implementation of hash

 # inside class Vector2d:

 def __hash__(self):
 return hash((self.x, self.y))

With the addition of the __hash__ method, we now have hashable vectors:

>>> v1 = Vector2d(3, 4)
>>> v2 = Vector2d(3.1, 4.2)
>>> hash(v1), hash(v2)
(1079245023883434373, 1994163070182233067)
>>> {v1, v2}
{Vector2d(3.1, 4.2), Vector2d(3.0, 4.0)}

It’s not strictly necessary to implement properties or otherwise
protect the instance attributes to create a hashable type. Imple‐
menting __hash__ and __eq__ correctly is all it takes. But the value
of a hashable object is never supposed to change, so this provided a
good excuse to talk about read-only properties.

If you are creating a type that has a sensible scalar numeric value, you may also
implement the __int__ and __float__ methods, invoked by the int() and float()
constructors, which are used for type coercion in some contexts. There is also a

376 | Chapter 11: A Pythonic Object

https://fpy.li/11-7

__complex__ method to support the complex() built-in constructor. Perhaps Vec
tor2d should provide __complex__, but I’ll leave that as an exercise for you.

Supporting Positional Pattern Matching
So far, Vector2d instances are compatible with keyword class patterns—covered in
“Keyword Class Patterns” on page 193.

In Example 11-9, all of these keyword patterns work as expected.

Example 11-9. Keyword patterns for Vector2d subjects—requires Python 3.10

def keyword_pattern_demo(v: Vector2d) -> None:
 match v:
 case Vector2d(x=0, y=0):
 print(f'{v!r} is null')
 case Vector2d(x=0):
 print(f'{v!r} is vertical')
 case Vector2d(y=0):
 print(f'{v!r} is horizontal')
 case Vector2d(x=x, y=y) if x==y:
 print(f'{v!r} is diagonal')
 case _:
 print(f'{v!r} is awesome')

However, if you try to use a positional pattern like this:

 case Vector2d(_, 0):
 print(f'{v!r} is horizontal')

you get:

TypeError: Vector2d() accepts 0 positional sub-patterns (1 given)

To make Vector2d work with positional patterns, we need to add a class attribute
named __match_args__ , listing the instance attributes in the order they will be used
for positional pattern matching:

class Vector2d:
 __match_args__ = ('x', 'y')

 # etc...

Now we can save a few keystrokes when writing patterns to match Vector2d subjects,
as you can see in Example 11-10.

Example 11-10. Positional patterns for Vector2d subjects—requires Python 3.10

def positional_pattern_demo(v: Vector2d) -> None:
 match v:

Supporting Positional Pattern Matching | 377

 case Vector2d(0, 0):
 print(f'{v!r} is null')
 case Vector2d(0):
 print(f'{v!r} is vertical')
 case Vector2d(_, 0):
 print(f'{v!r} is horizontal')
 case Vector2d(x, y) if x==y:
 print(f'{v!r} is diagonal')
 case _:
 print(f'{v!r} is awesome')

The __match_args__ class attribute does not need to include all public instance
attributes. In particular, if the class __init__ has required and optional arguments
that are assigned to instance attributes, it may be reasonable to name the required
arguments in __match_args__, but not the optional ones.

Let’s step back and review what we’ve coded so far in Vector2d.

Complete Listing of Vector2d, Version 3
We have been working on Vector2d for a while, showing just snippets, so
Example 11-11 is a consolidated, full listing of vector2d_v3.py, including the doctests
I used when developing it.

Example 11-11. vector2d_v3.py: the full monty

"""
A two-dimensional vector class

 >>> v1 = Vector2d(3, 4)
 >>> print(v1.x, v1.y)
 3.0 4.0
 >>> x, y = v1
 >>> x, y
 (3.0, 4.0)
 >>> v1
 Vector2d(3.0, 4.0)
 >>> v1_clone = eval(repr(v1))
 >>> v1 == v1_clone
 True
 >>> print(v1)
 (3.0, 4.0)
 >>> octets = bytes(v1)
 >>> octets
 b'd\\x00\\x00\\x00\\x00\\x00\\x00\\x08@\\x00\\x00\\x00\\x00\\x00\\x00\\x10@'
 >>> abs(v1)
 5.0
 >>> bool(v1), bool(Vector2d(0, 0))
 (True, False)

378 | Chapter 11: A Pythonic Object

Test of ``.frombytes()`` class method:

 >>> v1_clone = Vector2d.frombytes(bytes(v1))
 >>> v1_clone
 Vector2d(3.0, 4.0)
 >>> v1 == v1_clone
 True

Tests of ``format()`` with Cartesian coordinates:

 >>> format(v1)
 '(3.0, 4.0)'
 >>> format(v1, '.2f')
 '(3.00, 4.00)'
 >>> format(v1, '.3e')
 '(3.000e+00, 4.000e+00)'

Tests of the ``angle`` method::

 >>> Vector2d(0, 0).angle()
 0.0
 >>> Vector2d(1, 0).angle()
 0.0
 >>> epsilon = 10**-8
 >>> abs(Vector2d(0, 1).angle() - math.pi/2) < epsilon
 True
 >>> abs(Vector2d(1, 1).angle() - math.pi/4) < epsilon
 True

Tests of ``format()`` with polar coordinates:

 >>> format(Vector2d(1, 1), 'p') # doctest:+ELLIPSIS
 '<1.414213..., 0.785398...>'
 >>> format(Vector2d(1, 1), '.3ep')
 '<1.414e+00, 7.854e-01>'
 >>> format(Vector2d(1, 1), '0.5fp')
 '<1.41421, 0.78540>'

Tests of `x` and `y` read-only properties:

 >>> v1.x, v1.y
 (3.0, 4.0)
 >>> v1.x = 123
 Traceback (most recent call last):
 ...
 AttributeError: can't set attribute 'x'

Complete Listing of Vector2d, Version 3 | 379

Tests of hashing:

 >>> v1 = Vector2d(3, 4)
 >>> v2 = Vector2d(3.1, 4.2)
 >>> len({v1, v2})
 2

"""

from array import array
import math

class Vector2d:
 __match_args__ = ('x', 'y')

 typecode = 'd'

 def __init__(self, x, y):
 self.__x = float(x)
 self.__y = float(y)

 @property
 def x(self):
 return self.__x

 @property
 def y(self):
 return self.__y

 def __iter__(self):
 return (i for i in (self.x, self.y))

 def __repr__(self):
 class_name = type(self).__name__
 return '{}({!r}, {!r})'.format(class_name, *self)

 def __str__(self):
 return str(tuple(self))

 def __bytes__(self):
 return (bytes([ord(self.typecode)]) +
 bytes(array(self.typecode, self)))

 def __eq__(self, other):
 return tuple(self) == tuple(other)

 def __hash__(self):
 return hash((self.x, self.y))

 def __abs__(self):

380 | Chapter 11: A Pythonic Object

 return math.hypot(self.x, self.y)

 def __bool__(self):
 return bool(abs(self))

 def angle(self):
 return math.atan2(self.y, self.x)

 def __format__(self, fmt_spec=''):
 if fmt_spec.endswith('p'):
 fmt_spec = fmt_spec[:-1]
 coords = (abs(self), self.angle())
 outer_fmt = '<{}, {}>'
 else:
 coords = self
 outer_fmt = '({}, {})'
 components = (format(c, fmt_spec) for c in coords)
 return outer_fmt.format(*components)

 @classmethod
 def frombytes(cls, octets):
 typecode = chr(octets[0])
 memv = memoryview(octets[1:]).cast(typecode)
 return cls(*memv)

To recap, in this and the previous sections, we saw some essential special methods
that you may want to implement to have a full-fledged object.

You should only implement these special methods if your applica‐
tion needs them. End users don’t care if the objects that make up
the application are “Pythonic” or not.
On the other hand, if your classes are part of a library for other
Python programmers to use, you can’t really guess what they will
do with your objects, and they may expect more of the “Pythonic”
behaviors we are describing.

As coded in Example 11-11, Vector2d is a didactic example with a laundry list of spe‐
cial methods related to object representation, not a template for every user-defined
class.

In the next section, we’ll take a break from Vector2d to discuss the design and draw‐
backs of the private attribute mechanism in Python—the double-underscore prefix in
self.__x.

Complete Listing of Vector2d, Version 3 | 381

Private and “Protected” Attributes in Python
In Python, there is no way to create private variables like there is with the private
modifier in Java. What we have in Python is a simple mechanism to prevent acciden‐
tal overwriting of a “private” attribute in a subclass.

Consider this scenario: someone wrote a class named Dog that uses a mood instance
attribute internally, without exposing it. You need to subclass Dog as Beagle. If you
create your own mood instance attribute without being aware of the name clash, you
will clobber the mood attribute used by the methods inherited from Dog. This would
be a pain to debug.

To prevent this, if you name an instance attribute in the form __mood (two leading
underscores and zero or at most one trailing underscore), Python stores the name in
the instance __dict__ prefixed with a leading underscore and the class name, so in
the Dog class, __mood becomes _Dog__mood, and in Beagle it’s _Beagle__mood. This
language feature goes by the lovely name of name mangling.

Example 11-12 shows the result in the Vector2d class from Example 11-7.

Example 11-12. Private attribute names are “mangled” by prefixing the _ and the class
name

>>> v1 = Vector2d(3, 4)
>>> v1.__dict__
{'_Vector2d__y': 4.0, '_Vector2d__x': 3.0}
>>> v1._Vector2d__x
3.0

Name mangling is about safety, not security: it’s designed to prevent accidental access
and not malicious prying. Figure 11-1 illustrates another safety device.

Anyone who knows how private names are mangled can read the private attribute
directly, as the last line of Example 11-12 shows—that’s actually useful for debugging
and serialization. They can also directly assign a value to a private component of a
Vector2d by writing v1._Vector2d__x = 7. But if you are doing that in production
code, you can’t complain if something blows up.

The name mangling functionality is not loved by all Pythonistas, and neither is the
skewed look of names written as self.__x. Some prefer to avoid this syntax and use
just one underscore prefix to “protect” attributes by convention (e.g., self._x). Crit‐
ics of the automatic double-underscore mangling suggest that concerns about acci‐
dental attribute clobbering should be addressed by naming conventions. Ian Bicking
—creator of pip, virtualenv, and other projects—wrote:

382 | Chapter 11: A Pythonic Object

7 From the “Paste Style Guide”.

8 In modules, a single _ in front of a top-level name does have an effect: if you write from mymod import *, the
names with a _ prefix are not imported from mymod. However, you can still write from mymod import _priva
tefunc. This is explained in the Python Tutorial, section 6.1., “More on Modules”.

9 One example is in the gettext module docs.

Never, ever use two leading underscores. This is annoyingly private. If name clashes
are a concern, use explicit name mangling instead (e.g., _MyThing_blahblah). This is
essentially the same thing as double-underscore, only it’s transparent where double
underscore obscures.7

Figure 11-1. A cover on a switch is a safety device, not a security one: it prevents acci‐
dents, not sabotage.

The single underscore prefix has no special meaning to the Python interpreter when
used in attribute names, but it’s a very strong convention among Python program‐
mers that you should not access such attributes from outside the class.8 It’s easy to
respect the privacy of an object that marks its attributes with a single _, just as it’s
easy respect the convention that variables in ALL_CAPS should be treated as constants.

Attributes with a single _ prefix are called “protected” in some corners of the Python
documentation.9 The practice of “protecting” attributes by convention with the form
self._x is widespread, but calling that a “protected” attribute is not so common.
Some even call that a “private” attribute.

Private and “Protected” Attributes in Python | 383

https://fpy.li/11-8
https://fpy.li/11-9
https://fpy.li/11-10

10 If this state of affairs depresses you, and makes you wish Python was more like Java in this regard, don’t read
my discussion of the relative strength of the Java private modifier in “Soapbox” on page 394.

To conclude: the Vector2d components are “private” and our Vector2d instances are
“immutable”—with scare quotes—because there is no way to make them really pri‐
vate and immutable.10

We’ll now come back to our Vector2d class. In the next section, we cover a special
attribute (not a method) that affects the internal storage of an object, with potentially
huge impact on the use of memory but little effect on its public interface: __slots__.

Saving Memory with __slots__
By default, Python stores the attributes of each instance in a dict named __dict__.
As we saw in “Practical Consequences of How dict Works” on page 102, a dict has a
significant memory overhead—even with the optimizations mentioned in that sec‐
tion. But if you define a class attribute named __slots__ holding a sequence of
attribute names, Python uses an alternative storage model for the instance attributes:
the attributes named in __slots__ are stored in a hidden array or references that use
less memory than a dict. Let’s see how that works through simple examples, starting
with Example 11-13.

Example 11-13. The Pixel class uses __slots__

>>> class Pixel:
... __slots__ = ('x', 'y')
...
>>> p = Pixel()
>>> p.__dict__
Traceback (most recent call last):
 ...
AttributeError: 'Pixel' object has no attribute '__dict__'
>>> p.x = 10
>>> p.y = 20
>>> p.color = 'red'
Traceback (most recent call last):
 ...
AttributeError: 'Pixel' object has no attribute 'color'

__slots__ must be present when the class is created; adding or changing it later
has no effect. The attribute names may be in a tuple or list, but I prefer a tuple
to make it clear there’s no point in changing it.

384 | Chapter 11: A Pythonic Object

Create an instance of Pixel, because we see the effects of __slots__ on the
instances.

First effect: instances of Pixel have no __dict__.

Set the p.x and p.y attributes normally.

Second effect: trying to set an attribute not listed in __slots__ raises
AttributeError.

So far, so good. Now let’s create a subclass of Pixel in Example 11-14 to see the
counterintuitive side of __slots__.

Example 11-14. The OpenPixel is a subclass of Pixel

>>> class OpenPixel(Pixel):
... pass
...
>>> op = OpenPixel()
>>> op.__dict__
{}
>>> op.x = 8
>>> op.__dict__
{}
>>> op.x
8
>>> op.color = 'green'
>>> op.__dict__
{'color': 'green'}

OpenPixel declares no attributes of its own.

Surprise: instances of OpenPixel have a __dict__.

If you set attribute x (named in the __slots__ of the base class Pixel)…

…it is not stored in the instance __dict__…

…but it is stored in the hidden array of references in the instance.

If you set an attribute not named in the __slots__…

…it is stored in the instance __dict__.

Saving Memory with __slots__ | 385

Example 11-14 shows that the effect of __slots__ is only partially inherited by a sub‐
class. To make sure that instances of a subclass have no __dict__, you must declare
__slots__ again in the subclass.

If you declare __slots__ = () (an empty tuple), then the instances of the subclass
will have no __dict__ and will only accept the attributes named in the __slots__ of
the base class.

If you want a subclass to have additional attributes, name them in __slots__, as
shown in Example 11-15.

Example 11-15. The ColorPixel, another subclass of Pixel

>>> class ColorPixel(Pixel):
... __slots__ = ('color',)
>>> cp = ColorPixel()
>>> cp.__dict__
Traceback (most recent call last):
 ...
AttributeError: 'ColorPixel' object has no attribute '__dict__'
>>> cp.x = 2
>>> cp.color = 'blue'
>>> cp.flavor = 'banana'
Traceback (most recent call last):
 ...
AttributeError: 'ColorPixel' object has no attribute 'flavor'

Essentially, __slots__ of the superclasses are added to the __slots__ of the cur‐
rent class. Don’t forget that single-item tuples must have a trailing comma.

ColorPixel instances have no __dict__.

You can set the attributes declared in the __slots__ of this class and super‐
classes, but no other.

It’s possible to “save memory and eat it too”: if you add the '__dict__' name to the
__slots__ list, your instances will keep attributes named in __slots__ in the per-
instance array of references, but will also support dynamically created attributes,
which will be stored in the usual __dict__. This is necessary if you want to use the
@cached_property decorator (covered in “Step 5: Caching Properties with functools”
on page 855).

Of course, having '__dict__' in __slots__ may entirely defeat its purpose, depend‐
ing on the number of static and dynamic attributes in each instance and how they are
used. Careless optimization is worse than premature optimization: you add complex‐
ity but may not get any benefit.

386 | Chapter 11: A Pythonic Object

Another special per-instance attribute that you may want to keep is __weakref__,
necessary for an object to support weak references (mentioned briefly in “del and
Garbage Collection” on page 219). That attribute exists by default in instances of
user-defined classes. However, if the class defines __slots__, and you need the
instances to be targets of weak references, then you need to include '__weakref__'
among the attributes named in __slots__.

Now let’s see the effect of adding __slots__ to Vector2d.

Simple Measure of __slot__ Savings
Example 11-16 shows the implementation of __slots__ in Vector2d.

Example 11-16. vector2d_v3_slots.py: the __slots__ attribute is the only addition to
Vector2d

class Vector2d:
 __match_args__ = ('x', 'y')
 __slots__ = ('__x', '__y')

 typecode = 'd'
 # methods are the same as previous version

__match_args__ lists the public attribute names for positional pattern matching.

In contrast, __slots__ lists the names of the instance attributes, which in this
case are private attributes.

To measure the memory savings, I wrote the mem_test.py script. It takes the name of
a module with a Vector2d class variant as command-line argument, and uses a list
comprehension to build a list with 10,000,000 instances of Vector2d. In the first run
shown in Example 11-17, I use vector2d_v3.Vector2d (from Example 11-7); in the
second run, I use the version with __slots__ from Example 11-16.

Example 11-17. mem_test.py creates 10 million Vector2d instances using the class
defined in the named module

$ time python3 mem_test.py vector2d_v3
Selected Vector2d type: vector2d_v3.Vector2d
Creating 10,000,000 Vector2d instances
Initial RAM usage: 6,983,680
 Final RAM usage: 1,666,535,424

real 0m11.990s
user 0m10.861s
sys 0m0.978s

Saving Memory with __slots__ | 387

$ time python3 mem_test.py vector2d_v3_slots
Selected Vector2d type: vector2d_v3_slots.Vector2d
Creating 10,000,000 Vector2d instances
Initial RAM usage: 6,995,968
 Final RAM usage: 577,839,104

real 0m8.381s
user 0m8.006s
sys 0m0.352s

As Example 11-17 reveals, the RAM footprint of the script grows to 1.55 GiB when
instance __dict__ is used in each of the 10 million Vector2d instances, but that is
reduced to 551 MiB when Vector2d has a __slots__ attribute. The __slots__ ver‐
sion is also faster. The mem_test.py script in this test basically deals with loading a
module, checking memory usage, and formatting results. You can find its source
code in the fluentpython/example-code-2e repository.

If you are handling millions of objects with numeric data, you
should really be using NumPy arrays (see “NumPy” on page 64),
which are not only memory efficient but have highly optimized
functions for numeric processing, many of which operate on the
entire array at once. I designed the Vector2d class just to provide
context when discussing special methods, because I try to avoid
vague foo and bar examples when I can.

Summarizing the Issues with __slots__
The __slots__ class attribute may provide significant memory savings if properly
used, but there are a few caveats:

• You must remember to redeclare __slots__ in each subclass to prevent their
instances from having __dict__.

• Instances will only be able to have the attributes listed in __slots__, unless you
include '__dict__' in __slots__ (but doing so may negate the memory
savings).

• Classes using __slots__ cannot use the @cached_property decorator, unless
they explicitly name '__dict__' in __slots__.

• Instances cannot be targets of weak references, unless you add '__weakref__' in
__slots__.

The last topic in this chapter has to do with overriding a class attribute in instances
and subclasses.

388 | Chapter 11: A Pythonic Object

https://fpy.li/11-11

Overriding Class Attributes
A distinctive feature of Python is how class attributes can be used as default values for
instance attributes. In Vector2d there is the typecode class attribute. It’s used twice
in the __bytes__ method, but we read it as self.typecode by design. Because Vec
tor2d instances are created without a typecode attribute of their own, self.type
code will get the Vector2d.typecode class attribute by default.

But if you write to an instance attribute that does not exist, you create a new instance
attribute—e.g., a typecode instance attribute—and the class attribute by the same
name is untouched. However, from then on, whenever the code handling that
instance reads self.typecode, the instance typecode will be retrieved, effectively
shadowing the class attribute by the same name. This opens the possibility of custom‐
izing an individual instance with a different typecode.

The default Vector2d.typecode is 'd', meaning each vector component will be rep‐
resented as an 8-byte double precision float when exporting to bytes. If we set the
typecode of a Vector2d instance to 'f' prior to exporting, each component will be
exported as a 4-byte single precision float. Example 11-18 demonstrates.

We are discussing adding a custom instance attribute, therefore
Example 11-18 uses the Vector2d implementation without
__slots__, as listed in Example 11-11.

Example 11-18. Customizing an instance by setting the typecode attribute that was
formerly inherited from the class

>>> from vector2d_v3 import Vector2d
>>> v1 = Vector2d(1.1, 2.2)
>>> dumpd = bytes(v1)
>>> dumpd
b'd\x9a\x99\x99\x99\x99\x99\xf1?\x9a\x99\x99\x99\x99\x99\x01@'
>>> len(dumpd)
17
>>> v1.typecode = 'f'
>>> dumpf = bytes(v1)
>>> dumpf
b'f\xcd\xcc\x8c?\xcd\xcc\x0c@'
>>> len(dumpf)
9
>>> Vector2d.typecode
'd'

Overriding Class Attributes | 389

Default bytes representation is 17 bytes long.

Set typecode to 'f' in the v1 instance.

Now the bytes dump is 9 bytes long.

Vector2d.typecode is unchanged; only the v1 instance uses typecode 'f'.

Now it should be clear why the bytes export of a Vector2d is prefixed by the type
code: we wanted to support different export formats.

If you want to change a class attribute, you must set it on the class directly, not
through an instance. You could change the default typecode for all instances (that
don’t have their own typecode) by doing this:

>>> Vector2d.typecode = 'f'

However, there is an idiomatic Python way of achieving a more permanent effect,
and being more explicit about the change. Because class attributes are public, they are
inherited by subclasses, so it’s common practice to subclass just to customize a class
data attribute. The Django class-based views use this technique extensively.
Example 11-19 shows how.

Example 11-19. The ShortVector2d is a subclass of Vector2d, which only overwrites
the default typecode

>>> from vector2d_v3 import Vector2d
>>> class ShortVector2d(Vector2d):
... typecode = 'f'
...
>>> sv = ShortVector2d(1/11, 1/27)
>>> sv
ShortVector2d(0.09090909090909091, 0.037037037037037035)
>>> len(bytes(sv))
9

Create ShortVector2d as a Vector2d subclass just to overwrite the typecode
class attribute.

Build ShortVector2d instance sv for demonstration.

Inspect the repr of sv.

Check that the length of the exported bytes is 9, not 17 as before.

This example also explains why I did not hardcode the class_name in Vector2d.
__repr__, but instead got it from type(self).__name__, like this:

390 | Chapter 11: A Pythonic Object

 # inside class Vector2d:

 def __repr__(self):
 class_name = type(self).__name__
 return '{}({!r}, {!r})'.format(class_name, *self)

If I had hardcoded the class_name, subclasses of Vector2d like ShortVector2d would
have to overwrite __repr__ just to change the class_name. By reading the name from
the type of the instance, I made __repr__ safer to inherit.

This ends our coverage of building a simple class that leverages the data model to
play well with the rest of Python: offering different object representations, providing
a custom formatting code, exposing read-only attributes, and supporting hash() to
integrate with sets and mappings.

Chapter Summary
The aim of this chapter was to demonstrate the use of special methods and conven‐
tions in the construction of a well-behaved Pythonic class.

Is vector2d_v3.py (shown in Example 11-11) more Pythonic than vector2d_v0.py
(shown in Example 11-2)? The Vector2d class in vector2d_v3.py certainly exhibits
more Python features. But whether the first or the last Vector2d implementation is
suitable depends on the context where it would be used. Tim Peter’s “Zen of Python”
says:

Simple is better than complex.

An object should be as simple as the requirements dictate—and not a parade of lan‐
guage features. If the code is for an application, then it should focus on what is
needed to support the end users, not more. If the code is for a library for other pro‐
grammers to use, then it’s reasonable to implement special methods supporting
behaviors that Pythonistas expect. For example, __eq__ may not be necessary to sup‐
port a business requirement, but it makes the class easier to test.

My goal in expanding the Vector2d code was to provide context for discussing
Python special methods and coding conventions. The examples in this chapter have
demonstrated several of the special methods we first saw in Table 1-1 (Chapter 1):

• String/bytes representation methods: __repr__, __str__, __format__, and
__bytes__

• Methods for reducing an object to a number: __abs__, __bool__, and __hash__
• The __eq__ operator, to support testing and hashing (along with __hash__)

Chapter Summary | 391

While supporting conversion to bytes, we also implemented an alternative construc‐
tor, Vector2d.frombytes(), which provided the context for discussing the decora‐
tors @classmethod (very handy) and @staticmethod (not so useful, module-level
functions are simpler). The frombytes method was inspired by its namesake in the
array.array class.

We saw that the Format Specification Mini-Language is extensible by implementing a
__format__ method that parses a format_spec provided to the format(obj, for
mat_spec) built-in or within replacement fields '{:«format_spec»}' in f-strings or
strings used with the str.format() method.

In preparation to make Vector2d instances hashable, we made an effort to make
them immutable, at least preventing accidental changes by coding the x and y
attributes as private, and exposing them as read-only properties. We then
implemented __hash__ using the recommended technique of xor-ing the hashes of
the instance attributes.

We then discussed the memory savings and the caveats of declaring a __slots__
attribute in Vector2d. Because using __slots__ has side effects, it really makes sense
only when handling a very large number of instances—think millions of instances,
not just thousands. In many such cases, using pandas may be the best option.

The last topic we covered was the overriding of a class attribute accessed via the
instances (e.g., self.typecode). We did that first by creating an instance attribute,
and then by subclassing and overwriting at the class level.

Throughout the chapter, I mentioned how design choices in the examples were
informed by studying the API of standard Python objects. If this chapter can be sum‐
marized in one sentence, this is it:

To build Pythonic objects, observe how real Python objects behave.
—Ancient Chinese proverb

Further Reading
This chapter covered several special methods of the data model, so naturally the pri‐
mary references are the same as the ones provided in Chapter 1, which gave a high-
level view of the same topic. For convenience, I’ll repeat those four earlier
recommendations here, and add a few other ones:

The “Data Model” chapter of The Python Language Reference
Most of the methods we used in this chapter are documented in “3.3.1. Basic cus‐
tomization”.

392 | Chapter 11: A Pythonic Object

https://fpy.li/fmtspec
https://fpy.li/pandas
https://fpy.li/dtmodel
https://fpy.li/11-12
https://fpy.li/11-12

Python in a Nutshell, 3rd ed., by Alex Martelli, Anna Ravenscroft, and Steve Holden
Covers the special methods in depth.

Python Cookbook, 3rd ed., by David Beazley and Brian K. Jones
Modern Python practices demonstrated through recipes. Chapter 8, “Classes and
Objects,” in particular has several solutions related to discussions in this chapter.

Python Essential Reference, 4th ed., by David Beazley
Covers the data model in detail, even if only Python 2.6 and 3.0 are covered (in
the fourth edition). The fundamental concepts are all the same and most of the
Data Model APIs haven’t changed at all since Python 2.2, when built-in types
and user-defined classes were unified.

In 2015—the year I finished the first edition of Fluent Python—Hynek Schlawack
started the attrs package. From the attrs documentation:

attrs is the Python package that will bring back the joy of writing classes by relieving
you from the drudgery of implementing object protocols (aka dunder methods).

I mentioned attrs as a more powerful alternative to @dataclass in “Further Read‐
ing” on page 196. The data class builders from Chapter 5 as well as attrs automati‐
cally equip your classes with several special methods. But knowing how to code those
special methods yourself is still essential to understand what those packages do, to
decide whether you really need them, and to override the methods they generate—
when necessary.

In this chapter, we saw every special method related to object representation, except
__index__ and __fspath__. We’ll discuss __index__ in Chapter 12, “A Slice-Aware
__getitem__” on page 406. I will not cover __fspath__. To learn about it, see PEP 519
—Adding a file system path protocol.

An early realization of the need for distinct string representations for objects
appeared in Smalltalk. The 1996 article “How to Display an Object as a String: print‐
String and displayString” by Bobby Woolf discusses the implementation of the print
String and displayString methods in that language. From that article, I borrowed
the pithy descriptions “the way the developer wants to see it” and “the way the user
wants to see it” when defining repr() and str() in “Object Representations” on page
364.

Further Reading | 393

https://fpy.li/pynut3
https://fpy.li/pycook3
https://fpy.li/pep519
https://fpy.li/pep519
https://fpy.li/11-13
https://fpy.li/11-13

11 See the “Simplest Thing that Could Possibly Work: A Conversation with Ward Cunningham, Part V”.

Soapbox

Properties Help Reduce Up-Front Costs

In the initial versions of Vector2d, the x and y attributes were public, as are all
Python instance and class attributes by default. Naturally, users of vectors need to
access its components. Although our vectors are iterable and can be unpacked into a
pair of variables, it’s also desirable to write my_vector.x and my_vector.y to get each
component.

When we felt the need to avoid accidental updates to the x and y attributes, we imple‐
mented properties, but nothing changed elsewhere in the code and in the public
interface of Vector2d, as verified by the doctests. We are still able to access my_vec
tor.x and my_vector.y.

This shows that we can always start our classes in the simplest possible way, with
public attributes, because when (or if) we later need to impose more control with get‐
ters and setters, these can be implemented through properties without changing any
of the code that already interacts with our objects through the names (e.g., x and y)
that were initially simple public attributes.

This approach is the opposite of that encouraged by the Java language: a Java pro‐
grammer cannot start with simple public attributes and only later, if needed,
implement properties, because they don’t exist in the language. Therefore, writing
getters and setters is the norm in Java—even when those methods do nothing useful
—because the API cannot evolve from simple public attributes to getters and setters
without breaking all code that uses those attributes.

In addition, as Martelli, Ravenscroft, and Holden point out in Python in a Nutshell,
3rd ed., typing getter/setter calls everywhere is goofy. You have to write stuff like:

>>> my_object.set_foo(my_object.get_foo() + 1)

Just to do this:

>>> my_object.foo += 1

Ward Cunningham, inventor of the wiki and an Extreme Programming pioneer, rec‐
ommends asking: “What’s the simplest thing that could possibly work?” The idea is to
focus on the goal.11 Implementing setters and getters up-front is a distraction from
the goal. In Python, we can simply use public attributes, knowing we can change
them to properties later, if the need arises.

394 | Chapter 11: A Pythonic Object

https://fpy.li/11-14
https://fpy.li/pynut3
https://fpy.li/pynut3

Safety Versus Security in Private Attributes

Perl doesn’t have an infatuation with enforced privacy. It would prefer that you
stayed out of its living room because you weren’t invited, not because it has a
shotgun.

—Larry Wall, creator of Perl

Python and Perl are polar opposites in many regards, but Guido and Larry seem to
agree on object privacy.

Having taught Python to many Java programmers over the years, I’ve found a lot of
them put too much faith in the privacy guarantees that Java offers. As it turns out, the
Java private and protected modifiers normally provide protection against accidents
only (i.e., safety). They only offer security against malicious intent if the application is
specially configured and deployed on top of a Java SecurityManager, and that seldom
happens in practice, even in security conscious corporate settings.

To prove my point, I like to show this Java class (Example 11-20).

Example 11-20. Confidential.java: a Java class with a private field named secret

public class Confidential {

 private String secret = "";

 public Confidential(String text) {
 this.secret = text.toUpperCase();
 }
}

In Example 11-20, I store the text in the secret field after converting it to uppercase,
just to make it obvious that whatever is in that field will be in all caps.

The actual demonstration consists of running expose.py with Jython. That script uses
introspection (“reflection” in Java parlance) to get the value of a private field. The
code is in Example 11-21.

Example 11-21. expose.py: Jython code to read the content of a private field in
another class

#!/usr/bin/env jython
NOTE: Jython is still Python 2.7 in late2020

import Confidential

message = Confidential('top secret text')
secret_field = Confidential.getDeclaredField('secret')
secret_field.setAccessible(True) # break the lock!
print 'message.secret =', secret_field.get(message)

If you run Example 11-21, this is what you get:

Further Reading | 395

https://fpy.li/11-15

$ jython expose.py
message.secret = TOP SECRET TEXT

The string 'TOP SECRET TEXT' was read from the secret private field of the Confi
dential class.

There is no black magic here: expose.py uses the Java reflection API to get a reference
to the private field named 'secret', and then calls 'secret_field.setAccessi
ble(True)' to make it readable. The same thing can be done with Java code, of
course (but it takes more than three times as many lines to do it; see the file
Expose.java in the _Fluent Python_ code repository).

The crucial call .setAccessible(True) will fail only if the Jython script or the Java
main program (e.g., Expose.class) is running under the supervision of a Security‐
Manager. But in the real world, Java applications are rarely deployed with a Security‐
Manager—except for Java applets when they were still supported by browsers.

My point is: in Java too, access control modifiers are mostly about safety and not
security, at least in practice. So relax and enjoy the power Python gives you. Use it
responsibly.

396 | Chapter 11: A Pythonic Object

https://fpy.li/11-16
https://fpy.li/code
https://fpy.li/11-15
https://fpy.li/11-15

CHAPTER 12

Special Methods for Sequences

Don’t check whether it is-a duck: check whether it quacks-like-a duck, walks-like-a
duck, etc., etc., depending on exactly what subset of duck-like behavior you need to
play your language-games with. (comp.lang.python, Jul. 26, 2000)

—Alex Martelli

In this chapter, we will create a class to represent a multidimensional Vector class—a
significant step up from the two-dimensional Vector2d of Chapter 11. Vector will
behave like a standard Python immutable flat sequence. Its elements will be floats,
and it will support the following by the end of this chapter:

• Basic sequence protocol: __len__ and __getitem__
• Safe representation of instances with many items
• Proper slicing support, producing new Vector instances
• Aggregate hashing, taking into account every contained element value
• Custom formatting language extension

We’ll also implement dynamic attribute access with __getattr__ as a way of replac‐
ing the read-only properties we used in Vector2d—although this is not typical of
sequence types.

The code-intensive presentation will be interrupted by a conceptual discussion about
the idea of protocols as an informal interface. We’ll talk about how protocols and
duck typing are related, and its practical implications when you create your own
types.

397

What’s New in This Chapter
There are no major changes in this chapter. There is a new, brief discussion of
the typing.Protocol in a tip box near the end of “Protocols and Duck Typing” on
page 402.

In “A Slice-Aware __getitem__” on page 406, the implementation of __getitem__ in
Example 12-6 is more concise and robust than the example in the first edition, thanks
to duck typing and operator.index. This change carried over to later implementa‐
tions of Vector in this chapter and in Chapter 16.

Let’s get started.

Vector: A User-Defined Sequence Type
Our strategy to implement Vector will be to use composition, not inheritance. We’ll
store the components in an array of floats, and will implement the methods needed
for our Vector to behave like an immutable flat sequence.

But before we implement the sequence methods, let’s make sure we have a baseline
implementation of Vector that is compatible with our earlier Vector2d class—except
where such compatibility would not make sense.

Vector Applications Beyond Three Dimensions
Who needs a vector with 1,000 dimensions? N-dimensional vectors (with large values
of N) are widely used in information retrieval, where documents and text queries are
represented as vectors, with one dimension per word. This is called the Vector space
model. In this model, a key relevance metric is the cosine similarity (i.e., the cosine of
the angle between the vector representing the query and the vector representing the
document). As the angle decreases, the cosine approaches the maximum value of 1,
and so does the relevance of the document to the query.

Having said that, the Vector class in this chapter is a didactic example and we’ll not
do much math here. Our goal is just to demonstrate some Python special methods in
the context of a sequence type.

NumPy and SciPy are the tools you need for real-world vector math. The PyPI pack‐
age gensim, by Radim Řehůřek, implements vector space modeling for natural lan‐
guage processing and information retrieval, using NumPy and SciPy.

398 | Chapter 12: Special Methods for Sequences

https://fpy.li/12-1
https://fpy.li/12-1
https://fpy.li/12-2

Vector Take #1: Vector2d Compatible
The first version of Vector should be as compatible as possible with our earlier Vec
tor2d class.

However, by design, the Vector constructor is not compatible with the Vector2d
constructor. We could make Vector(3, 4) and Vector(3, 4, 5) work, by taking
arbitrary arguments with *args in __init__, but the best practice for a sequence con‐
structor is to take the data as an iterable argument in the constructor, like all built-in
sequence types do. Example 12-1 shows some ways of instantiating our new Vector
objects.

Example 12-1. Tests of Vector.__init__ and Vector.__repr__

>>> Vector([3.1, 4.2])
Vector([3.1, 4.2])
>>> Vector((3, 4, 5))
Vector([3.0, 4.0, 5.0])
>>> Vector(range(10))
Vector([0.0, 1.0, 2.0, 3.0, 4.0, ...])

Apart from a new constructor signature, I made sure every test I did with Vector2d
(e.g., Vector2d(3, 4)) passed and produced the same result with a two-component
Vector([3, 4]).

When a Vector has more than six components, the string pro‐
duced by repr() is abbreviated with ... as seen in the last line of
Example 12-1. This is crucial in any collection type that may con‐
tain a large number of items, because repr is used for debugging—
and you don’t want a single large object to span thousands of lines
in your console or log. Use the reprlib module to produce
limited-length representations, as in Example 12-2. The reprlib
module was named repr in Python 2.7.

Example 12-2 lists the implementation of our first version of Vector (this example
builds on the code shown in Examples 11-2 and 11-3).

Example 12-2. vector_v1.py: derived from vector2d_v1.py

from array import array
import reprlib
import math

class Vector:

Vector Take #1: Vector2d Compatible | 399

1 The iter() function is covered in Chapter 17, along with the __iter__ method.

 typecode = 'd'

 def __init__(self, components):
 self._components = array(self.typecode, components)

 def __iter__(self):
 return iter(self._components)

 def __repr__(self):
 components = reprlib.repr(self._components)
 components = components[components.find('['):-1]
 return f'Vector({components})'

 def __str__(self):
 return str(tuple(self))

 def __bytes__(self):
 return (bytes([ord(self.typecode)]) +
 bytes(self._components))

 def __eq__(self, other):
 return tuple(self) == tuple(other)

 def __abs__(self):
 return math.hypot(*self)

 def __bool__(self):
 return bool(abs(self))

 @classmethod
 def frombytes(cls, octets):
 typecode = chr(octets[0])
 memv = memoryview(octets[1:]).cast(typecode)
 return cls(memv)

The self._components instance “protected” attribute will hold an array with the
Vector components.

To allow iteration, we return an iterator over self._components.1

Use reprlib.repr() to get a limited-length representation of self._components
(e.g., array('d', [0.0, 1.0, 2.0, 3.0, 4.0, ...])).

Remove the array('d', prefix, and the trailing) before plugging the string into
a Vector constructor call.

400 | Chapter 12: Special Methods for Sequences

Build a bytes object directly from self._components.

Since Python 3.8, math.hypot accepts N-dimensional points. I used this expres‐
sion before: math.sqrt(sum(x * x for x in self)).

The only change needed from the earlier frombytes is in the last line: we pass the
memoryview directly to the constructor, without unpacking with * as we did
before.

The way I used reprlib.repr deserves some elaboration. That function produces
safe representations of large or recursive structures by limiting the length of the out‐
put string and marking the cut with '...'. I wanted the repr of a Vector to look like
Vector([3.0, 4.0, 5.0]) and not Vector(array('d', [3.0, 4.0, 5.0])),
because the fact that there is an array inside a Vector is an implementation detail.
Because these constructor calls build identical Vector objects, I prefer the simpler
syntax using a list argument.

When coding __repr__, I could have produced the simplified components display
with this expression: reprlib.repr(list(self._components)). However, this
would be wasteful, as I’d be copying every item from self._components to a list
just to use the list repr. Instead, I decided to apply reprlib.repr to the self._com
ponents array directly, and then chop off the characters outside of the []. That’s what
the second line of __repr__ does in Example 12-2.

Because of its role in debugging, calling repr() on an object should
never raise an exception. If something goes wrong inside your
implementation of __repr__, you must deal with the issue and do
your best to produce some serviceable output that gives the user a
chance of identifying the receiver (self).

Note that the __str__, __eq__, and __bool__ methods are unchanged from Vec
tor2d, and only one character was changed in frombytes (a * was removed in the last
line). This is one of the benefits of making the original Vector2d iterable.

By the way, we could have subclassed Vector from Vector2d, but I chose not to do it
for two reasons. First, the incompatible constructors really make subclassing not
advisable. I could work around that with some clever parameter handling in
__init__, but the second reason is more important: I want Vector to be a standalone
example of a class implementing the sequence protocol. That’s what we’ll do next,
after a discussion of the term protocol.

Vector Take #1: Vector2d Compatible | 401

Protocols and Duck Typing
As early as Chapter 1, we saw that you don’t need to inherit from any special class to
create a fully functional sequence type in Python; you just need to implement the
methods that fulfill the sequence protocol. But what kind of protocol are we talking
about?

In the context of object-oriented programming, a protocol is an informal interface,
defined only in documentation and not in code. For example, the sequence protocol
in Python entails just the __len__ and __getitem__ methods. Any class Spam that
implements those methods with the standard signature and semantics can be used
anywhere a sequence is expected. Whether Spam is a subclass of this or that is irrele‐
vant; all that matters is that it provides the necessary methods. We saw that in
Example 1-1, reproduced here in Example 12-3.

Example 12-3. Code from Example 1-1, reproduced here for convenience

import collections

Card = collections.namedtuple('Card', ['rank', 'suit'])

class FrenchDeck:
 ranks = [str(n) for n in range(2, 11)] + list('JQKA')
 suits = 'spades diamonds clubs hearts'.split()

 def __init__(self):
 self._cards = [Card(rank, suit) for suit in self.suits
 for rank in self.ranks]

 def __len__(self):
 return len(self._cards)

 def __getitem__(self, position):
 return self._cards[position]

The FrenchDeck class in Example 12-3 takes advantage of many Python facilities
because it implements the sequence protocol, even if that is not declared anywhere in
the code. An experienced Python coder will look at it and understand that it is a
sequence, even if it subclasses object. We say it is a sequence because it behaves like
one, and that is what matters.

This became known as duck typing, after Alex Martelli’s post quoted at the beginning
of this chapter.

Because protocols are informal and unenforced, you can often get away with imple‐
menting just part of a protocol, if you know the specific context where a class will be

402 | Chapter 12: Special Methods for Sequences

used. For example, to support iteration, only __getitem__ is required; there is no
need to provide __len__.

With PEP 544—Protocols: Structural subtyping (static duck typ‐
ing), Python 3.8 supports protocol classes: typing constructs, which
we studied in “Static Protocols” on page 286. This new use of the
word protocol in Python has a related but different meaning.
When I need to differentiate them, I write static protocol to refer to
the protocols formalized in protocol classes, and dynamic protocol
for the traditional sense. One key difference is that static protocol
implementations must provide all methods defined in the protocol
class. “Two Kinds of Protocols” on page 434 in Chapter 13 has more
details.

We’ll now implement the sequence protocol in Vector, initially without proper sup‐
port for slicing, but later adding that.

Vector Take #2: A Sliceable Sequence
As we saw with the FrenchDeck example, supporting the sequence protocol is really
easy if you can delegate to a sequence attribute in your object, like our self._compo
nents array. These __len__ and __getitem__ one-liners are a good start:

class Vector:
 # many lines omitted
 # ...

 def __len__(self):
 return len(self._components)

 def __getitem__(self, index):
 return self._components[index]

With these additions, all of these operations now work:

>>> v1 = Vector([3, 4, 5])
>>> len(v1)
3
>>> v1[0], v1[-1]
(3.0, 5.0)
>>> v7 = Vector(range(7))
>>> v7[1:4]
array('d', [1.0, 2.0, 3.0])

As you can see, even slicing is supported—but not very well. It would be better if a
slice of a Vector was also a Vector instance and not an array. The old FrenchDeck
class has a similar problem: when you slice it, you get a list. In the case of Vector, a
lot of functionality is lost when slicing produces plain arrays.

Vector Take #2: A Sliceable Sequence | 403

https://fpy.li/pep544
https://fpy.li/pep544

Consider the built-in sequence types: every one of them, when sliced, produces a new
instance of its own type, and not of some other type.

To make Vector produce slices as Vector instances, we can’t just delegate the slicing
to array. We need to analyze the arguments we get in __getitem__ and do the right
thing.

Now, let’s see how Python turns the syntax my_seq[1:3] into arguments for
my_seq.__getitem__(...).

How Slicing Works
A demo is worth a thousand words, so take a look at Example 12-4.

Example 12-4. Checking out the behavior of __getitem__ and slices

>>> class MySeq:
... def __getitem__(self, index):
... return index
...
>>> s = MySeq()
>>> s[1]
1
>>> s[1:4]
slice(1, 4, None)
>>> s[1:4:2]
slice(1, 4, 2)
>>> s[1:4:2, 9]
(slice(1, 4, 2), 9)
>>> s[1:4:2, 7:9]
(slice(1, 4, 2), slice(7, 9, None))

For this demonstration, __getitem__ merely returns whatever is passed to it.

A single index, nothing new.

The notation 1:4 becomes slice(1, 4, None).

slice(1, 4, 2) means start at 1, stop at 4, step by 2.

Surprise: the presence of commas inside the [] means __getitem__ receives a
tuple.

The tuple may even hold several slice objects.

Now let’s take a closer look at slice itself in Example 12-5.

404 | Chapter 12: Special Methods for Sequences

Example 12-5. Inspecting the attributes of the slice class

>>> slice
<class 'slice'>
>>> dir(slice)
['__class__', '__delattr__', '__dir__', '__doc__', '__eq__',
 '__format__', '__ge__', '__getattribute__', '__gt__',
 '__hash__', '__init__', '__le__', '__lt__', '__ne__',
 '__new__', '__reduce__', '__reduce_ex__', '__repr__',
 '__setattr__', '__sizeof__', '__str__', '__subclasshook__',
 'indices', 'start', 'step', 'stop']

slice is a built-in type (we saw it first in “Slice Objects” on page 48).

Inspecting a slice, we find the data attributes start, stop, and step, and an
indices method.

In Example 12-5, calling dir(slice) reveals an indices attribute, which turns out to
be a very interesting but little-known method. Here is what help(slice.indices)
reveals:

S.indices(len) -> (start, stop, stride)

Assuming a sequence of length len, calculate the start and stop indices, and the
stride length of the extended slice described by S. Out-of-bounds indices are
clipped just like they are in a normal slice.

In other words, indices exposes the tricky logic that’s implemented in the built-in
sequences to gracefully handle missing or negative indices and slices that are longer
than the original sequence. This method produces “normalized” tuples of nonnega‐
tive start, stop, and stride integers tailored to a sequence of the given length.

Here are a couple of examples, considering a sequence of len == 5, e.g., 'ABCDE':

>>> slice(None, 10, 2).indices(5)
(0, 5, 2)
>>> slice(-3, None, None).indices(5)
(2, 5, 1)

'ABCDE'[:10:2] is the same as 'ABCDE'[0:5:2].

'ABCDE'[-3:] is the same as 'ABCDE'[2:5:1].

In our Vector code, we’ll not need the slice.indices() method because when we
get a slice argument we’ll delegate its handling to the _components array. But if you
can’t count on the services of an underlying sequence, this method can be a huge
time saver.

Vector Take #2: A Sliceable Sequence | 405

Now that we know how to handle slices, let’s take a look at the improved Vec
tor.__getitem__ implementation.

A Slice-Aware __getitem__
Example 12-6 lists the two methods needed to make Vector behave as a sequence:
__len__ and __getitem__ (the latter now implemented to handle slicing correctly).

Example 12-6. Part of vector_v2.py: __len__ and __getitem__ methods added to
Vector class from vector_v1.py (see Example 12-2)

 def __len__(self):
 return len(self._components)

 def __getitem__(self, key):
 if isinstance(key, slice):
 cls = type(self)
 return cls(self._components[key])
 index = operator.index(key)
 return self._components[index]

If the key argument is a slice…

…get the class of the instance (i.e., Vector) and…

…invoke the class to build another Vector instance from a slice of the
_components array.

If we can get an index from key…

…return the specific item from _components.

The operator.index() function calls the __index__ special method. The function
and the special method were defined in PEP 357—Allowing Any Object to be Used
for Slicing, proposed by Travis Oliphant to allow any of the numerous types of inte‐
gers in NumPy to be used as indexes and slice arguments. The key difference between
operator.index() and int() is that the former is intended for this specific purpose.
For example, int(3.14) returns 3, but operator.index(3.14) raises TypeError
because a float should not be used as an index.

406 | Chapter 12: Special Methods for Sequences

https://fpy.li/pep357
https://fpy.li/pep357

Excessive use of isinstance may be a sign of bad OO design, but
handling slices in __getitem__ is a justified use case. In the first
edition, I also used an isinstance test on key to test if it was an
integer. Using operator.index avoids this test, and raises Type
Error with a very informative message if we can’t get the index
from key. See the last error message from Example 12-7.

Once the code in Example 12-6 is added to the Vector class, we have proper slicing
behavior, as Example 12-7 demonstrates.

Example 12-7. Tests of enhanced Vector.__getitem__ from Example 12-6

 >>> v7 = Vector(range(7))
 >>> v7[-1]
 6.0
 >>> v7[1:4]
 Vector([1.0, 2.0, 3.0])
 >>> v7[-1:]
 Vector([6.0])
 >>> v7[1,2]
 Traceback (most recent call last):
 ...
 TypeError: 'tuple' object cannot be interpreted as an integer

An integer index retrieves just one component value as a float.

A slice index creates a new Vector.

A slice of len == 1 also creates a Vector.

Vector does not support multidimensional indexing, so a tuple of indices or sli‐
ces raises an error.

Vector Take #3: Dynamic Attribute Access
In the evolution from Vector2d to Vector, we lost the ability to access vector compo‐
nents by name (e.g., v.x, v.y). We are now dealing with vectors that may have a large
number of components. Still, it may be convenient to access the first few components
with shortcut letters such as x, y, z instead of v[0], v[1], and v[2].

Here is the alternative syntax we want to provide for reading the first four compo‐
nents of a vector:

>>> v = Vector(range(10))
>>> v.x
0.0

Vector Take #3: Dynamic Attribute Access | 407

2 Attribute lookup is more complicated than this; we’ll see the gory details in Part V. For now, this simplified
explanation will do.

3 Although __match_args__ exists to support pattern matching in Python 3.10, setting this attribute is harmless
in previous versions of Python. In the first edition of this book, I named it shortcut_names. With the new
name it does double duty: it supports positional patterns in case clauses, and it holds the names of the
dynamic attributes supported by special logic in __getattr__ and __setattr__.

>>> v.y, v.z, v.t
(1.0, 2.0, 3.0)

In Vector2d, we provided read-only access to x and y using the @property decorator
(Example 11-7). We could write four properties in Vector, but it would be tedious.
The __getattr__ special method provides a better way.

The __getattr__ method is invoked by the interpreter when attribute lookup fails.
In simple terms, given the expression my_obj.x, Python checks if the my_obj instance
has an attribute named x; if not, the search goes to the class (my_obj.__class__), and
then up the inheritance graph.2 If the x attribute is not found, then the __getattr__
method defined in the class of my_obj is called with self and the name of the
attribute as a string (e.g., 'x').

Example 12-8 lists our __getattr__ method. Essentially it checks whether the
attribute being sought is one of the letters xyzt and if so, returns the corresponding
vector component.

Example 12-8. Part of vector_v3.py: __getattr__ method added to the Vector class

 __match_args__ = ('x', 'y', 'z', 't')

 def __getattr__(self, name):
 cls = type(self)
 try:
 pos = cls.__match_args__.index(name)
 except ValueError:
 pos = -1
 if 0 <= pos < len(self._components):
 return self._components[pos]
 msg = f'{cls.__name__!r} object has no attribute {name!r}'
 raise AttributeError(msg)

Set __match_args__ to allow positional pattern matching on the dynamic
attributes supported by __getattr__.3

Get the Vector class for later use.

408 | Chapter 12: Special Methods for Sequences

Try to get the position of name in __match_args__.

.index(name) raises ValueError when name is not found; set pos to -1. (I’d
rather use a method like str.find here, but tuple doesn’t implement it.)

If the pos is within range of the available components, return the component.

If we get this far, raise AttributeError with a standard message text.

It’s not hard to implement __getattr__, but in this case it’s not enough. Consider
the bizarre interaction in Example 12-9.

Example 12-9. Inappropriate behavior: assigning to v.x raises no error, but introduces
an inconsistency

>>> v = Vector(range(5))
>>> v
Vector([0.0, 1.0, 2.0, 3.0, 4.0])
>>> v.x
0.0
>>> v.x = 10
>>> v.x
10
>>> v
Vector([0.0, 1.0, 2.0, 3.0, 4.0])

Access element v[0] as v.x.

Assign new value to v.x. This should raise an exception.

Reading v.x shows the new value, 10.

However, the vector components did not change.

Can you explain what is happening? In particular, why does v.x return 10 the second
time if that value is not in the vector components array? If you don’t know right off
the bat, study the explanation of __getattr__ given right before Example 12-8. It’s a
bit subtle, but a very important foundation to understand a lot of what comes later in
the book.

After you’ve given it some thought, proceed and we’ll explain exactly what happened.

The inconsistency in Example 12-9 was introduced because of the way __getattr__
works: Python only calls that method as a fallback, when the object does not have the
named attribute. However, after we assign v.x = 10, the v object now has an x
attribute, so __getattr__ will no longer be called to retrieve v.x: the interpreter will

Vector Take #3: Dynamic Attribute Access | 409

just return the value 10 that is bound to v.x. On the other hand, our implementation
of __getattr__ pays no attention to instance attributes other than self._compo
nents, from where it retrieves the values of the “virtual attributes” listed in
__match_args__.

We need to customize the logic for setting attributes in our Vector class in order to
avoid this inconsistency.

Recall that in the latest Vector2d examples from Chapter 11, trying to assign to the .x
or .y instance attributes raised AttributeError. In Vector, we want the same excep‐
tion with any attempt at assigning to all single-letter lowercase attribute names, just
to avoid confusion. To do that, we’ll implement __setattr__, as listed in
Example 12-10.

Example 12-10. Part of vector_v3.py: __setattr__ method in the Vector class

 def __setattr__(self, name, value):
 cls = type(self)
 if len(name) == 1:
 if name in cls.__match_args__:
 error = 'readonly attribute {attr_name!r}'
 elif name.islower():
 error = "can't set attributes 'a' to 'z' in {cls_name!r}"
 else:
 error = ''
 if error:
 msg = error.format(cls_name=cls.__name__, attr_name=name)
 raise AttributeError(msg)
 super().__setattr__(name, value)

Special handling for single-character attribute names.

If name is one of __match_args__, set specific error message.

If name is lowercase, set error message about all single-letter names.

Otherwise, set blank error message.

If there is a nonblank error message, raise AttributeError.

Default case: call __setattr__ on superclass for standard behavior.

410 | Chapter 12: Special Methods for Sequences

The super() function provides a way to access methods of super‐
classes dynamically, a necessity in a dynamic language supporting
multiple inheritance like Python. It’s used to delegate some task
from a method in a subclass to a suitable method in a superclass, as
seen in Example 12-10. There is more about super in “Multiple
Inheritance and Method Resolution Order” on page 494.

While choosing the error message to display with AttributeError, my first check
was the behavior of the built-in complex type, because they are immutable and have a
pair of data attributes, real and imag. Trying to change either of those in a complex
instance raises AttributeError with the message "can't set attribute". On the
other hand, trying to set a read-only attribute protected by a property as we did in “A
Hashable Vector2d” on page 374 produces the message "read-only attribute". I
drew inspiration from both wordings to set the error string in __setitem__, but was
more explicit about the forbidden attributes.

Note that we are not disallowing setting all attributes, only single-letter, lowercase
ones, to avoid confusion with the supported read-only attributes x, y, z, and t.

Knowing that declaring __slots__ at the class level prevents set‐
ting new instance attributes, it’s tempting to use that feature
instead of implementing __setattr__ as we did. However, because
of all the caveats discussed in “Summarizing the Issues with
__slots__” on page 388, using __slots__ just to prevent instance
attribute creation is not recommended. __slots__ should be used
only to save memory, and only if that is a real issue.

Even without supporting writing to the Vector components, here is an important
takeaway from this example: very often when you implement __getattr__, you need
to code __setattr__ as well, to avoid inconsistent behavior in your objects.

If we wanted to allow changing components, we could implement __setitem__ to
enable v[0] = 1.1 and/or __setattr__ to make v.x = 1.1 work. But Vector will
remain immutable because we want to make it hashable in the coming section.

Vector Take #4: Hashing and a Faster ==
Once more we get to implement a __hash__ method. Together with the existing
__eq__, this will make Vector instances hashable.

The __hash__ in Vector2d (Example 11-8) computed the hash of a tuple built with
the two components, self.x and self.y. Now we may be dealing with thousands of
components, so building a tuple may be too costly. Instead, I will apply the ^ (xor)

Vector Take #4: Hashing and a Faster == | 411

4 The sum, any, and all cover the most common uses of reduce. See the discussion in “Modern Replacements
for map, filter, and reduce” on page 235.

operator to the hashes of every component in succession, like this: v[0] ^ v[1] ^
v[2]. That is what the functools.reduce function is for. Previously I said that
reduce is not as popular as before,4 but computing the hash of all vector components
is a good use case for it. Figure 12-1 depicts the general idea of the reduce function.

Figure 12-1. Reducing functions—reduce, sum, any, all—produce a single aggregate
result from a sequence or from any finite iterable object.

So far we’ve seen that functools.reduce() can be replaced by sum(), but now let’s
properly explain how it works. The key idea is to reduce a series of values to a single
value. The first argument to reduce() is a two-argument function, and the second
argument is an iterable. Let’s say we have a two-argument function fn and a list lst.
When you call reduce(fn, lst), fn will be applied to the first pair of elements—
fn(lst[0], lst[1])—producing a first result, r1. Then fn is applied to r1 and the
next element—fn(r1, lst[2])—producing a second result, r2. Now fn(r2,

lst[3]) is called to produce r3 … and so on until the last element, when a single
result, rN, is returned.

Here is how you could use reduce to compute 5! (the factorial of 5):

>>> 2 * 3 * 4 * 5 # the result we want: 5! == 120
120
>>> import functools
>>> functools.reduce(lambda a,b: a*b, range(1, 6))
120

Back to our hashing problem, Example 12-11 shows the idea of computing the aggre‐
gate xor by doing it in three ways: with a for loop and two reduce calls.

Example 12-11. Three ways of calculating the accumulated xor of integers from 0 to 5

>>> n = 0
>>> for i in range(1, 6):
... n ^= i
...

412 | Chapter 12: Special Methods for Sequences

>>> n
1
>>> import functools
>>> functools.reduce(lambda a, b: a^b, range(6))
1
>>> import operator
>>> functools.reduce(operator.xor, range(6))
1

Aggregate xor with a for loop and an accumulator variable.

functools.reduce using an anonymous function.

functools.reduce replacing custom lambda with operator.xor.

From the alternatives in Example 12-11, the last one is my favorite, and the for loop
comes second. What is your preference?

As seen in “The operator Module” on page 243, operator provides the functionality
of all Python infix operators in function form, lessening the need for lambda.

To code Vector.__hash__ in my preferred style, we need to import the functools
and operator modules. Example 12-12 shows the relevant changes.

Example 12-12. Part of vector_v4.py: two imports and __hash__ method added to the
Vector class from vector_v3.py

from array import array
import reprlib
import math
import functools
import operator

class Vector:
 typecode = 'd'

 # many lines omitted in book listing...

 def __eq__(self, other):
 return tuple(self) == tuple(other)

 def __hash__(self):
 hashes = (hash(x) for x in self._components)
 return functools.reduce(operator.xor, hashes, 0)

 # more lines omitted...

Vector Take #4: Hashing and a Faster == | 413

Import functools to use reduce.

Import operator to use xor.

No change to __eq__; I listed it here because it’s good practice to keep __eq__
and __hash__ close in source code, because they need to work together.

Create a generator expression to lazily compute the hash of each component.

Feed hashes to reduce with the xor function to compute the aggregate hash
code; the third argument, 0, is the initializer (see the next warning).

When using reduce, it’s good practice to provide the third argu‐
ment, reduce(function, iterable, initializer), to prevent
this exception: TypeError: reduce() of empty sequence with
no initial value (excellent message: explains the problem and
how to fix it). The initializer is the value returned if the
sequence is empty and is used as the first argument in the reducing
loop, so it should be the identity value of the operation. As exam‐
ples, for +, |, ^ the initializer should be 0, but for *, & it should
be 1.

As implemented, the __hash__ method in Example 12-12 is a perfect example of a
map-reduce computation (Figure 12-2).

Figure 12-2. Map-reduce: apply function to each item to generate a new series (map),
then compute the aggregate (reduce).

The mapping step produces one hash for each component, and the reduce step aggre‐
gates all hashes with the xor operator. Using map instead of a genexp makes the map‐
ping step even more visible:

414 | Chapter 12: Special Methods for Sequences

5 We will seriously consider the matter of Vector([1, 2]) == (1, 2) in “Operator Overloading 101” on page
562.

 def __hash__(self):
 hashes = map(hash, self._components)
 return functools.reduce(operator.xor, hashes)

The solution with map would be less efficient in Python 2, where
the map function builds a new list with the results. But in Python
3, map is lazy: it creates a generator that yields the results on
demand, thus saving memory—just like the generator expression
we used in the __hash__ method of Example 12-8.

While we are on the topic of reducing functions, we can replace our quick implemen‐
tation of __eq__ with another one that will be cheaper in terms of processing and
memory, at least for large vectors. As introduced in Example 11-2, we have this very
concise implementation of __eq__:

 def __eq__(self, other):
 return tuple(self) == tuple(other)

This works for Vector2d and for Vector—it even considers Vector([1, 2]) equal to
(1, 2), which may be a problem, but we’ll overlook that for now.5 But for Vector
instances that may have thousands of components, it’s very inefficient. It builds two
tuples copying the entire contents of the operands just to use the __eq__ of the tuple
type. For Vector2d (with only two components), it’s a good shortcut, but not for the
large multidimensional vectors. A better way of comparing one Vector to another
Vector or iterable would be Example 12-13.

Example 12-13. The Vector.__eq__ implementation using zip in a for loop for more
efficient comparison

 def __eq__(self, other):
 if len(self) != len(other):
 return False
 for a, b in zip(self, other):
 if a != b:
 return False
 return True

If the len of the objects are different, they are not equal.

zip produces a generator of tuples made from the items in each iterable argu‐
ment. See “The Awesome zip” on page 416 if zip is new to you. In , the len

Vector Take #4: Hashing and a Faster == | 415

comparison is needed because zip stops producing values without warning as
soon as one of the inputs is exhausted.

As soon as two components are different, exit returning False.

Otherwise, the objects are equal.

The zip function is named after the zipper fastener because the
physical device works by interlocking pairs of teeth taken from
both zipper sides, a good visual analogy for what zip(left,
right) does. No relation to compressed files.

Example 12-13 is efficient, but the all function can produce the same aggregate com‐
putation of the for loop in one line: if all comparisons between corresponding com‐
ponents in the operands are True, the result is True. As soon as one comparison is
False, all returns False. Example 12-14 shows how __eq__ looks using all.

Example 12-14. The Vector.__eq__ implementation using zip and all: same logic as
Example 12-13

 def __eq__(self, other):
 return len(self) == len(other) and all(a == b for a, b in zip(self, other))

Note that we first check that the operands have equal length, because zip will stop at
the shortest operand.

Example 12-14 is the implementation we choose for __eq__ in vector_v4.py.

The Awesome zip
Having a for loop that iterates over items without fiddling with index variables is
great and prevents lots of bugs, but demands some special utility functions. One of
them is the zip built-in, which makes it easy to iterate in parallel over two or more
iterables by returning tuples that you can unpack into variables, one for each item in
the parallel inputs. See Example 12-15.

Example 12-15. The zip built-in at work

>>> zip(range(3), 'ABC')
<zip object at 0x10063ae48>

>>> list(zip(range(3), 'ABC'))
[(0, 'A'), (1, 'B'), (2, 'C')]

>>> list(zip(range(3), 'ABC', [0.0, 1.1, 2.2, 3.3]))
[(0, 'A', 0.0), (1, 'B', 1.1), (2, 'C', 2.2)]

416 | Chapter 12: Special Methods for Sequences

>>> from itertools import zip_longest
>>> list(zip_longest(range(3), 'ABC', [0.0, 1.1, 2.2, 3.3], fillvalue=-1))
[(0, 'A', 0.0), (1, 'B', 1.1), (2, 'C', 2.2), (-1, -1, 3.3)]

zip returns a generator that produces tuples on demand.

Build a list just for display; usually we iterate over the generator.

zip stops without warning when one of the iterables is exhausted.

The itertools.zip_longest function behaves differently: it uses an optional
fillvalue (None by default) to complete missing values so it can generate tuples
until the last iterable is exhausted.

New zip() Option in Python 3.10

I wrote in the first edition of this book that zip silently stop‐
ping at the shortest iterable was surprising—not a good trait
for an API. Silently ignoring part of the input can cause subtle
bugs. Instead, zip should raise ValueError if the iterables are
not all of the same length, which is what happens when
unpacking an iterable to a tuple of variables of different length
—in line with Python’s fail fast policy. PEP 618—Add
Optional Length-Checking To zip added an optional strict
argument to zip to make it behave in that way. It is imple‐
mented in Python 3.10.

The zip function can also be used to transpose a matrix represented as nested itera‐
bles. For example:

>>> a = [(1, 2, 3),
... (4, 5, 6)]
>>> list(zip(*a))
[(1, 4), (2, 5), (3, 6)]
>>> b = [(1, 2),
... (3, 4),
... (5, 6)]
>>> list(zip(*b))
[(1, 3, 5), (2, 4, 6)]

If you want to grok zip, spend some time figuring out how these examples work.

The enumerate built-in is another generator function often used in for loops to avoid
direct handling of index variables. If you’re not familiar with enumerate, you should
definitely check it out in the “Built-in functions” documentation. The zip and

Vector Take #4: Hashing and a Faster == | 417

https://fpy.li/pep618
https://fpy.li/pep618
https://fpy.li/12-3

6 The Wolfram Mathworld website has an article on hypersphere; on Wikipedia, “hypersphere” redirects to the
“n-sphere” entry.

enumerate built-ins, along with several other generator functions in the standard
library, are covered in “Generator Functions in the Standard Library” on page 619.

We wrap up this chapter by bringing back the __format__ method from Vector2d to
Vector.

Vector Take #5: Formatting
The __format__ method of Vector will resemble that of Vector2d, but instead of
providing a custom display in polar coordinates, Vector will use spherical coordi‐
nates—also known as “hyperspherical” coordinates, because now we support n
dimensions, and spheres are “hyperspheres” in 4D and beyond.6 Accordingly, we’ll
change the custom format suffix from 'p' to 'h'.

As we saw in “Formatted Displays” on page 370, when extending
the Format Specification Mini-Language, it’s best to avoid reusing
format codes supported by built-in types. In particular, our exten‐
ded mini-language also uses the float formatting codes 'eEfFgGn%'
in their original meaning, so we definitely must avoid these. Inte‐
gers use 'bcdoxXn' and strings use 's'. I picked 'p' for Vector2d
polar coordinates. Code 'h' for hyperspherical coordinates is a
good choice.

For example, given a Vector object in 4D space (len(v) == 4), the 'h' code will pro‐
duce a display like <r, Φ₁, Φ₂, Φ₃>, where r is the magnitude (abs(v)), and the
remaining numbers are the angular components Φ₁, Φ₂, Φ₃.

Here are some samples of the spherical coordinate format in 4D, taken from the
doctests of vector_v5.py (see Example 12-16):

>>> format(Vector([-1, -1, -1, -1]), 'h')
'<2.0, 2.0943951023931957, 2.186276035465284, 3.9269908169872414>'
>>> format(Vector([2, 2, 2, 2]), '.3eh')
'<4.000e+00, 1.047e+00, 9.553e-01, 7.854e-01>'
>>> format(Vector([0, 1, 0, 0]), '0.5fh')
'<1.00000, 1.57080, 0.00000, 0.00000>'

Before we can implement the minor changes required in __format__, we need to
code a pair of support methods: angle(n) to compute one of the angular coordinates
(e.g., Φ₁), and angles() to return an iterable of all angular coordinates. I will not

418 | Chapter 12: Special Methods for Sequences

https://fpy.li/12-4
https://fpy.li/nsphere
https://fpy.li/nsphere
https://fpy.li/fmtspec

describe the math here; if you’re curious, Wikipedia’s “n-sphere” entry has the for‐
mulas I used to calculate the spherical coordinates from the Cartesian coordinates in
the Vector components array.

Example 12-16 is a full listing of vector_v5.py consolidating all we’ve implemented
since “Vector Take #1: Vector2d Compatible” on page 399 and introducing custom
formatting.

Example 12-16. vector_v5.py: doctests and all code for the final Vector class; callouts
highlight additions needed to support __format__

"""
A multidimensional ``Vector`` class, take 5

A ``Vector`` is built from an iterable of numbers::

 >>> Vector([3.1, 4.2])
 Vector([3.1, 4.2])
 >>> Vector((3, 4, 5))
 Vector([3.0, 4.0, 5.0])
 >>> Vector(range(10))
 Vector([0.0, 1.0, 2.0, 3.0, 4.0, ...])

Tests with two dimensions (same results as ``vector2d_v1.py``)::

 >>> v1 = Vector([3, 4])
 >>> x, y = v1
 >>> x, y
 (3.0, 4.0)
 >>> v1
 Vector([3.0, 4.0])
 >>> v1_clone = eval(repr(v1))
 >>> v1 == v1_clone
 True
 >>> print(v1)
 (3.0, 4.0)
 >>> octets = bytes(v1)
 >>> octets
 b'd\\x00\\x00\\x00\\x00\\x00\\x00\\x08@\\x00\\x00\\x00\\x00\\x00\\x00\\x10@'
 >>> abs(v1)
 5.0
 >>> bool(v1), bool(Vector([0, 0]))
 (True, False)

Test of ``.frombytes()`` class method:

 >>> v1_clone = Vector.frombytes(bytes(v1))
 >>> v1_clone

Vector Take #5: Formatting | 419

https://fpy.li/nsphere

 Vector([3.0, 4.0])
 >>> v1 == v1_clone
 True

Tests with three dimensions::

 >>> v1 = Vector([3, 4, 5])
 >>> x, y, z = v1
 >>> x, y, z
 (3.0, 4.0, 5.0)
 >>> v1
 Vector([3.0, 4.0, 5.0])
 >>> v1_clone = eval(repr(v1))
 >>> v1 == v1_clone
 True
 >>> print(v1)
 (3.0, 4.0, 5.0)
 >>> abs(v1) # doctest:+ELLIPSIS
 7.071067811...
 >>> bool(v1), bool(Vector([0, 0, 0]))
 (True, False)

Tests with many dimensions::

 >>> v7 = Vector(range(7))
 >>> v7
 Vector([0.0, 1.0, 2.0, 3.0, 4.0, ...])
 >>> abs(v7) # doctest:+ELLIPSIS
 9.53939201...

Test of ``.__bytes__`` and ``.frombytes()`` methods::

 >>> v1 = Vector([3, 4, 5])
 >>> v1_clone = Vector.frombytes(bytes(v1))
 >>> v1_clone
 Vector([3.0, 4.0, 5.0])
 >>> v1 == v1_clone
 True

Tests of sequence behavior::

 >>> v1 = Vector([3, 4, 5])
 >>> len(v1)
 3
 >>> v1[0], v1[len(v1)-1], v1[-1]
 (3.0, 5.0, 5.0)

420 | Chapter 12: Special Methods for Sequences

Test of slicing::

 >>> v7 = Vector(range(7))
 >>> v7[-1]
 6.0
 >>> v7[1:4]
 Vector([1.0, 2.0, 3.0])
 >>> v7[-1:]
 Vector([6.0])
 >>> v7[1,2]
 Traceback (most recent call last):
 ...
 TypeError: 'tuple' object cannot be interpreted as an integer

Tests of dynamic attribute access::

 >>> v7 = Vector(range(10))
 >>> v7.x
 0.0
 >>> v7.y, v7.z, v7.t
 (1.0, 2.0, 3.0)

Dynamic attribute lookup failures::

 >>> v7.k
 Traceback (most recent call last):
 ...
 AttributeError: 'Vector' object has no attribute 'k'
 >>> v3 = Vector(range(3))
 >>> v3.t
 Traceback (most recent call last):
 ...
 AttributeError: 'Vector' object has no attribute 't'
 >>> v3.spam
 Traceback (most recent call last):
 ...
 AttributeError: 'Vector' object has no attribute 'spam'

Tests of hashing::

 >>> v1 = Vector([3, 4])
 >>> v2 = Vector([3.1, 4.2])
 >>> v3 = Vector([3, 4, 5])
 >>> v6 = Vector(range(6))
 >>> hash(v1), hash(v3), hash(v6)
 (7, 2, 1)

Most hash codes of non-integers vary from a 32-bit to 64-bit CPython build::

Vector Take #5: Formatting | 421

 >>> import sys
 >>> hash(v2) == (384307168202284039 if sys.maxsize > 2**32 else 357915986)
 True

Tests of ``format()`` with Cartesian coordinates in 2D::

 >>> v1 = Vector([3, 4])
 >>> format(v1)
 '(3.0, 4.0)'
 >>> format(v1, '.2f')
 '(3.00, 4.00)'
 >>> format(v1, '.3e')
 '(3.000e+00, 4.000e+00)'

Tests of ``format()`` with Cartesian coordinates in 3D and 7D::

 >>> v3 = Vector([3, 4, 5])
 >>> format(v3)
 '(3.0, 4.0, 5.0)'
 >>> format(Vector(range(7)))
 '(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0)'

Tests of ``format()`` with spherical coordinates in 2D, 3D and 4D::

 >>> format(Vector([1, 1]), 'h') # doctest:+ELLIPSIS
 '<1.414213..., 0.785398...>'
 >>> format(Vector([1, 1]), '.3eh')
 '<1.414e+00, 7.854e-01>'
 >>> format(Vector([1, 1]), '0.5fh')
 '<1.41421, 0.78540>'
 >>> format(Vector([1, 1, 1]), 'h') # doctest:+ELLIPSIS
 '<1.73205..., 0.95531..., 0.78539...>'
 >>> format(Vector([2, 2, 2]), '.3eh')
 '<3.464e+00, 9.553e-01, 7.854e-01>'
 >>> format(Vector([0, 0, 0]), '0.5fh')
 '<0.00000, 0.00000, 0.00000>'
 >>> format(Vector([-1, -1, -1, -1]), 'h') # doctest:+ELLIPSIS
 '<2.0, 2.09439..., 2.18627..., 3.92699...>'
 >>> format(Vector([2, 2, 2, 2]), '.3eh')
 '<4.000e+00, 1.047e+00, 9.553e-01, 7.854e-01>'
 >>> format(Vector([0, 1, 0, 0]), '0.5fh')
 '<1.00000, 1.57080, 0.00000, 0.00000>'
"""

from array import array
import reprlib
import math
import functools
import operator

422 | Chapter 12: Special Methods for Sequences

import itertools

class Vector:
 typecode = 'd'

 def __init__(self, components):
 self._components = array(self.typecode, components)

 def __iter__(self):
 return iter(self._components)

 def __repr__(self):
 components = reprlib.repr(self._components)
 components = components[components.find('['):-1]
 return f'Vector({components})'

 def __str__(self):
 return str(tuple(self))

 def __bytes__(self):
 return (bytes([ord(self.typecode)]) +
 bytes(self._components))

 def __eq__(self, other):
 return (len(self) == len(other) and
 all(a == b for a, b in zip(self, other)))

 def __hash__(self):
 hashes = (hash(x) for x in self)
 return functools.reduce(operator.xor, hashes, 0)

 def __abs__(self):
 return math.hypot(*self)

 def __bool__(self):
 return bool(abs(self))

 def __len__(self):
 return len(self._components)

 def __getitem__(self, key):
 if isinstance(key, slice):
 cls = type(self)
 return cls(self._components[key])
 index = operator.index(key)
 return self._components[index]

 __match_args__ = ('x', 'y', 'z', 't')

 def __getattr__(self, name):
 cls = type(self)

Vector Take #5: Formatting | 423

 try:
 pos = cls.__match_args__.index(name)
 except ValueError:
 pos = -1
 if 0 <= pos < len(self._components):
 return self._components[pos]
 msg = f'{cls.__name__!r} object has no attribute {name!r}'
 raise AttributeError(msg)

 def angle(self, n):
 r = math.hypot(*self[n:])
 a = math.atan2(r, self[n-1])
 if (n == len(self) - 1) and (self[-1] < 0):
 return math.pi * 2 - a
 else:
 return a

 def angles(self):
 return (self.angle(n) for n in range(1, len(self)))

 def __format__(self, fmt_spec=''):
 if fmt_spec.endswith('h'): # hyperspherical coordinates
 fmt_spec = fmt_spec[:-1]
 coords = itertools.chain([abs(self)],
 self.angles())
 outer_fmt = '<{}>'
 else:
 coords = self
 outer_fmt = '({})'
 components = (format(c, fmt_spec) for c in coords)
 return outer_fmt.format(', '.join(components))

 @classmethod
 def frombytes(cls, octets):
 typecode = chr(octets[0])
 memv = memoryview(octets[1:]).cast(typecode)
 return cls(memv)

Import itertools to use chain function in __format__.

Compute one of the angular coordinates, using formulas adapted from the
n-sphere article.

Create a generator expression to compute all angular coordinates on demand.

Use itertools.chain to produce genexp to iterate seamlessly over the magni‐
tude and the angular coordinates.

Configure a spherical coordinate display with angular brackets.

424 | Chapter 12: Special Methods for Sequences

https://fpy.li/nsphere

Configure a Cartesian coordinate display with parentheses.

Create a generator expression to format each coordinate item on demand.

Plug formatted components separated by commas inside brackets or
parentheses.

We are making heavy use of generator expressions in __format__,
angle, and angles, but our focus here is in providing __format__
to bring Vector to the same implementation level as Vector2d.
When we cover generators in Chapter 17, we’ll use some of the
code in Vector as examples, and then the generator tricks will be
explained in detail.

This concludes our mission for this chapter. The Vector class will be enhanced with
infix operators in Chapter 16, but our goal here was to explore techniques for coding
special methods that are useful in a wide variety of collection classes.

Chapter Summary
The Vector example in this chapter was designed to be compatible with Vector2d,
except for the use of a different constructor signature accepting a single iterable argu‐
ment, just like the built-in sequence types do. The fact that Vector behaves as a
sequence just by implementing __getitem__ and __len__ prompted a discussion of
protocols, the informal interfaces used in duck-typed languages.

We then looked at how the my_seq[a:b:c] syntax works behind the scenes, by creat‐
ing a slice(a, b, c) object and handing it to __getitem__. Armed with this knowl‐
edge, we made Vector respond correctly to slicing, by returning new Vector
instances, just like a Pythonic sequence is expected to do.

The next step was to provide read-only access to the first few Vector components
using notation such as my_vec.x. We did it by implementing __getattr__. Doing
that opened the possibility of tempting the user to assign to those special components
by writing my_vec.x = 7, revealing a potential bug. We fixed it by implementing
__setattr__ as well, to forbid assigning values to single-letter attributes. Very often,
when you code a __getattr__ you need to add __setattr__ too, in order to avoid
inconsistent behavior.

Implementing the __hash__ function provided the perfect context for using func
tools.reduce, because we needed to apply the xor operator ^ in succession to the
hashes of all Vector components to produce an aggregate hash code for the whole

Chapter Summary | 425

Vector. After applying reduce in __hash__, we used the all reducing built-in to cre‐
ate a more efficient __eq__ method.

The last enhancement to Vector was to reimplement the __format__ method from
Vector2d by supporting spherical coordinates as an alternative to the default Carte‐
sian coordinates. We used quite a bit of math and several generators to code __for
mat__ and its auxiliary functions, but these are implementation details—and we’ll
come back to the generators in Chapter 17. The goal of that last section was to sup‐
port a custom format, thus fulfilling the promise of a Vector that could do everything
a Vector2d did, and more.

As we did in Chapter 11, here we often looked at how standard Python objects
behave, to emulate them and provide a “Pythonic” look-and-feel to Vector.

In Chapter 16, we will implement several infix operators on Vector. The math will be
much simpler than in the angle() method here, but exploring how infix operators
work in Python is a great lesson in OO design. But before we get to operator over‐
loading, we’ll step back from working on one class and look at organizing multiple
classes with interfaces and inheritance, the subjects of Chapters 13 and 14.

Further Reading
Most special methods covered in the Vector example also appear in the Vector2d
example from Chapter 11, so the references in “Further Reading” on page 392 are all
relevant here.

The powerful reduce higher-order function is also known as fold, accumulate, aggre‐
gate, compress, and inject. For more information, see Wikipedia’s “Fold (higher-
order function)” article, which presents applications of that higher-order function
with emphasis on functional programming with recursive data structures. The article
also includes a table listing fold-like functions in dozens of programming languages.

“What’s New in Python 2.5” has a short explanation of __index__, designed to sup‐
port __getitem__ methods, as we saw in “A Slice-Aware __getitem__” on page 406.
PEP 357—Allowing Any Object to be Used for Slicing details the need for it from the
perspective of an implementor of a C-extension—Travis Oliphant, the primary crea‐
tor of NumPy. Oliphant’s many contributions to Python made it a leading scientific
computing language, which then positioned it to lead the way in machine learning
applications.

426 | Chapter 12: Special Methods for Sequences

https://fpy.li/12-5
https://fpy.li/12-5
https://fpy.li/12-6
https://fpy.li/pep357

Soapbox

Protocols as Informal Interfaces

Protocols are not an invention of Python. The Smalltalk team, which also coined the
expression “object-oriented,” used “protocol” as a synonym for what we now call
interfaces. Some Smalltalk programming environments allowed programmers to tag a
group of methods as a protocol, but that was merely a documentation and navigation
aid, and not enforced by the language. That’s why I believe “informal interface” is a
reasonable short explanation for “protocol” when I speak to an audience that is more
familiar with formal (and compiler enforced) interfaces.

Established protocols naturally evolve in any language that uses dynamic typing, that
is, when type checking is done at runtime because there is no static type information
in method signatures and variables. Ruby is another important object-oriented lan‐
guage that has dynamic typing and uses protocols.

In the Python documentation, you can often tell when a protocol is being discussed
when you see language like “a file-like object.” This is a quick way of saying “some‐
thing that behaves sufficiently like a file, by implementing the parts of the file inter‐
face that are relevant in the context.”

You may think that implementing only part of a protocol is sloppy, but it has the
advantage of keeping things simple. Section 3.3 of the “Data Model” chapter suggests:

When implementing a class that emulates any built-in type, it is important that the
emulation only be implemented to the degree that it makes sense for the object being
modeled. For example, some sequences may work well with retrieval of individual
elements, but extracting a slice may not make sense.

When we don’t need to code nonsense methods just to fulfill some overdesigned
interface contract and keep the compiler happy, it becomes easier to follow the KISS
principle.

On the other hand, if you want to use a type checker to verify your protocol imple‐
mentations, then a stricter definition of protocol is required. That’s what typing.Pro
tocol provides.

I’ll have more to say about protocols and interfaces in Chapter 13, where they are the
main focus.

Origins of Duck Typing

I believe the Ruby community, more than any other, helped popularize the term
“duck typing,” as they preached to the Java masses. But the expression has been used
in Python discussions before either Ruby or Python were “popular.” According to
Wikipedia, an early example of the duck analogy in object-oriented programming is a
message to the Python-list by Alex Martelli from July 26, 2000: “polymorphism (was

Further Reading | 427

https://fpy.li/12-7
https://fpy.li/12-8
https://fpy.li/12-8
https://fpy.li/12-9

7 I adapted the code for this presentation: in 2003, reduce was a built-in, but in Python 3 we need to import it;
also, I replaced the names x and y with my_list and sub, for sub-list.

Re: Type checking in python?)”. That’s where the quote at the beginning of this chap‐
ter comes from. If you are curious about the literary origins of the “duck typing”
term, and the applications of this OO concept in many languages, check out Wikipe‐
dia’s “Duck typing” entry.

A Safe__format__, with Enhanced Usability

While implementing __format__, I did not take any precautions regarding Vector
instances with a very large number of components, as we did in __repr__ using
reprlib. The reasoning is that repr() is for debugging and logging, so it must always
generate some serviceable output, while __format__ is used to display output to end
users who presumably want to see the entire Vector. If you think this is dangerous,
then it would be cool to implement a further extension to the Format Specifier Mini-
Language.

Here is how I’d do it: by default, any formatted Vector would display a reasonable
but limited number of components, say 30. If there are more elements than that, the
default behavior would be similar to what the reprlib does: chop the excess and
put ... in its place. However, if the format specifier ended with the special * code,
meaning “all,” then the size limitation would be disabled. So a user who’s unaware of
the problem of very long displays will not be bitten by it by accident. But if the default
limitation becomes a nuisance, then the presence of the ... could lead the user to
search the documentation and discover the * formatting code.

The Search for a Pythonic Sum

There’s no single answer to “What is Pythonic?” just as there’s no single answer to
“What is beautiful?” Saying, as I often do, that it means using “idiomatic Python” is
not 100% satisfactory, because what may be “idiomatic” for you may not be for me.
One thing I know: “idiomatic” does not mean using the most obscure language fea‐
tures.

In the Python-list, there’s a thread titled “Pythonic Way to Sum n-th List Element?”
from April 2003. It’s relevant to our discussion of reduce in this chapter.

The original poster, Guy Middleton, asked for an improvement on this solution, stat‐
ing he did not like to use lambda:7

>>> my_list = [[1, 2, 3], [40, 50, 60], [9, 8, 7]]
>>> import functools
>>> functools.reduce(lambda a, b: a+b, [sub[1] for sub in my_list])
60

428 | Chapter 12: Special Methods for Sequences

https://fpy.li/12-9
https://fpy.li/12-10
https://fpy.li/12-11
https://fpy.li/12-12
https://fpy.li/12-12

That code uses lots of idioms: lambda, reduce, and a list comprehension. It would
probably come last in a popularity contest, because it offends people who hate lambda
and those who despise list comprehensions—pretty much both sides of a divide.

If you’re going to use lambda, there’s probably no reason to use a list comprehension
—except for filtering, which is not the case here.

Here is a solution of my own that will please the lambda lovers:

>>> functools.reduce(lambda a, b: a + b[1], my_list, 0)
60

I did not take part in the original thread, and I wouldn’t use that in real code, because
I don’t like lambda too much myself, but I wanted to show an example without a list
comprehension.

The first answer came from Fernando Perez, creator of IPython, highlighting that
NumPy supports n-dimensional arrays and n-dimensional slicing:

>>> import numpy as np
>>> my_array = np.array(my_list)
>>> np.sum(my_array[:, 1])
60

I think Perez’s solution is cool, but Guy Middleton praised this next solution, by Paul
Rubin and Skip Montanaro:

>>> import operator
>>> functools.reduce(operator.add, [sub[1] for sub in my_list], 0)
60

Then Evan Simpson asked, “What’s wrong with this?”:

>>> total = 0
>>> for sub in my_list:
... total += sub[1]
...
>>> total
60

Lots of people agreed that was quite Pythonic. Alex Martelli went as far as saying
that’s probably how Guido would code it.

I like Evan Simpson’s code, but I also like David Eppstein’s comment on it:

If you want the sum of a list of items, you should write it in a way that looks like “the
sum of a list of items,” not in a way that looks like “loop over these items, maintain
another variable t, perform a sequence of additions.” Why do we have high-level lan‐
guages if not to express our intentions at a higher level and let the language worry
about what low-level operations are needed to implement it?

Further Reading | 429

Then Alex Martelli comes back to suggest:

“The sum” is so frequently needed that I wouldn’t mind at all if Python singled it out
as a built-in. But “reduce(operator.add, …” just isn’t a great way to express it, in my
opinion (and yet as an old APL’er, and FP-liker, I should like it—but I don’t).

Alex goes on to suggest a sum() function, which he contributed. It became a built-in
in Python 2.3, released only three months after that conversation took place. So
Alex’s preferred syntax became the norm:

>>> sum([sub[1] for sub in my_list])
60

By the end of the next year (November 2004), Python 2.4 was launched with genera‐
tor expressions, providing what is now in my opinion the most Pythonic answer to
Guy Middleton’s original question:

>>> sum(sub[1] for sub in my_list)
60

This is not only more readable than reduce but also avoids the trap of the empty
sequence: sum([]) is 0, simple as that.

In the same conversation, Alex Martelli suggests the reduce built-in in Python 2 was
more trouble than it was worth, because it encouraged coding idioms that were hard
to explain. He was most convincing: the function was demoted to the functools
module in Python 3.

Still, functools.reduce has its place. It solved the problem of our Vector.__hash__
in a way that I would call Pythonic.

430 | Chapter 12: Special Methods for Sequences

1 Design Patterns: Elements of Reusable Object-Oriented Software, “Introduction,” p. 18.

CHAPTER 13

Interfaces, Protocols, and ABCs

Program to an interface, not an implementation.
—Gamma, Helm, Johnson, Vlissides, First Principle of Object-Oriented Design1

Object-oriented programming is all about interfaces. The best approach to under‐
standing a type in Python is knowing the methods it provides—its interface—as dis‐
cussed in “Types Are Defined by Supported Operations” on page 260 (Chapter 8).

Depending on the programming language, we have one or more ways of defining and
using interfaces. Since Python 3.8, we have four ways. They are depicted in the
Typing Map (Figure 13-1). We can summarize them like this:

Duck typing
Python’s default approach to typing from the beginning. We’ve been studying
duck typing since Chapter 1.

Goose typing
The approach supported by abstract base classes (ABCs) since Python 2.6, which
relies on runtime checks of objects against ABCs. Goose typing is a major subject
in this chapter.

Static typing
The traditional approach of statically-typed languages like C and Java; supported
since Python 3.5 by the typing module, and enforced by external type checkers
compliant with PEP 484—Type Hints. This is not the theme of this chapter. Most
of Chapter 8 and the upcoming Chapter 15 are about static typing.

431

https://fpy.li/pep484

Static duck typing
An approach made popular by the Go language; supported by subclasses of typ
ing.Protocol—new in Python 3.8—also enforced by external type checkers. We
first saw this in “Static Protocols” on page 286 (Chapter 8).

The Typing Map
The four typing approaches depicted in Figure 13-1 are complementary: they have
different pros and cons. It doesn’t make sense to dismiss any of them.

Figure 13-1. The top half describes runtime type checking approaches using just the
Python interpreter; the bottom requires an external static type checker such as MyPy or
an IDE like PyCharm. The left quadrants cover typing based on the object’s structure—
i.e., the methods provided by the object, regardless of the name of its class or super‐
classes; the right quadrants depend on objects having explicitly named types: the name
of the object’s class, or the name of its superclasses.

Each of these four approaches rely on interfaces to work, but static typing can be
done—poorly—using only concrete types instead of interface abstractions like proto‐
cols and abstract base classes. This chapter is about duck typing, goose typing, and
static duck typing—typing disciplines that revolve around interfaces.

432 | Chapter 13: Interfaces, Protocols, and ABCs

This chapter is split in four main sections, addressing three of the four quadrants in
the Typing Map (Figure 13-1):

• “Two Kinds of Protocols” on page 434 compares the two forms of structural
typing with protocols—i.e., the lefthand side of the Typing Map.

• “Programming Ducks” on page 435 dives deeper into Python’s usual duck typing,
including how to make it safer while preserving its major strength: flexibility.

• “Goose Typing” on page 442 explains the use of ABCs for stricter runtime type
checking. This is the longest section, not because it’s more important, but
because there are more sections about duck typing, static duck typing, and static
typing elsewhere in the book.

• “Static Protocols” on page 466 covers usage, implementation, and design of typ
ing.Protocol subclasses—useful for static and runtime type checking.

What’s New in This Chapter
This chapter was heavily edited and is about 24% longer than the corresponding
Chapter 11 in the first edition of Fluent Python. Although some sections and many
paragraphs are the same, there’s a lot of new content. These are the highlights:

• The chapter introduction and the Typing Map (Figure 13-1) are new. That’s the
key to most new content in this chapter—and all other chapters related to typing
in Python ≥ 3.8.

• “Two Kinds of Protocols” on page 434 explains the similarities and differences
between dynamic and static protocols.

• “Defensive Programming and ‘Fail Fast’” on page 440 mostly reproduces content
from the first edition, but was updated and now has a section title to highlight its
importance.

• “Static Protocols” on page 466 is all new. It builds on the initial presentation in
“Static Protocols” on page 286 (Chapter 8).

• Updated class diagrams of collections.abc in Figures 13-2, 13-3, and 13-4 to
include the Collection ABC, from Python 3.6.

The first edition of Fluent Python had a section encouraging use of the numbers ABCs
for goose typing. In “The numbers ABCs and Numeric Protocols” on page 478, I
explain why you should use numeric static protocols from the typing module
instead, if you plan to use static type checkers as well as runtime checks in the style of
goose typing.

What’s New in This Chapter | 433

Two Kinds of Protocols
The word protocol has different meanings in computer science depending on context.
A network protocol such as HTTP specifies commands that a client can send to a
server, such as GET, PUT, and HEAD. We saw in “Protocols and Duck Typing” on page
402 that an object protocol specifies methods which an object must provide to fulfill a
role. The FrenchDeck example in Chapter 1 demonstrated one object protocol, the
sequence protocol: the methods that allow a Python object to behave as a sequence.

Implementing a full protocol may require several methods, but often it is OK to
implement only part of it. Consider the Vowels class in Example 13-1.

Example 13-1. Partial sequence protocol implementation with __getitem__

>>> class Vowels:
... def __getitem__(self, i):
... return 'AEIOU'[i]
...
>>> v = Vowels()
>>> v[0]
'A'
>>> v[-1]
'U'
>>> for c in v: print(c)
...
A
E
I
O
U
>>> 'E' in v
True
>>> 'Z' in v
False

Implementing __getitem__ is enough to allow retrieving items by index, and also to
support iteration and the in operator. The __getitem__ special method is really the
key to the sequence protocol. Take a look at this entry from the Python/C API Refer‐
ence Manual, “Sequence Protocol” section:

int PySequence_Check(PyObject *o)

Return 1 if the object provides sequence protocol, and 0 otherwise. Note that it
returns 1 for Python classes with a __getitem__() method unless they are dict
subclasses […].

We expect a sequence to also support len(), by implementing __len__. Vowels has
no __len__ method, but it still behaves as a sequence in some contexts. And that may

434 | Chapter 13: Interfaces, Protocols, and ABCs

https://fpy.li/13-1
https://fpy.li/13-1
https://fpy.li/13-2

be enough for our purposes. That is why I like to say that a protocol is an “informal
interface.” That is also how protocols are understood in Smalltalk, the first object-
oriented programming environment to use that term.

Except in pages about network programming, most uses of the word “protocol” in
the Python documentation refer to these informal interfaces.

Now, with the adoption of PEP 544—Protocols: Structural subtyping (static duck
typing) in Python 3.8, the word “protocol” has another meaning in Python—closely
related, but different. As we saw in “Static Protocols” on page 286 (Chapter 8), PEP
544 allows us to create subclasses of typing.Protocol to define one or more methods
that a class must implement (or inherit) to satisfy a static type checker.

When I need to be specific, I will adopt these terms:

Dynamic protocol
The informal protocols Python always had. Dynamic protocols are implicit,
defined by convention, and described in the documentation. Python’s most
important dynamic protocols are supported by the interpreter itself, and are doc‐
umented in the “Data Model” chapter of The Python Language Reference.

Static protocol
A protocol as defined by PEP 544—Protocols: Structural subtyping (static duck
typing), since Python 3.8. A static protocol has an explicit definition: a typ
ing.Protocol subclass.

There are two key differences between them:

• An object may implement only part of a dynamic protocol and still be useful; but
to fulfill a static protocol, the object must provide every method declared in the
protocol class, even if your program doesn’t need them all.

• Static protocols can be verified by static type checkers, but dynamic protocols
can’t.

Both kinds of protocols share the essential characteristic that a class never needs to
declare that it supports a protocol by name, i.e., by inheritance.

In addition to static protocols, Python provides another way of defining an explicit
interface in code: an abstract base class (ABC).

The rest of this chapter covers dynamic and static protocols, as well as ABCs.

Programming Ducks
Let’s start our discussion of dynamic protocols with two of the most important in
Python: the sequence and iterable protocols. The interpreter goes out of its way to

Programming Ducks | 435

https://fpy.li/pep544
https://fpy.li/pep544
https://fpy.li/dtmodel
https://fpy.li/pep544
https://fpy.li/pep544

handle objects that provide even a minimal implementation of those protocols, as the
next section explains.

Python Digs Sequences
The philosophy of the Python Data Model is to cooperate with essential dynamic
protocols as much as possible. When it comes to sequences, Python tries hard to
work with even the simplest implementations.

Figure 13-2 shows how the Sequence interface is formalized as an ABC. The Python
interpreter and built-in sequences like list, str, etc., do not rely on that ABC at all. I
am using it only to describe what a full-fledged Sequence is expected to support.

Figure 13-2. UML class diagram for the Sequence ABC and related abstract classes
from collections.abc. Inheritance arrows point from a subclass to its superclasses.
Names in italic are abstract methods. Before Python 3.6, there was no Collection
ABC—Sequence was a direct subclass of Container, Iterable, and Sized.

Most ABCs in the collections.abc module exist to formalize
interfaces that are implemented by built-in objects and are implic‐
itly supported by the interpreter—both of which predate the ABCs
themselves. The ABCs are useful as starting points for new classes,
and to support explicit type checking at runtime (a.k.a. goose typ‐
ing) as well as type hints for static type checkers.

Studying Figure 13-2, we see that a correct subclass of Sequence must implement
__getitem__ and __len__ (from Sized). All the other methods in Sequence are con‐
crete, so subclasses can inherit their implementations—or provide better ones.

Now, recall the Vowels class in Example 13-1. It does not inherit from abc.Sequence
and it only implements __getitem__.

There is no __iter__ method, yet Vowels instances are iterable because—as a fallback
—if Python finds a __getitem__ method, it tries to iterate over the object by calling
that method with integer indexes starting with 0. Because Python is smart enough to

436 | Chapter 13: Interfaces, Protocols, and ABCs

iterate over Vowels instances, it can also make the in operator work even when the
__contains__ method is missing: it does a sequential scan to check if an item is
present.

In summary, given the importance of sequence-like data structures, Python manages
to make iteration and the in operator work by invoking __getitem__ when __iter__
and __contains__ are unavailable.

The original FrenchDeck from Chapter 1 does not subclass abc.Sequence either, but
it does implement both methods of the sequence protocol: __getitem__ and __len__.
See Example 13-2.

Example 13-2. A deck as a sequence of cards (same as Example 1-1)

import collections

Card = collections.namedtuple('Card', ['rank', 'suit'])

class FrenchDeck:
 ranks = [str(n) for n in range(2, 11)] + list('JQKA')
 suits = 'spades diamonds clubs hearts'.split()

 def __init__(self):
 self._cards = [Card(rank, suit) for suit in self.suits
 for rank in self.ranks]

 def __len__(self):
 return len(self._cards)

 def __getitem__(self, position):
 return self._cards[position]

Several of the examples in Chapter 1 work because of the special treatment Python
gives to anything vaguely resembling a sequence. The iterable protocol in Python
represents an extreme form of duck typing: the interpreter tries two different meth‐
ods to iterate over objects.

To be clear, the behaviors I described in this section are implemented in the inter‐
preter itself, mostly in C. They do not depend on methods from the Sequence ABC.
For example, the concrete methods __iter__ and __contains__ in the Sequence
class emulate the built-in behaviors of the Python interpreter. If you are curious,
check the source code of these methods in Lib/_collections_abc.py.

Now let’s study another example emphasizing the dynamic nature of protocols—and
why static type checkers have no chance of dealing with them.

Programming Ducks | 437

https://fpy.li/13-3

2 The “Monkey patch” article on Wikipedia has a funny example in Python.

Monkey Patching: Implementing a Protocol at Runtime
Monkey patching is dynamically changing a module, class, or function at runtime, to
add features or fix bugs. For example, the gevent networking library monkey patches
parts of Python’s standard library to allow lightweight concurrency without threads
or async/await.2

The FrenchDeck class from Example 13-2 is missing an essential feature: it cannot be
shuffled. Years ago when I first wrote the FrenchDeck example, I did implement a
shuffle method. Later I had a Pythonic insight: if a FrenchDeck acts like a sequence,
then it doesn’t need its own shuffle method because there is already random.shuf
fle, documented as “Shuffle the sequence x in place.”

The standard random.shuffle function is used like this:

>>> from random import shuffle
>>> l = list(range(10))
>>> shuffle(l)
>>> l
[5, 2, 9, 7, 8, 3, 1, 4, 0, 6]

When you follow established protocols, you improve your chances
of leveraging existing standard library and third-party code, thanks
to duck typing.

However, if we try to shuffle a FrenchDeck instance, we get an exception, as in
Example 13-3.

Example 13-3. random.shuffle cannot handle FrenchDeck

>>> from random import shuffle
>>> from frenchdeck import FrenchDeck
>>> deck = FrenchDeck()
>>> shuffle(deck)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File ".../random.py", line 265, in shuffle
 x[i], x[j] = x[j], x[i]
TypeError: 'FrenchDeck' object does not support item assignment

The error message is clear: 'FrenchDeck' object does not support item assign
ment. The problem is that shuffle operates in place, by swapping items inside the

438 | Chapter 13: Interfaces, Protocols, and ABCs

https://fpy.li/13-4
https://fpy.li/13-6

collection, and FrenchDeck only implements the immutable sequence protocol.
Mutable sequences must also provide a __setitem__ method.

Because Python is dynamic, we can fix this at runtime, even at the interactive console.
Example 13-4 shows how to do it.

Example 13-4. Monkey patching FrenchDeck to make it mutable and compatible with
random.shuffle (continuing from Example 13-3)

>>> def set_card(deck, position, card):
... deck._cards[position] = card
...
>>> FrenchDeck.__setitem__ = set_card
>>> shuffle(deck)
>>> deck[:5]
[Card(rank='3', suit='hearts'), Card(rank='4', suit='diamonds'), Card(rank='4',
suit='clubs'), Card(rank='7', suit='hearts'), Card(rank='9', suit='spades')]

Create a function that takes deck, position, and card as arguments.

Assign that function to an attribute named __setitem__ in the FrenchDeck class.

deck can now be shuffled because I added the necessary method of the mutable
sequence protocol.

The signature of the __setitem__ special method is defined in The Python Language
Reference in “3.3.6. Emulating container types”. Here I named the arguments deck,
position, card—and not self, key, value as in the language reference—to show
that every Python method starts life as a plain function, and naming the first argu‐
ment self is merely a convention. This is OK in a console session, but in a Python
source file it’s much better to use self, key, and value as documented.

The trick is that set_card knows that the deck object has an attribute named _cards,
and _cards must be a mutable sequence. The set_card function is then attached to
the FrenchDeck class as the __setitem__ special method. This is an example of mon‐
key patching: changing a class or module at runtime, without touching the source
code. Monkey patching is powerful, but the code that does the actual patching is very
tightly coupled with the program to be patched, often handling private and undocu‐
mented attributes.

Besides being an example of monkey patching, Example 13-4 highlights the dynamic
nature of protocols in dynamic duck typing: random.shuffle doesn’t care about the
class of the argument, it only needs the object to implement methods from the muta‐
ble sequence protocol. It doesn’t even matter if the object was “born” with the neces‐
sary methods or if they were somehow acquired later.

Programming Ducks | 439

https://fpy.li/13-7

3 That’s why automated testing is necessary.

Duck typing doesn’t need to be wildly unsafe or hard to debug. The next section
shows some useful code patterns to detect dynamic protocols without resorting to
explicit checks.

Defensive Programming and “Fail Fast”
Defensive programming is like defensive driving: a set of practices to enhance safety
even when faced with careless programmers—or drivers.

Many bugs cannot be caught except at runtime—even in mainstream statically typed
languages.3 In a dynamically typed language, “fail fast” is excellent advice for safer
and easier-to-maintain programs. Failing fast means raising runtime errors as soon
as possible, for example, rejecting invalid arguments right a the beginning of a func‐
tion body.

Here is one example: when you write code that accepts a sequence of items to process
internally as a list, don’t enforce a list argument by type checking. Instead, take
the argument and immediately build a list from it. One example of this code pattern
is the __init__ method in Example 13-10, later in this chapter:

 def __init__(self, iterable):
 self._balls = list(iterable)

That way you make your code more flexible, because the list() constructor handles
any iterable that fits in memory. If the argument is not iterable, the call will fail fast
with a very clear TypeError exception, right when the object is initialized. If you want
to be more explict, you can wrap the list() call with try/except to customize the
error message—but I’d use that extra code only on an external API, because the prob‐
lem would be easy to see for maintainers of the codebase. Either way, the offending
call will appear near the end of the traceback, making it straightforward to fix. If you
don’t catch the invalid argument in the class constructor, the program will blow up
later, when some other method of the class needs to operate on self._balls and it is
not a list. Then the root cause will be harder to find.

Of course, calling list() on the argument would be bad if the data shouldn’t be
copied, either because it’s too large or because the function, by design, needs to
change it in place for the benefit of the caller, like random.shuffle does. In that case,
a runtime check like isinstance(x, abc.MutableSequence) would be the way to go.

If you are afraid to get an infinite generator—not a common issue—you can begin by
calling len() on the argument. This would reject iterators, while safely dealing with
tuples, arrays, and other existing or future classes that fully implement the Sequence

440 | Chapter 13: Interfaces, Protocols, and ABCs

interface. Calling len() is usually very cheap, and an invalid argument will raise an
error immediately.

On the other hand, if any iterable is acceptable, then call iter(x) as soon as possible
to obtain an iterator, as we’ll see in “Why Sequences Are Iterable: The iter Function”
on page 596. Again, if x is not iterable, this will fail fast with an easy-to-debug
exception.

In the cases I just described, a type hint could catch some problems earlier, but not all
problems. Recall that the type Any is consistent-with every other type. Type inference
may cause a variable to be tagged with the Any type. When that happens, the type
checker is in the dark. In addition, type hints are not enforced at runtime. Fail fast is
the last line of defense.

Defensive code leveraging duck types can also include logic to handle different types
without using isinstance() or hasattr() tests.

One example is how we might emulate the handling of the field_names argument in
collections.namedtuple: field_names accepts a single string with identifiers sepa‐
rated by spaces or commas, or a sequence of identifiers. Example 13-5 shows how I’d
do it using duck typing.

Example 13-5. Duck typing to handle a string or an iterable of strings

 try:
 field_names = field_names.replace(',', ' ').split()
 except AttributeError:
 pass
 field_names = tuple(field_names)
 if not all(s.isidentifier() for s in field_names):
 raise ValueError('field_names must all be valid identifiers')

Assume it’s a string (EAFP = it’s easier to ask forgiveness than permission).

Convert commas to spaces and split the result into a list of names.

Sorry, field_names doesn’t quack like a str: it has no .replace, or it returns
something we can’t .split.

If AttributeError was raised, then field_names is not a str and we assume it
was already an iterable of names.

To make sure it’s an iterable and to keep our own copy, create a tuple out of what
we have. A tuple is more compact than list, and it also prevents my code from
changing the names by mistake.

Programming Ducks | 441

https://fpy.li/13-8

4 Bjarne Stroustrup, The Design and Evolution of C++, p. 278 (Addison-Wesley).

5 Retrieved October 18, 2020.

Use str.isidentifier to ensure every name is valid.

Example 13-5 shows one situation where duck typing is more expressive than static
type hints. There is no way to spell a type hint that says “field_names must be a
string of identifiers separated by spaces or commas.” This is the relevant part of the
namedtuple signature on typeshed (see the full source at stdlib/3/collections/
__init__.pyi):

 def namedtuple(
 typename: str,
 field_names: Union[str, Iterable[str]],
 *,
 # rest of signature omitted

As you can see, field_names is annotated as Union[str, Iterable[str]], which is
OK as far as it goes, but is not enough to catch all possible problems.

After reviewing dynamic protocols, we move to a more explicit form of runtime type
checking: goose typing.

Goose Typing
An abstract class represents an interface.

—Bjarne Stroustrup, creator of C++4

Python doesn’t have an interface keyword. We use abstract base classes (ABCs) to
define interfaces for explicit type checking at runtime—also supported by static type
checkers.

The Python Glossary entry for abstract base class has a good explanation of the value
they bring to duck-typed languages:

Abstract base classes complement duck typing by providing a way to define interfaces
when other techniques like hasattr() would be clumsy or subtly wrong (for example,
with magic methods). ABCs introduce virtual subclasses, which are classes that don’t
inherit from a class but are still recognized by isinstance() and issubclass(); see
the abc module documentation.5

Goose typing is a runtime type checking approach that leverages ABCs. I will let Alex
Martelli explain in “Waterfowl and ABCs” on page 443.

442 | Chapter 13: Interfaces, Protocols, and ABCs

https://fpy.li/13-9
https://fpy.li/13-9
https://fpy.li/13-10

I am very grateful to my friends Alex Martelli and Anna Raven‐
scroft. I showed them the first outline of Fluent Python at OSCON
2013, and they encouraged me to submit it for publication with
O’Reilly. Both later contributed with thorough tech reviews. Alex
was already the most cited person in this book, and then he offered
to write this essay. Take it away, Alex!

Waterfowl and ABCs
By Alex Martelli

I’ve been credited on Wikipedia for helping spread the helpful meme and sound-bite
“duck typing” (i.e, ignoring an object’s actual type, focusing instead on ensuring that
the object implements the method names, signatures, and semantics required for its
intended use).

In Python, this mostly boils down to avoiding the use of isinstance to check the
object’s type (not to mention the even worse approach of checking, for example,
whether type(foo) is bar—which is rightly anathema as it inhibits even the sim‐
plest forms of inheritance!).

The overall duck typing approach remains quite useful in many contexts—and yet, in
many others, an often preferable one has evolved over time. And herein lies a tale…

In recent generations, the taxonomy of genus and species (including, but not limited
to, the family of waterfowl known as Anatidae) has mostly been driven by phenetics—
an approach focused on similarities of morphology and behavior…chiefly, observable
traits. The analogy to “duck typing” was strong.

However, parallel evolution can often produce similar traits, both morphological and
behavioral ones, among species that are actually unrelated, but just happened to
evolve in similar, though separate, ecological niches. Similar “accidental similarities”
happen in programming, too—for example, consider the classic object-oriented pro‐
gramming example:

class Artist:
 def draw(self): ...

class Gunslinger:
 def draw(self): ...

class Lottery:
 def draw(self): ...

Clearly, the mere existence of a method named draw, callable without arguments,
is far from sufficient to assure us that two objects x and y, such that x.draw() and
y.draw() can be called, are in any way exchangeable or abstractly equivalent—

Goose Typing | 443

https://fpy.li/13-11

6 You can also, of course, define your own ABCs—but I would discourage all but the most advanced Pythonis‐
tas from going that route, just as I would discourage them from defining their own custom metaclasses…and
even for said “most advanced Pythonistas,” those of us sporting deep mastery of every fold and crease in the
language, these are not tools for frequent use. Such “deep metaprogramming,” if ever appropriate, is intended
for authors of broad frameworks meant to be independently extended by vast numbers of separate develop‐
ment teams…less than 1% of “most advanced Pythonistas” may ever need that! — A.M.

nothing about the similarity of the semantics resulting from such calls can be infer‐
red. Rather, we need a knowledgeable programmer to somehow positively assert that
such an equivalence holds at some level!

In biology (and other disciplines), this issue has led to the emergence (and, on many
facets, the dominance) of an approach that’s an alternative to phenetics, known as
cladistics—focusing taxonomical choices on characteristics that are inherited from
common ancestors, rather than ones that are independently evolved. (Cheap and
rapid DNA sequencing can make cladistics highly practical in many more cases in
recent years.)

For example, sheldgeese (once classified as being closer to other geese) and shelducks
(once classified as being closer to other ducks) are now grouped together within
the subfamily Tadornidae (implying they’re closer to each other than to any other
Anatidae, as they share a closer common ancestor). Furthermore, DNA analysis has
shown, in particular, that the white-winged wood duck is not as close to the Muscovy
duck (the latter being a shelduck) as similarity in looks and behavior had long sug‐
gested—so the wood duck was reclassified into its own genus, and entirely out of the
subfamily!

Does this matter? It depends on the context! For such purposes as deciding how best
to cook a waterfowl once you’ve bagged it, for example, specific observable traits (not
all of them—plumage, for example, is de minimis in such a context), mostly texture
and flavor (old-fashioned phenetics!), may be far more relevant than cladistics. But
for other issues, such as susceptibility to different pathogens (whether you’re trying to
raise waterfowl in captivity, or preserve them in the wild), DNA closeness can matter
much more.

So, by very loose analogy with these taxonomic revolutions in the world of water‐
fowls, I’m recommending supplementing (not entirely replacing—in certain contexts
it shall still serve) good old duck typing with…goose typing!

What goose typing means is: isinstance(obj, cls) is now just fine…as long as cls
is an abstract base class—in other words, cls’s metaclass is abc.ABCMeta.

You can find many useful existing abstract classes in collections.abc (and addi‐
tional ones in the numbers module of The Python Standard Library).6

Among the many conceptual advantages of ABCs over concrete classes (e.g., Scott
Meyer’s “all non-leaf classes should be abstract”; see Item 33 in his book, More

444 | Chapter 13: Interfaces, Protocols, and ABCs

https://fpy.li/13-12

Effective C++, Addison-Wesley), Python’s ABCs add one major practical advantage:
the register class method, which lets end-user code “declare” that a certain class
becomes a “virtual” subclass of an ABC (for this purpose, the registered class must
meet the ABC’s method name and signature requirements, and more importantly,
the underlying semantic contract—but it need not have been developed with any
awareness of the ABC, and in particular need not inherit from it!). This goes a long
way toward breaking the rigidity and strong coupling that make inheritance some‐
thing to use with much more caution than typically practiced by most object-oriented
programmers.

Sometimes you don’t even need to register a class for an ABC to recognize it as a
subclass!

That’s the case for the ABCs whose essence boils down to a few special methods. For
example:

>>> class Struggle:
... def __len__(self): return 23
...
>>> from collections import abc
>>> isinstance(Struggle(), abc.Sized)
True

As you see, abc.Sized recognizes Struggle as “a subclass,” with no need for registra‐
tion, as implementing the special method named __len__ is all it takes (it’s supposed
to be implemented with the proper syntax—callable without arguments—and seman‐
tics—returning a nonnegative integer denoting an object’s “length”; any code that
implements a specially named method, such as __len__, with arbitrary, non-
compliant syntax and semantics has much worse problems anyway).

So, here’s my valediction: whenever you’re implementing a class embodying any of
the concepts represented in the ABCs in numbers, collections.abc, or other frame‐
work you may be using, be sure (if needed) to subclass it from, or register it into, the
corresponding ABC. At the start of your programs using some library or framework
defining classes which have omitted to do that, perform the registrations yourself;
then, when you must check for (most typically) an argument being, e.g, “a sequence,”
check whether:

isinstance(the_arg, collections.abc.Sequence)

And, don’t define custom ABCs (or metaclasses) in production code. If you feel the
urge to do so, I’d bet it’s likely to be a case of the “all problems look like a nail”–syn‐
drome for somebody who just got a shiny new hammer—you (and future maintain‐
ers of your code) will be much happier sticking with straightforward and simple code,
eschewing such depths. Valē!

Goose Typing | 445

To summarize, goose typing entails:

• Subclassing from ABCs to make it explict that you are implementing a previously
defined interface.

• Runtime type checking using ABCs instead of concrete classes as the second
argument for isinstance and issubclass.

Alex makes the point that inheriting from an ABC is more than implementing the
required methods: it’s also a clear declaration of intent by the developer. That intent
can also be made explicit through registering a virtual subclass.

Details of using register are covered in “A Virtual Subclass of an
ABC” on page 460, later in this chapter. For now, here is a brief
example: given the FrenchDeck class, if I want it to pass a check like
issubclass(FrenchDeck, Sequence), I can make it a virtual sub‐
class of the Sequence ABC with these lines:

from collections.abc import Sequence
Sequence.register(FrenchDeck)

The use of isinstance and issubclass becomes more acceptable if you are checking
against ABCs instead of concrete classes. If used with concrete classes, type checks
limit polymorphism—an essential feature of object-oriented programming. But with
ABCs these tests are more flexible. After all, if a component does not implement an
ABC by subclassing—but does implement the required methods—it can always be
registered after the fact so it passes those explicit type checks.

However, even with ABCs, you should beware that excessive use of isinstance
checks may be a code smell—a symptom of bad OO design.

It’s usually not OK to have a chain of if/elif/elif with isinstance checks per‐
forming different actions depending on the type of object: you should be using poly‐
morphism for that—i.e., design your classes so that the interpreter dispatches calls to
the proper methods, instead of you hardcoding the dispatch logic in if/elif/elif
blocks.

On the other hand, it’s OK to perform an isinstance check against an ABC if you
must enforce an API contract: “Dude, you have to implement this if you want to call
me,” as technical reviewer Lennart Regebro put it. That’s particularly useful in sys‐
tems that have a plug-in architecture. Outside of frameworks, duck typing is often
simpler and more flexible than type checks.

Finally, in his essay, Alex reinforces more than once the need for restraint in the cre‐
ation of ABCs. Excessive use of ABCs would impose ceremony in a language that

446 | Chapter 13: Interfaces, Protocols, and ABCs

became popular because it is practical and pragmatic. During the Fluent Python
review process, Alex wrote in an e-mail:

ABCs are meant to encapsulate very general concepts, abstractions, introduced by a
framework—things like “a sequence” and “an exact number.” [Readers] most likely
don’t need to write any new ABCs, just use existing ones correctly, to get 99.9% of the
benefits without serious risk of misdesign.

Now let’s see goose typing in practice.

Subclassing an ABC
Following Martelli’s advice, we’ll leverage an existing ABC, collections.MutableSe
quence, before daring to invent our own. In Example 13-6, FrenchDeck2 is explicitly
declared a subclass of collections.MutableSequence.

Example 13-6. frenchdeck2.py: FrenchDeck2, a subclass of collections.MutableSe
quence

from collections import namedtuple, abc

Card = namedtuple('Card', ['rank', 'suit'])

class FrenchDeck2(abc.MutableSequence):
 ranks = [str(n) for n in range(2, 11)] + list('JQKA')
 suits = 'spades diamonds clubs hearts'.split()

 def __init__(self):
 self._cards = [Card(rank, suit) for suit in self.suits
 for rank in self.ranks]

 def __len__(self):
 return len(self._cards)

 def __getitem__(self, position):
 return self._cards[position]

 def __setitem__(self, position, value):
 self._cards[position] = value

 def __delitem__(self, position):
 del self._cards[position]

 def insert(self, position, value):
 self._cards.insert(position, value)

Goose Typing | 447

__setitem__ is all we need to enable shuffling…

…but subclassing MutableSequence forces us to implement __delitem__, an
abstract method of that ABC.

We are also required to implement insert, the third abstract method of
MutableSequence.

Python does not check for the implementation of the abstract methods at import
time (when the frenchdeck2.py module is loaded and compiled), but only at runtime
when we actually try to instantiate FrenchDeck2. Then, if we fail to implement any
of the abstract methods, we get a TypeError exception with a message such as
"Can't instantiate abstract class FrenchDeck2 with abstract methods

__delitem__, insert". That’s why we must implement __delitem__ and insert,
even if our FrenchDeck2 examples do not need those behaviors: the MutableSequence
ABC demands them.

As Figure 13-3 shows, not all methods of the Sequence and MutableSequence ABCs
are abstract.

Figure 13-3. UML class diagram for the MutableSequence ABC and its superclasses
from collections.abc (inheritance arrows point from subclasses to ancestors; names
in italic are abstract classes and abstract methods).

To write FrenchDeck2 as a subclass of MutableSequence, I had to pay the price of
implementing __delitem__ and insert, which my examples did not require. In
return, FrenchDeck2 inherits five concrete methods from Sequence: __contains__,
__iter__, __reversed__, index, and count. From MutableSequence, it gets another
six methods: append, reverse, extend, pop, remove, and __iadd__—which supports
the += operator for in place concatenation.

The concrete methods in each collections.abc ABC are implemented in terms of
the public interface of the class, so they work without any knowledge of the internal
structure of instances.

448 | Chapter 13: Interfaces, Protocols, and ABCs

7 Multiple inheritance was considered harmful and excluded from Java, except for interfaces: Java interfaces can
extend multiple interfaces, and Java classes can implement multiple interfaces.

As the coder of a concrete subclass, you may be able to override
methods inherited from ABCs with more efficient implementa‐
tions. For example, __contains__ works by doing a sequential scan
of the sequence, but if your concrete sequence keeps its items sor‐
ted, you can write a faster __contains__ that does a binary search
using the bisect function from the standard library. See “Manag‐
ing Ordered Sequences with Bisect” at fluentpython.com to learn
more about it.

To use ABCs well, you need to know what’s available. We’ll review the collections
ABCs next.

ABCs in the Standard Library
Since Python 2.6, the standard library provides several ABCs. Most are defined in the
collections.abc module, but there are others. You can find ABCs in the io and
numbers packages, for example. But the most widely used are in collections.abc.

There are two modules named abc in the standard library. Here we
are talking about collections.abc. To reduce loading time, since
Python 3.4 that module is implemented outside of the collections
package—in Lib/_collections_abc.py—so it’s imported separately
from collections. The other abc module is just abc (i.e., Lib/
abc.py) where the abc.ABC class is defined. Every ABC depends on
the abc module, but we don’t need to import it ourselves except to
create a brand-new ABC.

Figure 13-4 is a summary UML class diagram (without attribute names) of 17 ABCs
defined in collections.abc. The documentation of collections.abc has a nice
table summarizing the ABCs, their relationships, and their abstract and concrete
methods (called “mixin methods”). There is plenty of multiple inheritance going on
in Figure 13-4. We’ll devote most of Chapter 14 to multiple inheritance, but for now
it’s enough to say that it is usually not a problem when ABCs are concerned.7

Goose Typing | 449

https://fpy.li/13-13
https://fpy.li/bisect
https://fpy.li/bisect
http://fluentpython.com
https://fpy.li/13-14
https://fpy.li/13-15
https://fpy.li/13-15
https://fpy.li/13-16
https://fpy.li/13-16

Figure 13-4. UML class diagram for ABCs in collections.abc.

Let’s review the clusters in Figure 13-4:

Iterable, Container, Sized
Every collection should either inherit from these ABCs or implement compatible
protocols. Iterable supports iteration with __iter__, Container supports the
in operator with __contains__, and Sized supports len() with __len__.

Collection

This ABC has no methods of its own, but was added in Python 3.6 to make it
easier to subclass from Iterable, Container, and Sized.

Sequence, Mapping, Set
These are the main immutable collection types, and each has a mutable subclass.
A detailed diagram for MutableSequence is in Figure 13-3; for MutableMapping
and MutableSet, see Figures 3-1 and 3-2 in Chapter 3.

MappingView

In Python 3, the objects returned from the mapping methods .items(), .keys(),
and .values() implement the interfaces defined in ItemsView, KeysView, and
ValuesView, respectively. The first two also implement the rich interface of Set,
with all the operators we saw in “Set Operations” on page 107.

Iterator

Note that iterator subclasses Iterable. We discuss this further in Chapter 17.

450 | Chapter 13: Interfaces, Protocols, and ABCs

Callable, Hashable
These are not collections, but collections.abc was the first package to define
ABCs in the standard library, and these two were deemed important enough
to be included. They support type checking objects that must be callable or
hashable.

For callable detection, the callable(obj) built-in function is more convenient than
insinstance(obj, Callable).

If insinstance(obj, Hashable) returns False, you can be certain that obj is not
hashable. But if the return is True, it may be a false positive. The next box explains.

isinstance with Hashable and Iterable Can Be Misleading
It’s easy to misinterpret the results of the isinstance and issubclass tests against
the Hashable and Iterable ABCs.

If isinstance(obj, Hashable) returns True, that only means that the class of obj
implements or inherits __hash__. But if obj is a tuple containing unhashable items,
then obj is not hashable, despite the positive result of the isinstance check. Tech
reviewer Jürgen Gmach pointed out that duck typing provides the most accurate way
to determine if an instance is hashable: call hash(obj). That call will raise TypeError
if obj is not hashable.

On the other hand, even when isinstance(obj, Iterable) returns False, Python
may still be able to iterate over obj using __getitem__ with 0-based indices, as we
saw in Chapter 1 and “Python Digs Sequences” on page 436. The documentation for
collections.abc.Iterable states:

The only reliable way to determine whether an object is iterable is to call iter(obj).

After looking at some existing ABCs, let’s practice goose typing by implementing an
ABC from scratch and putting it to use. The goal here is not to encourage everyone to
start creating ABCs left and right, but to learn how to read the source code of the
ABCs you’ll find in the standard library and other packages.

Defining and Using an ABC
This warning appeared in the “Interfaces” chapter of the first edition of Fluent
Python:

ABCs, like descriptors and metaclasses, are tools for building frameworks. Therefore,
only a small minority of Python developers can create ABCs without imposing unrea‐
sonable limitations and needless work on fellow programmers.

Goose Typing | 451

https://fpy.li/13-17

8 Perhaps the client needs to audit the randomizer; or the agency wants to provide a rigged one. You never
know…

Now ABCs have more potential use cases in type hints to support static typing. As
discussed in “Abstract Base Classes” on page 278, using ABCs instead of concrete
types in function argument type hints gives more flexibility to the caller.

To justify creating an ABC, we need to come up with a context for using it as an
extension point in a framework. So here is our context: imagine you need to display
advertisements on a website or a mobile app in random order, but without repeating
an ad before the full inventory of ads is shown. Now let’s assume we are building an
ad management framework called ADAM. One of its requirements is to support user-
provided nonrepeating random-picking classes.8 To make it clear to ADAM users what
is expected of a “nonrepeating random-picking” component, we’ll define an ABC.

In the literature about data structures, “stack” and “queue” describe abstract inter‐
faces in terms of physical arrangements of objects. I will follow suit and use a real-
world metaphor to name our ABC: bingo cages and lottery blowers are machines
designed to pick items at random from a finite set, without repeating, until the set is
exhausted.

The ABC will be named Tombola, after the Italian name of bingo and the tumbling
container that mixes the numbers.

The Tombola ABC has four methods. The two abstract methods are:

.load(…)

Put items into the container.

.pick()

Remove one item at random from the container, returning it.

The concrete methods are:

.loaded()

Return True if there is at least one item in the container.

.inspect()

Return a tuple built from the items currently in the container, without changing
its contents (the internal ordering is not preserved).

Figure 13-5 shows the Tombola ABC and three concrete implementations.

452 | Chapter 13: Interfaces, Protocols, and ABCs

9 «registered» and «virtual subclass» are not standard UML terms. I am using them to represent a class relation‐
ship that is specific to Python.

Figure 13-5. UML diagram for an ABC and three subclasses. The name of the Tombola
ABC and its abstract methods are written in italics, per UML conventions. The dashed
arrow is used for interface implementation—here I am using it to show that TomboList
not only implements the Tombola interface, but is also registered as virtual subclass of
Tombola—as we will see later in this chapter.9

Example 13-7 shows the definition of the Tombola ABC.

Example 13-7. tombola.py: Tombola is an ABC with two abstract methods and two
concrete methods

import abc

class Tombola(abc.ABC):

 @abc.abstractmethod
 def load(self, iterable):
 """Add items from an iterable."""

 @abc.abstractmethod
 def pick(self):
 """Remove item at random, returning it.

 This method should raise `LookupError` when the instance is empty.
 """

 def loaded(self):
 """Return `True` if there's at least 1 item, `False` otherwise."""

Goose Typing | 453

10 Before ABCs existed, abstract methods would raise NotImplementedError to signal that subclasses were
responsible for their implementation. In Smalltalk-80, abstract method bodies would invoke subclassRespon
sibility, a method inherited from object that would produce an error with the message, “My subclass
should have overridden one of my messages.”

 return bool(self.inspect())

 def inspect(self):
 """Return a sorted tuple with the items currently inside."""
 items = []
 while True:
 try:
 items.append(self.pick())
 except LookupError:
 break
 self.load(items)
 return tuple(items)

To define an ABC, subclass abc.ABC.

An abstract method is marked with the @abstractmethod decorator, and often its
body is empty except for a docstring.10

The docstring instructs implementers to raise LookupError if there are no items
to pick.

An ABC may include concrete methods.

Concrete methods in an ABC must rely only on the interface defined by the ABC
(i.e., other concrete or abstract methods or properties of the ABC).

We can’t know how concrete subclasses will store the items, but we can build the
inspect result by emptying the Tombola with successive calls to .pick()…

…then use .load(…) to put everything back.

454 | Chapter 13: Interfaces, Protocols, and ABCs

An abstract method can actually have an implementation. Even if
it does, subclasses will still be forced to override it, but they will be
able to invoke the abstract method with super(), adding function‐
ality to it instead of implementing from scratch. See the abc mod‐
ule documentation for details on @abstractmethod usage.

The code for the .inspect() method in Example 13-7 is silly, but it shows that we
can rely on .pick() and .load(…) to inspect what’s inside the Tombola by picking all
items and loading them back—without knowing how the items are actually stored.
The point of this example is to highlight that it’s OK to provide concrete methods in
ABCs, as long as they only depend on other methods in the interface. Being aware of
their internal data structures, concrete subclasses of Tombola may always over‐
ride .inspect() with a smarter implementation, but they don’t have to.

The .loaded() method in Example 13-7 has one line, but it’s expensive: it
calls .inspect() to build the tuple just to apply bool() on it. This works, but a con‐
crete subclass can do much better, as we’ll see.

Note that our roundabout implementation of .inspect() requires that we catch a
LookupError thrown by self.pick(). The fact that self.pick() may raise LookupEr
ror is also part of its interface, but there is no way to make this explicit in Python,
except in the documentation (see the docstring for the abstract pick method in
Example 13-7).

I chose the LookupError exception because of its place in the Python hierarchy of
exceptions in relation to IndexError and KeyError, the most likely exceptions to be
raised by the data structures used to implement a concrete Tombola. Therefore,
implementations can raise LookupError, IndexError, KeyError, or a custom subclass
of LookupError to comply. See Figure 13-6.

Goose Typing | 455

https://fpy.li/13-18
https://fpy.li/13-18

11 The complete tree is in section “5.4. Exception hierarchy” of The Python Standard Library docs.

Figure 13-6. Part of the Exception class hierarchy.11

LookupError is the exception we handle in Tombola.inspect.

IndexError is the LookupError subclass raised when we try to get an item from a
sequence with an index beyond the last position.

KeyError is raised when we use a nonexistent key to get an item from a mapping.

We now have our very own Tombola ABC. To witness the interface checking per‐
formed by an ABC, let’s try to fool Tombola with a defective implementation in
Example 13-8.

Example 13-8. A fake Tombola doesn’t go undetected

>>> from tombola import Tombola
>>> class Fake(Tombola):
... def pick(self):
... return 13
...
>>> Fake
<class '__main__.Fake'>
>>> f = Fake()
Traceback (most recent call last):

456 | Chapter 13: Interfaces, Protocols, and ABCs

12 The @abc.abstractmethod entry in the abc module documentation.

 File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Fake with abstract method load

Declare Fake as a subclass of Tombola.

The class was created, no errors so far.

TypeError is raised when we try to instantiate Fake. The message is very clear:
Fake is considered abstract because it failed to implement load, one of the
abstract methods declared in the Tombola ABC.

So we have our first ABC defined, and we put it to work validating a class. We’ll soon
subclass the Tombola ABC, but first we must cover some ABC coding rules.

ABC Syntax Details
The standard way to declare an ABC is to subclass abc.ABC or any other ABC.

Besides the ABC base class, and the @abstractmethod decorator, the abc module
defines the @abstractclassmethod, @abstractstaticmethod, and @abstractprop
erty decorators. However, these last three were deprecated in Python 3.3, when it
became possible to stack decorators on top of @abstractmethod, making the others
redundant. For example, the preferred way to declare an abstract class method is:

class MyABC(abc.ABC):
 @classmethod
 @abc.abstractmethod
 def an_abstract_classmethod(cls, ...):
 pass

The order of stacked function decorators matters, and in the case
of @abstractmethod, the documentation is explicit:

When abstractmethod() is applied in combination with
other method descriptors, it should be applied as the
innermost decorator…12

In other words, no other decorator may appear between @abstract
method and the def statement.

Now that we’ve got these ABC syntax issues covered, let’s put Tombola to use by
implementing two concrete descendants of it.

Goose Typing | 457

https://fpy.li/13-19
https://fpy.li/13-20

Subclassing an ABC
Given the Tombola ABC, we’ll now develop two concrete subclasses that satisfy its
interface. These classes were pictured in Figure 13-5, along with the virtual subclass
to be discussed in the next section.

The BingoCage class in Example 13-9 is a variation of Example 7-8 using a better ran‐
domizer. This BingoCage implements the required abstract methods load and pick.

Example 13-9. bingo.py: BingoCage is a concrete subclass of Tombola

import random

from tombola import Tombola

class BingoCage(Tombola):

 def __init__(self, items):
 self._randomizer = random.SystemRandom()
 self._items = []
 self.load(items)

 def load(self, items):
 self._items.extend(items)
 self._randomizer.shuffle(self._items)

 def pick(self):
 try:
 return self._items.pop()
 except IndexError:
 raise LookupError('pick from empty BingoCage')

 def __call__(self):
 self.pick()

This BingoCage class explicitly extends Tombola.

Pretend we’ll use this for online gaming. random.SystemRandom implements the
random API on top of the os.urandom(…) function, which provides random bytes
“suitable for cryptographic use,” according to the os module docs.

Delegate initial loading to the .load(…) method.

Instead of the plain random.shuffle() function, we use the .shuffle() method
of our SystemRandom instance.

458 | Chapter 13: Interfaces, Protocols, and ABCs

https://fpy.li/13-21

pick is implemented as in Example 7-8.

__call__ is also from Example 7-8. It’s not needed to satisfy the Tombola inter‐
face, but there’s no harm in adding extra methods.

BingoCage inherits the expensive loaded and the silly inspect methods from Tom
bola. Both could be overridden with much faster one-liners, as in Example 13-10.
The point is: we can be lazy and just inherit the suboptimal concrete methods from
an ABC. The methods inherited from Tombola are not as fast as they could be for
BingoCage, but they do provide correct results for any Tombola subclass that correctly
implements pick and load.

Example 13-10 shows a very different but equally valid implementation of the Tom
bola interface. Instead of shuffling the “balls” and popping the last, LottoBlower
pops from a random position.

Example 13-10. lotto.py: LottoBlower is a concrete subclass that overrides the inspect
and loaded methods from Tombola

import random

from tombola import Tombola

class LottoBlower(Tombola):

 def __init__(self, iterable):
 self._balls = list(iterable)

 def load(self, iterable):
 self._balls.extend(iterable)

 def pick(self):
 try:
 position = random.randrange(len(self._balls))
 except ValueError:
 raise LookupError('pick from empty LottoBlower')
 return self._balls.pop(position)

 def loaded(self):
 return bool(self._balls)

 def inspect(self):
 return tuple(self._balls)

Goose Typing | 459

13 “Defensive Programming with Mutable Parameters” on page 216 in Chapter 6 was devoted to the aliasing
issue we just avoided here.

The initializer accepts any iterable: the argument is used to build a list.

The random.randrange(…) function raises ValueError if the range is empty, so
we catch that and throw LookupError instead, to be compatible with Tombola.

Otherwise the randomly selected item is popped from self._balls.

Override loaded to avoid calling inspect (as Tombola.loaded does in
Example 13-7). We can make it faster by working with self._balls directly—no
need to build a whole new tuple.

Override inspect with a one-liner.

Example 13-10 illustrates an idiom worth mentioning: in __init__, self._balls
stores list(iterable) and not just a reference to iterable (i.e., we did not merely
assign self._balls = iterable, aliasing the argument). As mentioned in “Defen‐
sive Programming and ‘Fail Fast’” on page 440, this makes our LottoBlower flexible
because the iterable argument may be any iterable type. At the same time, we make
sure to store its items in a list so we can pop items. And even if we always get lists as
the iterable argument, list(iterable) produces a copy of the argument, which is
a good practice considering we will be removing items from it and the client might
not expect that the provided list will be changed.13

We now come to the crucial dynamic feature of goose typing: declaring virtual sub‐
classes with the register method.

A Virtual Subclass of an ABC
An essential characteristic of goose typing—and one reason why it deserves a water‐
fowl name—is the ability to register a class as a virtual subclass of an ABC, even if it
does not inherit from it. When doing so, we promise that the class faithfully imple‐
ments the interface defined in the ABC—and Python will believe us without check‐
ing. If we lie, we’ll be caught by the usual runtime exceptions.

This is done by calling a register class method on the ABC. The registered class
then becomes a virtual subclass of the ABC, and will be recognized as such by issub
class, but it does not inherit any methods or attributes from the ABC.

460 | Chapter 13: Interfaces, Protocols, and ABCs

Virtual subclasses do not inherit from their registered ABCs, and
are not checked for conformance to the ABC interface at any time,
not even when they are instantiated. Also, static type checkers can’t
handle virtual subclasses at this time. For details, see Mypy issue
2922—ABCMeta.register support.

The register method is usually invoked as a plain function (see “Usage of register in
Practice” on page 463), but it can also be used as a decorator. In Example 13-11, we use
the decorator syntax and implement TomboList, a virtual subclass of Tombola, depic‐
ted in Figure 13-7.

Figure 13-7. UML class diagram for the TomboList, a real subclass of list and a vir‐
tual subclass of Tombola.

Example 13-11. tombolist.py: class TomboList is a virtual subclass of Tombola

from random import randrange

from tombola import Tombola

@Tombola.register
class TomboList(list):

 def pick(self):
 if self:
 position = randrange(len(self))
 return self.pop(position)

Goose Typing | 461

https://fpy.li/13-22
https://fpy.li/13-22

14 The same trick I used with load() doesn’t work with loaded(), because the list type does not implement
__bool__, the method I’d have to bind to loaded. The bool() built-in doesn’t need __bool__ to work because
it can also use __len__. See “4.1. Truth Value Testing” in the “Built-in Types” chapter of the Python
documentation.

 else:
 raise LookupError('pop from empty TomboList')

 load = list.extend

 def loaded(self):
 return bool(self)

 def inspect(self):
 return tuple(self)

Tombola.register(TomboList)

Tombolist is registered as a virtual subclass of Tombola.

Tombolist extends list.

Tombolist inherits its boolean behavior from list, and that returns True if the
list is not empty.

Our pick calls self.pop, inherited from list, passing a random item index.

Tombolist.load is the same as list.extend.

loaded delegates to bool.14

It’s always possible to call register in this way, and it’s useful to do so when you
need to register a class that you do not maintain, but which does fulfill the
interface.

Note that because of the registration, the functions issubclass and isinstance act
as if TomboList is a subclass of Tombola:

>>> from tombola import Tombola
>>> from tombolist import TomboList
>>> issubclass(TomboList, Tombola)
True
>>> t = TomboList(range(100))
>>> isinstance(t, Tombola)
True

462 | Chapter 13: Interfaces, Protocols, and ABCs

https://fpy.li/13-23

15 There is a whole section explaining the __mro__ class attribute in “Multiple Inheritance and Method Resolu‐
tion Order” on page 494. Right now, this quick explanation will do.

However, inheritance is guided by a special class attribute named __mro__—the
Method Resolution Order. It basically lists the class and its superclasses in the order
Python uses to search for methods.15 If you inspect the __mro__ of TomboList, you’ll
see that it lists only the “real” superclasses—list and object:

>>> TomboList.__mro__
(<class 'tombolist.TomboList'>, <class 'list'>, <class 'object'>)

Tombola is not in Tombolist.__mro__, so Tombolist does not inherit any methods
from Tombola.

This concludes our Tombola ABC case study. In the next section, we’ll address how
the register ABC function is used in the wild.

Usage of register in Practice
In Example 13-11, we used Tombola.register as a class decorator. Prior to Python
3.3, register could not be used like that—it had to be called as a plain function after
the class definition, as suggested by the comment at the end of Example 13-11. How‐
ever, even now, it’s more widely deployed as a function to register classes defined
elsewhere. For example, in the source code for the collections.abc module, the
built-in types tuple, str, range, and memoryview are registered as virtual subclasses
of Sequence, like this:

Sequence.register(tuple)
Sequence.register(str)
Sequence.register(range)
Sequence.register(memoryview)

Several other built-in types are registered to ABCs in _collections_abc.py. Those regis‐
trations happen only when that module is imported, which is OK because you’ll have
to import it anyway to get the ABCs. For example, you need to import MutableMap
ping from collections.abc to perform a check like isinstance(my_dict, Mutable
Mapping).

Subclassing an ABC or registering with an ABC are both explicit ways of making our
classes pass issubclass checks—as well as isinstance checks, which also rely on
issubclass. But some ABCs support structural typing as well. The next section
explains.

Goose Typing | 463

https://fpy.li/13-24

16 The concept of type consistency was explained in “Subtype-of versus consistent-with” on page 267.

Structural Typing with ABCs
ABCs are mostly used with nominal typing. When a class Sub explicitly inherits from
AnABC, or is registered with AnABC, the name of AnABC is linked to the Sub class—and
that’s how at runtime, issubclass(AnABC, Sub) returns True.

In contrast, structural typing is about looking at the structure of an object’s public
interface to determine its type: an object is consistent-with a type if it implements the
methods defined in the type.16 Dynamic and static duck typing are two approaches to
structural typing.

It turns out that some ABCs also support structural typing. In his essay, “Waterfowl
and ABCs” on page 443, Alex shows that a class can be recognized as a subclass of an
ABC even without registration. Here is his example again, with an added test using
issubclass:

>>> class Struggle:
... def __len__(self): return 23
...
>>> from collections import abc
>>> isinstance(Struggle(), abc.Sized)
True
>>> issubclass(Struggle, abc.Sized)
True

Class Struggle is considered a subclass of abc.Sized by the issubclass function
(and, consequently, by isinstance as well) because abc.Sized implements a special
class method named __subclasshook__.

The __subclasshook__ for Sized checks whether the class argument has an attribute
named __len__. If it does, then it is considered a virtual subclass of Sized. See
Example 13-12.

Example 13-12. Definition of Sized from the source code of Lib/_collections_abc.py

class Sized(metaclass=ABCMeta):

 __slots__ = ()

 @abstractmethod
 def __len__(self):
 return 0

 @classmethod
 def __subclasshook__(cls, C):

464 | Chapter 13: Interfaces, Protocols, and ABCs

https://fpy.li/13-25

 if cls is Sized:
 if any("__len__" in B.__dict__ for B in C.__mro__):
 return True
 return NotImplemented

If there is an attribute named __len__ in the __dict__ of any class listed in
C.__mro__ (i.e., C and its superclasses)…

…return True, signaling that C is a virtual subclass of Sized.

Otherwise return NotImplemented to let the subclass check proceed.

If you are interested in the details of the subclass check, see the
source code for the ABCMeta.__subclasscheck__ method in
Python 3.6: Lib/abc.py. Beware: it has lots of ifs and two recursive
calls. In Python 3.7, Ivan Levkivskyi and Inada Naoki rewrote in C
most of the logic for the abc module, for better performance. See
Python issue #31333. The current implementation of ABC

Meta.__subclasscheck__ simply calls _abc_subclasscheck. The
relevant C source code is in cpython/Modules/_abc.c#L605.

That’s how __subclasshook__ allows ABCs to support structural typing. You can
formalize an interface with an ABC, you can make isinstance checks against that
ABC, and still have a completely unrelated class pass an issubclass check because it
implements a certain method (or because it does whatever it takes to convince a
__subclasshook__ to vouch for it).

Is it a good idea to implement __subclasshook__ in our own ABCs? Probably not.
All the implementations of __subclasshook__ I’ve seen in the Python source code
are in ABCs like Sized that declare just one special method, and they simply check
for that special method name. Given their “special” status, you can be pretty sure that
any method named __len__ does what you expect. But even in the realm of special
methods and fundamental ABCs, it can be risky to make such assumptions. For
example, mappings implement __len__, __getitem__, and __iter__, but they are
rightly not considered subtypes of Sequence, because you can’t retrieve items using
integer offsets or slices. That’s why the abc.Sequence class does not implement
__subclasshook__.

For ABCs that you and I may write, a __subclasshook__ would be even less depend‐
able. I am not ready to believe that any class named Spam that implements or inherits
load, pick, inspect, and loaded is guaranteed to behave as a Tombola. It’s better to
let the programmer affirm it by subclassing Spam from Tombola, or registering it with

Goose Typing | 465

https://fpy.li/13-26
https://fpy.li/13-27
https://fpy.li/13-28
https://fpy.li/13-29

17 OK, double() is not very useful, except as an example. But the Python standard library has many functions
that could not be properly annotated before static protocols were added in Python 3.8. I helped fix a couple of
bugs in typeshed by adding type hints using protocols. For example, the pull request that fixed “Should Mypy
warn about potential invalid arguments to max?” leveraged a _SupportsLessThan protocol, which I used to
enhance the annotations for max, min, sorted, and list.sort.

Tombola.register(Spam). Of course, your __subclasshook__ could also check
method signatures and other features, but I just don’t think it’s worthwhile.

Static Protocols
Static protocols were introduced in “Static Protocols” on page 286
(Chapter 8). I considered delaying all coverage of protocols until
this chapter, but decided that the initial presentation of type hints
in functions had to include protocols because duck typing is an
essential part of Python, and static type checking without protocols
doesn’t handle Pythonic APIs very well.

We will wrap up this chapter by illustrating static protocols with two simple exam‐
ples, and a discussion of numeric ABCs and protocols. Let’s start by showing how a
static protocol makes it possible to annotate and type check the double() function we
first saw in “Types Are Defined by Supported Operations” on page 260.

The Typed double Function
When introducing Python to programmers more used to statically typed languages,
one of my favorite examples is this simple double function:

>>> def double(x):
... return x * 2
...
>>> double(1.5)
3.0
>>> double('A')
'AA'
>>> double([10, 20, 30])
[10, 20, 30, 10, 20, 30]
>>> from fractions import Fraction
>>> double(Fraction(2, 5))
Fraction(4, 5)

Before static protocols were introduced, there was no practical way to add type hints
to double without limiting its possible uses.17

466 | Chapter 13: Interfaces, Protocols, and ABCs

https://fpy.li/shed4051
https://fpy.li/shed4051

Thanks to duck typing, double works even with types from the future, such as the
enhanced Vector class that we’ll see in “Overloading * for Scalar Multiplication” on
page 572 (Chapter 16):

>>> from vector_v7 import Vector
>>> double(Vector([11.0, 12.0, 13.0]))
Vector([22.0, 24.0, 26.0])

The initial implementation of type hints in Python was a nominal type system: the
name of a type in an annotation had to match the name of the type of the actual argu‐
ments—or the name of one of its superclasses. Since it’s impossible to name all types
that implement a protocol by supporting the required operations, duck typing could
not be described by type hints before Python 3.8.

Now, with typing.Protocol we can tell Mypy that double takes an argument x that
supports x * 2. Example 13-13 shows how.

Example 13-13. double_protocol.py: definition of double using a Protocol

from typing import TypeVar, Protocol

T = TypeVar('T')

class Repeatable(Protocol):
 def __mul__(self: T, repeat_count: int) -> T: ...

RT = TypeVar('RT', bound=Repeatable)

def double(x: RT) -> RT:
 return x * 2

We’ll use this T in the __mul__ signature.

__mul__ is the essence of the Repeatable protocol. The self parameter is usually
not annotated—its type is assumed to be the class. Here we use T to make sure
the result type is the same as the type of self. Also, note that repeat_count is
limited to int in this protocol.

The RT type variable is bounded by the Repeatable protocol: the type checker
will require that the actual type implements Repeatable.

Now the type checker is able to verify that the x parameter is an object that can
be multiplied by an integer, and the return value has the same type as x.

Static Protocols | 467

This example shows why PEP 544 is titled “Protocols: Structural subtyping (static
duck typing).” The nominal type of the actual argument x given to double is irrele‐
vant as long as it quacks—that is, as long as it implements __mul__.

Runtime Checkable Static Protocols
In the Typing Map (Figure 13-1), typing.Protocol appears in the static checking
area—the bottom half of the diagram. However, when defining a typing.Protocol
subclass, you can use the @runtime_checkable decorator to make that protocol sup‐
port isinstance/issubclass checks at runtime. This works because typing.Proto
col is an ABC, therefore it supports the __subclasshook__ we saw in “Structural
Typing with ABCs” on page 464.

As of Python 3.9, the typing module includes seven ready-to-use protocols that are
runtime checkable. Here are two of them, quoted directly from the typing documen‐
tation:

class typing.SupportsComplex

An ABC with one abstract method, __complex__.

class typing.SupportsFloat

An ABC with one abstract method, __float__.

These protocols are designed to check numeric types for “convertibility”: if an object
o implements __complex__, then you should be able to get a complex by invoking
complex(o)—because the __complex__ special method exists to support the
complex() built-in function.

Example 13-14 shows the source code for the typing.SupportsComplex protocol.

Example 13-14. typing.SupportsComplex protocol source code

@runtime_checkable
class SupportsComplex(Protocol):
 """An ABC with one abstract method __complex__."""
 __slots__ = ()

 @abstractmethod
 def __complex__(self) -> complex:
 pass

468 | Chapter 13: Interfaces, Protocols, and ABCs

https://fpy.li/pep544
https://fpy.li/13-30
https://fpy.li/13-30
https://fpy.li/13-31

18 The __slots__ attribute is irrelevant to the current discussion—it’s an optimization we covered in “Saving
Memory with __slots__” on page 384.

The key is the __complex__ abstract method.18 During static type checking, an object
will be considered consistent-with the SupportsComplex protocol if it implements a
__complex__ method that takes only self and returns a complex.

Thanks to the @runtime_checkable class decorator applied to SupportsComplex, that
protocol can also be used with isinstance checks in Example 13-15.

Example 13-15. Using SupportsComplex at runtime

>>> from typing import SupportsComplex
>>> import numpy as np
>>> c64 = np.complex64(3+4j)
>>> isinstance(c64, complex)
False
>>> isinstance(c64, SupportsComplex)
True
>>> c = complex(c64)
>>> c
(3+4j)
>>> isinstance(c, SupportsComplex)
False
>>> complex(c)
(3+4j)

complex64 is one of five complex number types provided by NumPy.

None of the NumPy complex types subclass the built-in complex.

But NumPy’s complex types implement __complex__, so they comply with the
SupportsComplex protocol.

Therefore, you can create built-in complex objects from them.

Sadly, the complex built-in type does not implement __complex__, although
complex(c) works fine if c is a complex.

As a result of that last point, if you want to test whether an object c is a complex or
SupportsComplex, you can provide a tuple of types as the second argument to
isinstance, like this:

isinstance(c, (complex, SupportsComplex))

Static Protocols | 469

An alternative would be to use the Complex ABC, defined in the numbers module.
The built-in complex type and the NumPy complex64 and complex128 types are all
registered as virtual subclasses of numbers.Complex, therefore this works:

>>> import numbers
>>> isinstance(c, numbers.Complex)
True
>>> isinstance(c64, numbers.Complex)
True

I recommended using the numbers ABCs in the first edition of Fluent Python, but
now that’s no longer good advice, because those ABCs are not recognized by the
static type checkers, as we’ll see in “The numbers ABCs and Numeric Protocols” on
page 478.

In this section I wanted to demonstrate that a runtime checkable protocol works with
isinstance, but it turns out this is example not a particularly good use case of isin
stance, as the sidebar “Duck Typing Is Your Friend” on page 470 explains.

If you’re using an external type checker, there is one advantage of
explict isinstance checks: when you write an if statement where
the condition is isinstance(o, MyType), then Mypy can infer that
inside the if block, the type of the o object is consistent-with
MyType.

Duck Typing Is Your Friend
Very often at runtime, duck typing is the best approach for type checking: instead of
calling isinstance or hasattr, just try the operations you need to do on the object,
and handle exceptions as needed. Here is a concrete example.

Continuing the previous discussion—given an object o that I need to use as a com‐
plex number, this would be one approach:

if isinstance(o, (complex, SupportsComplex)):
 # do something that requires `o` to be convertible to complex
else:
 raise TypeError('o must be convertible to complex')

The goose typing approach would be to use the numbers.Complex ABC:

if isinstance(o, numbers.Complex):
 # do something with `o`, an instance of `Complex`
else:
 raise TypeError('o must be an instance of Complex')

However, I prefer to leverage duck typing and do this using the EAFP principle—it’s
easier to ask for forgiveness than permission:

470 | Chapter 13: Interfaces, Protocols, and ABCs

try:
 c = complex(o)
except TypeError as exc:
 raise TypeError('o must be convertible to complex') from exc

And, if all you’re going to do is raise a TypeError anyway, then I’d omit the try/
except/raise statements and just write this:

c = complex(o)

In this last case, if o is not an acceptable type, Python will raise an exception with a
very clear message. For example, this is what I get if o is a tuple:

TypeError: complex() first argument must be a string or a number, not 'tuple'

I find the duck typing approach much better in this case.

Now that we’ve seen how to use static protocols at runtime with preexisting types like
complex and numpy.complex64, we need to discuss the limitations of runtime checka‐
ble protocols.

Limitations of Runtime Protocol Checks
We’ve seen that type hints are generally ignored at runtime, and this also affects the
use of isinstance or issubclass checks against static protocols.

For example, any class with a __float__ method is considered—at runtime—a vir‐
tual subclass of SupportsFloat, even if the __float__ method does not return a
float.

Check out this console session:

>>> import sys
>>> sys.version
'3.9.5 (v3.9.5:0a7dcbdb13, May 3 2021, 13:17:02) \n[Clang 6.0 (clang-600.0.57)]'
>>> c = 3+4j
>>> c.__float__
<method-wrapper '__float__' of complex object at 0x10a16c590>
>>> c.__float__()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: can't convert complex to float

In Python 3.9, the complex type does have a __float__ method, but it exists only to
raise a TypeError with an explicit error message. If that __float__ method had
annotations, the return type would be NoReturn—which we saw in “NoReturn” on
page 294.

Static Protocols | 471

19 Thanks to Ivan Levkivskyi, coauthor of PEP 544 (on Protocols), for pointing out that type checking is not just
a matter of checking whether the type of x is T: it’s about determining that the type of x is consistent-with T,
which may be expensive. It’s no wonder that Mypy takes a few seconds to type check even short Python
scripts.

But type hinting complex.__float__ on typeshed would not solve this problem
because Python’s runtime generally ignores type hints—and can’t access the typeshed
stub files anyway.

Continuing from the previous Python 3.9 session:

>>> from typing import SupportsFloat
>>> c = 3+4j
>>> isinstance(c, SupportsFloat)
True
>>> issubclass(complex, SupportsFloat)
True

So we have misleading results: the runtime checks against SupportsFloat suggest
that you can convert a complex to float, but in fact that raises a type error.

The specific isssue with the complex type is fixed in Python
3.10.0b4 with the removal of the complex.__float__ method.
But the overall issue remains: isinstance/issubclass checks only
look at the presence or absence of methods, without checking their
signatures, much less their type annotations. And this is not about
to change, because such type checks at runtime would have an
unacceptable performance cost.19

Now let’s see how to implement a static protocol in a user-defined class.

Supporting a Static Protocol
Recall the Vector2d class we built in Chapter 11. Given that a complex number and a
Vector2d instance both consist of a pair of floats, it makes sense to support conver‐
sion from Vector2d to complex.

Example 13-16 shows the implementation of the __complex__ method to enhance
the last version of Vector2d we saw in Example 11-11. For completeness, we can sup‐
port the inverse operation with a fromcomplex class method to build a Vector2d from
a complex.

472 | Chapter 13: Interfaces, Protocols, and ABCs

https://fpy.li/pep544

Example 13-16. vector2d_v4.py: methods for converting to and from complex

 def __complex__(self):
 return complex(self.x, self.y)

 @classmethod
 def fromcomplex(cls, datum):
 return cls(datum.real, datum.imag)

This assumes that datum has .real and .imag attributes. We’ll see a better imple‐
mentation in Example 13-17.

Given the preceding code, and the __abs__ method the Vector2d already had in
Example 11-11, we get these features:

>>> from typing import SupportsComplex, SupportsAbs
>>> from vector2d_v4 import Vector2d
>>> v = Vector2d(3, 4)
>>> isinstance(v, SupportsComplex)
True
>>> isinstance(v, SupportsAbs)
True
>>> complex(v)
(3+4j)
>>> abs(v)
5.0
>>> Vector2d.fromcomplex(3+4j)
Vector2d(3.0, 4.0)

For runtime type checking, Example 13-16 is fine, but for better static coverage and
error reporting with Mypy, the __abs__, __complex__, and fromcomplex methods
should get type hints, as shown in Example 13-17.

Example 13-17. vector2d_v5.py: adding annotations to the methods under study

 def __abs__(self) -> float:
 return math.hypot(self.x, self.y)

 def __complex__(self) -> complex:
 return complex(self.x, self.y)

 @classmethod
 def fromcomplex(cls, datum: SupportsComplex) -> Vector2d:
 c = complex(datum)
 return cls(c.real, c.imag)

Static Protocols | 473

20 Read the Python Steering Council decision on python-dev.

The float return annotation is needed, otherwise Mypy infers Any, and doesn’t
check the body of the method.

Even without the annotation, Mypy was able to infer that this returns a complex.
The annotation prevents a warning, depending on your Mypy configuration.

Here SupportsComplex ensures the datum is convertible.

This explicit conversion is necessary, because the SupportsComplex type does not
declare .real and .imag attributes, used in the next line. For example, Vector2d
doesn’t have those attributes, but implements __complex__.

The return type of fromcomplex can be Vector2d if from __future__ import anno
tations appears at the top of the module. That import causes type hints to be stored
as strings, without being evaluated at import time, when function definitions are
evaluated. Without the __future__ import of annotations, Vector2d is an invalid
reference at this point (the class is not fully defined yet) and should be written as a
string: 'Vector2d', as if it were a forward reference. This __future__ import was
introduced in PEP 563—Postponed Evaluation of Annotations, implemented in
Python 3.7. That behavior was scheduled to become default in 3.10, but the change
was delayed to a later version.20 When that happens, the import will be redundant,
but harmless.

Next, let’s see how to create—and later, extend—a new static protocol.

Designing a Static Protocol
While studying goose typing, we saw the Tombola ABC in “Defining and Using an
ABC” on page 451. Here we’ll see how to define a similar interface using a static
protocol.

The Tombola ABC specifies two methods: pick and load. We could define a static
protocol with these two methods as well, but I learned from the Go community that
single-method protocols make static duck typing more useful and flexible. The Go
standard library has several interfaces like Reader, an interface for I/O that requires
just a read method. After a while, if you realize a more complete protocol is required,
you can combine two or more protocols to define a new one.

Using a container that picks items at random may or may not require reloading the
container, but it certainly needs a method to do the actual pick, so that’s the method I

474 | Chapter 13: Interfaces, Protocols, and ABCs

https://fpy.li/13-32
https://fpy.li/pep563

will choose for the minimal RandomPicker protocol. The code for that protocol is in
Example 13-18, and its use is demonstrated by tests in Example 13-19.

Example 13-18. randompick.py: definition of RandomPicker

from typing import Protocol, runtime_checkable, Any

@runtime_checkable
class RandomPicker(Protocol):
 def pick(self) -> Any: ...

The pick method returns Any. In “Implementing a Generic Static
Protocol” on page 552, we will see how to make RandomPicker a
generic type with a parameter to let users of the protocol specify
the return type of the pick method.

Example 13-19. randompick_test.py: RandomPicker in use

import random
from typing import Any, Iterable, TYPE_CHECKING

from randompick import RandomPicker

class SimplePicker:
 def __init__(self, items: Iterable) -> None:
 self._items = list(items)
 random.shuffle(self._items)

 def pick(self) -> Any:
 return self._items.pop()

def test_isinstance() -> None:
 popper: RandomPicker = SimplePicker([1])
 assert isinstance(popper, RandomPicker)

def test_item_type() -> None:
 items = [1, 2]
 popper = SimplePicker(items)
 item = popper.pick()
 assert item in items
 if TYPE_CHECKING:
 reveal_type(item)
 assert isinstance(item, int)

Static Protocols | 475

It’s not necessary to import the static protocol to define a class that implements
it. Here I imported RandomPicker only to use it on test_isinstance later.

SimplePicker implements RandomPicker—but it does not subclass it. This is
static duck typing in action.

Any is the default return type, so this annotation is not strictly necessary, but it
does make it more clear that we are implementing the RandomPicker protocol as
defined in Example 13-18.

Don’t forget to add -> None hints to your tests if you want Mypy to look at them.

I added a type hint for the popper variable to show that Mypy understands that
SimplePicker is consistent-with.

This test proves that an instance of SimplePicker is also an instance of Random
Picker. This works because of the @runtime_checkable decorator applied to
RandomPicker, and because SimplePicker has a pick method as required.

This test invokes the pick method from a SimplePicker, verifies that it returns
one of the items given to SimplePicker, and then does static and runtime checks
on the returned item.

This line generates a note in the Mypy output.

As we saw in Example 8-22, reveal_type is a “magic” function recognized by Mypy.
That’s why it is not imported and we can only call it inside if blocks protected by
typing.TYPE_CHECKING, which is only True in the eyes of a static type checker, but is
False at runtime.

Both tests in Example 13-19 pass. Mypy does not see any errors in that code either,
and shows the result of the reveal_type on the item returned by pick:

$ mypy randompick_test.py
randompick_test.py:24: note: Revealed type is 'Any'

Having created our first protocol, let’s study some advice on the matter.

Best Practices for Protocol Design
After 10 years of experience with static duck typing in Go, it is clear that narrow pro‐
tocols are more useful—often such protocols have a single method, rarely more than
a couple of methods. Martin Fowler wrote a post defining role interface, a useful idea
to keep in mind when designing protocols.

476 | Chapter 13: Interfaces, Protocols, and ABCs

https://fpy.li/13-33

21 Every method is callable, so this guideline doesn’t say much. Perhaps “provide one or two methods”? Any‐
way, it’s a guideline, not a strict rule.

Also, sometimes you see a protocol defined near the function that uses it—that is,
defined in “client code” instead of being defined in a library. This is makes it easy to
create new types to call that function, which is good for extensibility and testing with
mocks.

The practices of narrow protocols and client-code protocols both avoid unnecessary
tight coupling, in line with the Interface Segregation Principle, which we can summa‐
rize as “Clients should not be forced to depend upon interfaces that they do not use.”

The page “Contributing to typeshed” recommends this naming convention for static
protocols (the following three points are quoted verbatim):

• Use plain names for protocols that represent a clear concept (e.g., Iterator,
Container).

• Use SupportsX for protocols that provide callable methods (e.g., SupportsInt,
SupportsRead, SupportsReadSeek).21

• Use HasX for protocols that have readable and/or writable attributes or getter/
setter methods (e.g., HasItems, HasFileno).

The Go standard library has a naming convention that I like: for single method pro‐
tocols, if the method name is a verb, append “-er” or “-or” to make it a noun. For
example, instead of SupportsRead, have Reader. More examples include Formatter,
Animator, and Scanner. For inspiration, see “Go (Golang) Standard Library Inter‐
faces (Selected)” by Asuka Kenji.

One good reason to create minimalistic protocols is the ability to extend them later, if
needed. We’ll now see that it’s not hard to create a derived protocol with an addi‐
tional method.

Extending a Protocol
As I mentioned at the start of the previous section, Go developers advocate to err on
the side of minimalism when defining interfaces—their name for static protocols.
Many of the most widely used Go interfaces have a single method.

When practice reveals that a protocol with more methods is useful, instead of adding
methods to the original protocol, it’s better to derive a new protocol from it. Extend‐
ing a static protocol in Python has a few caveats, as Example 13-20 shows.

Static Protocols | 477

https://fpy.li/13-34
https://fpy.li/13-35
https://fpy.li/13-36
https://fpy.li/13-36

22 For details and rationale, please see the section about @runtime_checkable in PEP 544—Protocols: Structural
subtyping (static duck typing).

23 Again, please read “Merging and extending protocols” in PEP 544 for details and rationale.

Example 13-20. randompickload.py: extending RandomPicker

from typing import Protocol, runtime_checkable
from randompick import RandomPicker

@runtime_checkable
class LoadableRandomPicker(RandomPicker, Protocol):
 def load(self, Iterable) -> None: ...

If you want the derived protocol to be runtime checkable, you must apply the
decorator again—its behavior is not inherited.22

Every protocol must explicitly name typing.Protocol as one of its base classes
in addition to the protocol we are extending. This is different from the way
inheritance works in Python.23

Back to “regular” object-oriented programming: we only need to declare the
method that is new in this derived protocol. The pick method declaration is
inherited from RandomPicker.

This concludes the final example of defining and using a static protocol in this
chapter.

To wrap the chapter, we’ll go over numeric ABCs and their possible replacement with
numeric protocols.

The numbers ABCs and Numeric Protocols
As we saw in “The fall of the numeric tower” on page 279, the ABCs in the numbers
package of the standard library work fine for runtime type checking.

If you need to check for an integer, you can use isinstance(x, numbers.Integral)
to accept int, bool (which subclasses int) or other integer types that are provided by
external libraries that register their types as virtual subclasses of the numbers ABCs.
For example, NumPy has 21 integer types—as well as several variations of floating-
point types registered as numbers.Real, and complex numbers with various bit
widths registered as numbers.Complex.

478 | Chapter 13: Interfaces, Protocols, and ABCs

https://fpy.li/13-37
https://fpy.li/13-38
https://fpy.li/13-39

24 See Issue #41974—Remove complex.__float__, complex.__floordiv__, etc.

Somewhat surprisingly, decimal.Decimal is not registered as a vir‐
tual subclass of numbers.Real. The reason is that, if you need the
precision of Decimal in your program, then you want to be pro‐
tected from accidental mixing of decimals with floating-point
numbers that are less precise.

Sadly, the numeric tower was not designed for static type checking. The root ABC—
numbers.Number—has no methods, so if you declare x: Number, Mypy will not let
you do arithmetic or call any methods on x.

If the numbers ABCs are not supported, what are the options?

A good place to look for typing solutions is the typeshed project. As part of the
Python standard library, the statistics module has a corresponding statistics.pyi
stub file with type hints for on typeshed. There you’ll find the following definitions,
which are used to annotate several functions:

_Number = Union[float, Decimal, Fraction]
_NumberT = TypeVar('_NumberT', float, Decimal, Fraction)

That approach is correct, but limited. It does not support numeric types outside of
the standard library, which the numbers ABCs do support at runtime—when the
numeric types are registered as virtual subclasses.

The current trend is to recommend the numeric protocols provided by the typing
module, which we discussed in “Runtime Checkable Static Protocols” on page 468.

Unfortunately, at runtime, the numeric protocols may let you down. As mentioned in
“Limitations of Runtime Protocol Checks” on page 471, the complex type in Python
3.9 implements __float__, but the method exists only to raise TypeError with an
explicit message: “can’t convert complex to float.” It implements __int__ as well, for
the same reason. The presence of those methods makes isinstance return mislead‐
ing results in Python 3.9. In Python 3.10, the methods of complex that uncondition‐
ally raised TypeError were removed.24

On the other hand, NumPy’s complex types implement __float__ and __int__
methods that work, only issuing a warning when each of them is used for the first
time:

>>> import numpy as np
>>> cd = np.cdouble(3+4j)
>>> cd
(3+4j)
>>> float(cd)

Static Protocols | 479

https://fpy.li/13-41
https://fpy.li/13-40

25 I did not test all the other float and integer variants NumPy offers.

26 The NumPy number types are all registered against the appropriate numbers ABCs, which Mypy ignores.

27 That’s a well-meaning lie on the part of typeshed: as of Python 3.9, the built-in complex type does not actually
have a __complex__ method.

<stdin>:1: ComplexWarning: Casting complex values to real
discards the imaginary part
3.0

The opposite problem also happens: built-ins complex, float, and int, and also
numpy.float16 and numpy.uint8, don’t have a __complex__ method, so isin
stance(x, SupportsComplex) returns False for them.25 The NumPy complex types,
such as np.complex64, do implement __complex__ to convert to a built-in complex.

However, in practice, the complex() built-in constructor handles instances of all
these types with no errors or warnings:

>>> import numpy as np
>>> from typing import SupportsComplex
>>> sample = [1+0j, np.complex64(1+0j), 1.0, np.float16(1.0), 1, np.uint8(1)]
>>> [isinstance(x, SupportsComplex) for x in sample]
[False, True, False, False, False, False]
>>> [complex(x) for x in sample]
[(1+0j), (1+0j), (1+0j), (1+0j), (1+0j), (1+0j)]

This shows that isinstance checks against SupportsComplex suggest that those con‐
versions to complex would fail, but they all succeed. In the typing-sig mailing list,
Guido van Rossum pointed out that the built-in complex accepts a single argument,
and that’s why those conversions work.

On the other hand, Mypy accepts arguments of all those six types in a call to a
to_complex() function defined like this:

def to_complex(n: SupportsComplex) -> complex:
 return complex(n)

As I write this, NumPy has no type hints, so its number types are all Any.26 On the
other hand, Mypy is somehow “aware” that the built-in int and float can be con‐
verted to complex, even though on typeshed only the built-in complex class has a
__complex__ method.27

In conclusion, although numeric types should not be hard to type check, the current
situation is this: the type hints PEP 484 eschews the numeric tower and implicitly
recommends that type checkers hardcode the subtype relationships among built-in
complex, float, and int. Mypy does that, and it also pragmatically accepts that int
and float are consistent-with SupportsComplex, even though they don’t implement
__complex__.

480 | Chapter 13: Interfaces, Protocols, and ABCs

https://fpy.li/cardxvi

I only found unexpected results when using isinstance checks
with numeric Supports* protocols while experimenting with con‐
versions to or from complex. If you don’t use complex numbers,
you can rely on those protocols instead of the numbers ABCs.

The main takeaways for this section are:

• The numbers ABCs are fine for runtime type checking, but unsuitable for static
typing.

• The numeric static protocols SupportsComplex, SupportsFloat, etc. work well
for static typing, but are unreliable for runtime type checking when complex
numbers are involved.

We are now ready for a quick review of what we saw in this chapter.

Chapter Summary
The Typing Map (Figure 13-1) is the key to making sense of this chapter. After a brief
introduction to the four approaches to typing, we contrasted dynamic and static pro‐
tocols, which respectively support duck typing and static duck typing. Both kinds of
protocols share the essential characteristic that a class is never required to explicitly
declare support for any specific protocol. A class supports a protocol simply by
implementing the necessary methods.

The next major section was “Programming Ducks” on page 435, where we explored
the lengths to which the Python interpreter goes to make the sequence and iterable
dynamic protocols work, including partial implementations of both. We then saw
how a class can be made to implement a protocol at runtime through the addition of
extra methods via monkey patching. The duck typing section ended with hints for
defensive programming, including detection of structural types without explicit isin
stance or hasattr checks using try/except and failing fast.

After Alex Martelli introduced goose typing in “Waterfowl and ABCs” on page 443,
we saw how to subclass existing ABCs, surveyed important ABCs in the standard
library, and created an ABC from scratch, which we then implemented by traditional
subclassing and by registration. To close this section, we saw how the __subclass
hook__ special method enables ABCs to support structural typing by recognizing
unrelated classes that provide methods fulfilling the interface defined in the ABC.

The last major section was “Static Protocols” on page 466, where we resumed cover‐
age of static duck typing, which started in Chapter 8, in “Static Protocols” on page
286. We saw how the @runtime_checkable decorator also leverages __subclass
hook__ to support structural typing at runtime—even though the best use of static

Chapter Summary | 481

28 Thanks to tech reviewer Jürgen Gmach for recommending the “Interfaces and Protocols” post.

protocols is with static type checkers, which can take into account type hints to make
structural typing more reliable. Next we talked about the design and coding of a static
protocol and how to extend it. The chapter ended with “The numbers ABCs and
Numeric Protocols” on page 478, which tells the sad story of the derelict state of the
numeric tower and a few existing shortcomings of the proposed alternative: the
numeric static protocols such as SupportsFloat and others added to the typing
module in Python 3.8.

The main message of this chapter is that we have four complementary ways of pro‐
gramming with interfaces in modern Python, each with different advantages and
drawbacks. You are likely to find suitable use cases for each typing scheme in any
modern Python codebase of significant size. Rejecting any one of these approaches
will make your work as a Python programmer harder than it needs to be.

Having said that, Python achieved widespread popularity while supporting only duck
typing. Other popular languages such as JavaScript, PHP, and Ruby, as well as Lisp,
Smalltalk, Erlang, and Clojure—not popular but very influential—are all languages
that had and still have tremendous impact by leveraging the power and simplicity of
duck typing.

Further Reading
For a quick look at typing pros and cons, as well as the importance of typing.Proto
col for the health of statically checked codebases, I highly recommend Glyph Lefko‐
witz’s post “I Want A New Duck: typing.Protocol and the future of duck typing”. I
also learned a lot from his post “Interfaces and Protocols”, comparing typing.Proto
col and zope.interface—an earlier mechanism for defining interfaces in loosely
coupled plug-in systems, used by the Plone CMS, the Pyramid web framework, and
the Twisted asynchronous programming framework, a project founded by Glyph.28

Great books about Python have—almost by definition—great coverage of duck typ‐
ing. Two of my favorite Python books had updates released after the first edition of
Fluent Python: The Quick Python Book, 3rd ed., (Manning), by Naomi Ceder; and
Python in a Nutshell, 3rd ed., by Alex Martelli, Anna Ravenscroft, and Steve Holden
(O’Reilly).

For a discussion of the pros and cons of dynamic typing, see Guido van Rossum’s
interview with Bill Venners in “Contracts in Python: A Conversation with Guido van
Rossum, Part IV”. An insightful and balanced take on this debate is Martin Fowler’s
post “Dynamic Typing”. He also wrote “Role Interface”, which I mentioned in “Best
Practices for Protocol Design” on page 476. Although it is not about duck typing, that

482 | Chapter 13: Interfaces, Protocols, and ABCs

https://fpy.li/13-42
https://fpy.li/13-43
https://fpy.li/13-44
https://fpy.li/13-45
https://fpy.li/13-46
https://fpy.li/pynut3
https://fpy.li/13-47
https://fpy.li/13-47
https://fpy.li/13-48
https://fpy.li/13-33

post is highly relevant for Python protocol design, as he contrasts narrow role inter‐
faces with the broader public interfaces of classes in general.

The Mypy documentation is often the best source of information for anything related
to static typing in Python, including static duck typing, addressed in their “Protocols
and structural subtyping” chapter.

The remaining references are all about goose typing. Beazley and Jones’s Python
Cookbook, 3rd ed. (O’Reilly) has a section about defining an ABC (Recipe 8.12). The
book was written before Python 3.4, so they don’t use the now preferred syntax of
declaring ABCs by subclassing from abc.ABC (instead, they use the metaclass key‐
word, which we’ll only really need in Chapter 24). Apart from this small detail, the
recipe covers the major ABC features very well.

The Python Standard Library by Example by Doug Hellmann (Addison-Wesley), has
a chapter about the abc module. It’s also available on the web in Doug’s excellent
PyMOTW—Python Module of the Week. Hellmann also uses the old style of ABC
declaration: PluginBase(metaclass=abc.ABCMeta) instead of the simpler Plugin
Base(abc.ABC) available since Python 3.4.

When using ABCs, multiple inheritance is not only common but practically inevita‐
ble, because each of the fundamental collection ABCs—Sequence, Mapping, and Set
—extends Collection, which in turn extends multiple ABCs (see Figure 13-4).
Therefore, Chapter 14 is an important follow-up to this one.

PEP 3119—Introducing Abstract Base Classes gives the rationale for ABCs. PEP 3141
—A Type Hierarchy for Numbers presents the ABCs of the numbers module, but the
discussion in the Mypy issue #3186 “int is not a Number?” includes some arguments
about why the numeric tower is unsuitable for static type checking. Alex Waygood
wrote a comprehensive answer on StackOverflow, discussing ways to annotate
numeric types. I’ll keep watching Mypy issue #3186 for the next chapters of this saga,
hoping for a happy ending that will make static typing and goose typing compatible
—as they should be.

Further Reading | 483

https://fpy.li/13-50
https://fpy.li/13-50
https://fpy.li/pycook3
https://fpy.li/pycook3
https://fpy.li/13-51
https://fpy.li/13-52
https://fpy.li/13-53
https://fpy.li/13-53
https://fpy.li/13-54
https://fpy.li/13-55
https://fpy.li/13-56
https://fpy.li/13-55

Soapbox

The MVP Journey of Python Static Typing

I work for Thoughtworks, a worldwide leader in Agile software development. At
Thoughtworks, we often recommend that our clients should aim to create and deploy
MVPs: minimal viable products: “a simple version of a product that is given to users
in order to validate the key business assumptions,” as defined by my colleague Paulo
Caroli in “Lean Inception”, a post in Martin Fowler’s collective blog.

Guido van Rossum and the other core developers who designed and implemented
static typing have followed an MVP strategy since 2006. First, PEP 3107—Function
Annotations was implemented in Python 3.0 with very limited semantics: just syntax
to attach annotations to function parameters and returns. This was done explicitly to
allow for experimentation and collect feedback—key benefits of an MVP.

Eight years later, PEP 484—Type Hints was proposed and approved. Its implementa‐
tion in Python 3.5 required no changes in the language or standard library—except
for adding the typing module, on which no other part of the standard library depen‐
ded. PEP 484 supported only nominal types with generics—similar to Java—but with
the actual static checking done by external tools. Important features were missing,
like variable annotations, generic built-in types, and protocols. Despite those limita‐
tions, this typing MVP was valuable enough to attract investment and adoption by
companies with very large Python codebases, like Dropbox, Google, and Facebook; as
well as support from professional IDEs, like PyCharm, Wing, and VS Code.

PEP 526—Syntax for Variable Annotations was the first evolutionary step that
required changes to the interpreter in Python 3.6. More changes to the Python 3.7
interpreter were made to support PEP 563—Postponed Evaluation of Annotations
and PEP 560—Core support for typing module and generic types, which allowed
built-in and standard library collections to accept generic type hints out of the box in
Python 3.9, thanks to PEP 585—Type Hinting Generics In Standard Collections.

During those years, some Python users—including me—were underwhelmed by the
typing support. After I learned Go, the lack of static duck typing in Python was
incomprehensible, in a language where duck typing had always been a core strength.

But that is the nature of MVPs: they may not satisfy all potential users, but they can
be implemented with less effort, and guide further development with feedback from
actual usage in the field.

If there is one thing we all learned from Python 3, it’s that incremental progress is
safer than big-bang releases. I am glad we did not have to wait for Python 4—if it ever
comes—to make Python more attractive to large enterprises, where the benefits of
static typing outweigh the added complexity.

484 | Chapter 13: Interfaces, Protocols, and ABCs

https://fpy.li/13-58
https://fpy.li/13-59
https://fpy.li/pep3107
https://fpy.li/pep3107
https://fpy.li/pep484
https://fpy.li/13-60
https://fpy.li/13-61
https://fpy.li/13-62
https://fpy.li/pep526
https://fpy.li/pep563
https://fpy.li/pep560
https://fpy.li/pep585

Typing Approaches in Popular Languages

Figure 13-8 is a variation of the Typing Map (Figure 13-1) with the names of a few
popular languages that support each of the typing approaches.

Figure 13-8. Four approaches to type checking and some languages that support them.

TypeScript and Python ≥ 3.8 are the only languages in my small and arbitrary sample
that support all four approaches.

Go is clearly a statically typed language in the Pascal tradition, but it pioneered static
duck typing—at least among languages that are widely used today. I also put Go in
the goose typing quadrant because of its type assertions, which allow checking and
adapting to different types at runtime.

If I had to draw a similar diagram in the year 2000, only the duck typing and the static
typing quadrants would have languages in them. I am not aware of languages that
supported static duck typing or goose typing 20 years ago. The fact that each of the
four quadrants has at least three popular languages suggests that a lot of people see
value in each of the four approaches to typing.

Further Reading | 485

Monkey Patching

Monkey patching has a bad reputation. If abused, it can lead to systems that are hard
to understand and maintain. The patch is usually tightly coupled with its target, mak‐
ing it brittle. Another problem is that two libraries that apply monkey patches may
step on each other’s toes, with the second library to run destroying patches of the
first.

But monkey patching can also be useful, for example, to make a class implement a
protocol at runtime. The Adapter design pattern solves the same problem by imple‐
menting a whole new class.

It’s easy to monkey patch Python code, but there are limitations. Unlike Ruby and
JavaScript, Python does not let you monkey patch the built-in types. I actually con‐
sider this an advantage, because you can be certain that a str object will always have
those same methods. This limitation reduces the chance that external libraries apply
conflicting patches.

Metaphors and Idioms in Interfaces

A metaphor fosters understanding by making constraints and affordances clear.
That’s the value of the words “stack” and “queue” in describing those fundamental
data structures: they make clear which operations are allowed, i.e., how items can be
added or removed. On the other hand, Alan Cooper et al. write in About Face, the
Essentials of Interaction Design, 4th ed. (Wiley):

Strict adherence to metaphors ties interfaces unnecessarily tightly to the workings of
the physical world.

He’s referring to user interfaces, but the admonition applies to APIs as well. But
Cooper does grant that when a “truly appropriate” metaphor “falls on our lap,” we
can use it (he writes “falls on our lap” because it’s so hard to find fitting metaphors
that you should not spend time actively looking for them). I believe the bingo
machine imagery I used in this chapter is appropriate and I stand by it.

About Face is by far the best book about UI design I’ve read—and I’ve read a few.
Letting go of metaphors as a design paradigm, and replacing it with “idiomatic inter‐
faces” was the most valuable thing I learned from Cooper’s work.

In About Face, Cooper does not deal with APIs, but the more I think about his ideas,
the more I see how they apply to Python. The fundamental protocols of the language
are what Cooper calls “idioms.” Once we learn what a “sequence” is, we can apply
that knowledge in different contexts. This is a main theme of Fluent Python: high‐
lighting the fundamental idioms of the language, so your code is concise, effective,
and readable—for a fluent Pythonista.

486 | Chapter 13: Interfaces, Protocols, and ABCs

1 Alan Kay, “The Early History of Smalltalk,” in SIGPLAN Not. 28, 3 (March 1993), 69–95. Also available
online. Thanks to my friend Christiano Anderson, who shared this reference as I was writing this chapter.

CHAPTER 14

Inheritance: For Better or for Worse

[...] we needed a better theory about inheritance entirely (and still do). For example,
inheritance and instancing (which is a kind of inheritance) muddles both pragmatics
(such as factoring code to save space) and semantics (used for way too many tasks such
as: specialization, generalization, speciation, etc.).

—Alan Kay, “The Early History of Smalltalk”1

This chapter is about inheritance and subclassing. I will assume a basic understand‐
ing of these concepts, which you may know from reading The Python Tutorial or
from experience with another mainstream object-oriented language, such as Java, C#,
or C++. Here we’ll focus on four characteristics of Python:

• The super() function
• The pitfalls of subclassing from built-in types
• Multiple inheritance and method resolution order
• Mixin classes

Multiple inheritance is the ability of a class to have more than one base class. C++
supports it; Java and C# don’t. Many consider multiple inheritance more trouble than
it’s worth. It was deliberately left out of Java after its perceived abuse in early C++
codebases.

This chapter introduces multiple inheritance for those who have never used it, and
provides some guidance on how to cope with single or multiple inheritance if you
must use it.

487

https://fpy.li/14-1
https://fpy.li/14-2

As of 2021, there is a significant backlash against overuse of inheritance in general—
not only multiple inheritance—because superclasses and subclasses are tightly cou‐
pled. Tight coupling means that changes to one part of the program may have unex‐
pected and far-reaching effects in other parts, making systems brittle and hard to
understand.

However, we have to maintain existing systems designed with complex class hierar‐
chies, or use frameworks that force us to use inheritance—even multiple inheritance
sometimes.

I will illustrate practical uses of multiple inheritance with the standard library, the
Django web framework, and the Tkinter GUI toolkit.

What’s New in This Chapter
There are no new Python features related to the subject of this chapter, but I heavily
edited it based on feedback from technical reviewers of the second edition, especially
Leonardo Rochael and Caleb Hattingh.

I wrote a new opening section focusing on the super() built-in function, and
changed the examples in “Multiple Inheritance and Method Resolution Order” on
page 494 for a deeper exploration of how super() works to support cooperative
multiple inheritance.

“Mixin Classes” on page 500 is also new. “Multiple Inheritance in the Real World” on
page 502 was reorganized and covers simpler mixin examples from the standard
library, before the complex Django and the complicated Tkinter hierarchies.

As the chapter title suggests, the caveats of inheritance have always been one of the
main themes of this chapter. But more and more developers consider it so problem‐
atic that I’ve added a couple of paragraphs about avoiding inheritance to the end of
“Chapter Summary” on page 514 and “Further Reading” on page 515.

We’ll start with an overview of the mysterious super() function.

The super() Function
Consistent use the of the super() built-in function is essential for maintainable
object-oriented Python programs.

When a subclass overrides a method of a superclass, the overriding method usually
needs to call the corresponding method of the superclass. Here’s the recommended

488 | Chapter 14: Inheritance: For Better or for Worse

2 I only changed the docstring in the example, because the original is misleading. It says: “Store items in the
order the keys were last added,” but that is not what the clearly named LastUpdatedOrderedDict does.

way to do it, from an example in the collections module documentation, section
“OrderedDict Examples and Recipes”:2

class LastUpdatedOrderedDict(OrderedDict):
 """Store items in the order they were last updated"""

 def __setitem__(self, key, value):
 super().__setitem__(key, value)
 self.move_to_end(key)

To do its job, LastUpdatedOrderedDict overrides __setitem__ to:

1. Use super().__setitem__ to call that method on the superclass, to let it insert or
update the key/value pair.

2. Call self.move_to_end to ensure the updated key is in the last position.

Invoking an overridden __init__ method is particularly important to allow super‐
classes to do their part in initializing the instance.

If you learned object-oriented programming in Java, you may
recall that a Java constructor method automatically calls the no-
argument constructor of the superclass. Python doesn’t do this.
You must get used to writing this pattern:

 def __init__(self, a, b) :
 super().__init__(a, b)
 ... # more initialization code

You may have seen code that doesn’t use super(), but instead calls the method
directly on the superclass, like this:

class NotRecommended(OrderedDict):
 """This is a counter example!"""

 def __setitem__(self, key, value):
 OrderedDict.__setitem__(self, key, value)
 self.move_to_end(key)

This alternative works in this particular case, but is not recommended for two rea‐
sons. First, it hardcodes the base class. The name OrderedDict appears in the class
statement and also inside __setitem__. If in the future someone changes the
class statement to change the base class or add another one, they may forget to
update the body of __setitem__, introducing a bug.

The super() Function | 489

https://fpy.li/14-3

3 It is also possible to provide only the first argument, but this not useful and may soon be deprecated, with the
blessing of Guido van Rossum who created super() in the first place. See the discussion at “Is it time to dep‐
recate unbound super methods?”.

The second reason is that super implements logic to handle class hierarchies with
multiple inheritance. We’ll come back to that in “Multiple Inheritance and Method
Resolution Order” on page 494. To conclude this refresher about super, it is useful to
review how we had to call it in Python 2, because the old signature with two argu‐
ments is revealing:

class LastUpdatedOrderedDict(OrderedDict):
 """This code works in Python 2 and Python 3"""

 def __setitem__(self, key, value):
 super(LastUpdatedOrderedDict, self).__setitem__(key, value)
 self.move_to_end(key)

Both arguments of super are now optional. The Python 3 bytecode compiler auto‐
matically provides them by inspecting the surrounding context when super() is
invoked in a method. The arguments are:

type

The start of the search path for the superclass implementing the desired method.
By default, it is the class that owns the method where the super() call appears.

object_or_type

The object (for instance method calls) or class (for class method calls) to be the
receiver of the method call. By default, it is self if the super() call happens in an
instance method.

Whether you or the compiler provides those arguments, the super() call returns a
dynamic proxy object that finds a method (such as __setitem__ in the example) in a
superclass of the type parameter, and binds it to the object_or_type, so that we
don’t need to pass the receiver (self) explicitly when invoking the method.

In Python 3, you can still explicitly provide the first and second arguments
to super().3 But they are needed only in special cases, such as skipping over part of
the MRO for testing or debugging, or for working around undesired behavior in a
superclass.

Now let’s discuss the caveats when subclassing built-in types.

Subclassing Built-In Types Is Tricky
It was not possible to subclass built-in types such as list or dict in the earliest ver‐
sions of Python. Since Python 2.2, it’s possible, but there is a major caveat: the code of

490 | Chapter 14: Inheritance: For Better or for Worse

https://fpy.li/14-4
https://fpy.li/14-4

the built-ins (written in C) usually does not call methods overridden by user-defined
classes. A good short description of the problem is in the documentation for PyPy, in
the “Differences between PyPy and CPython” section, “Subclasses of built-in types”:

Officially, CPython has no rule at all for when exactly overridden method of subclasses
of built-in types get implicitly called or not. As an approximation, these methods are
never called by other built-in methods of the same object. For example, an overridden
__getitem__() in a subclass of dict will not be called by e.g. the built-in get()
method.

Example 14-1 illustrates the problem.

Example 14-1. Our __setitem__ override is ignored by the __init__ and __update__
methods of the built-in dict

>>> class DoppelDict(dict):
... def __setitem__(self, key, value):
... super().__setitem__(key, [value] * 2)
...
>>> dd = DoppelDict(one=1)
>>> dd
{'one': 1}
>>> dd['two'] = 2
>>> dd
{'one': 1, 'two': [2, 2]}
>>> dd.update(three=3)
>>> dd
{'three': 3, 'one': 1, 'two': [2, 2]}

DoppelDict.__setitem__ duplicates values when storing (for no good reason,
just to have a visible effect). It works by delegating to the superclass.

The __init__ method inherited from dict clearly ignored that __setitem__ was
overridden: the value of 'one' is not duplicated.

The [] operator calls our __setitem__ and works as expected: 'two' maps to the
duplicated value [2, 2].

The update method from dict does not use our version of __setitem__ either:
the value of 'three' was not duplicated.

This built-in behavior is a violation of a basic rule of object-oriented programming:
the search for methods should always start from the class of the receiver (self), even
when the call happens inside a method implemented in a superclass. This is what is
called “late binding,” which Alan Kay—of Smalltalk fame—considers a key feature of
object-oriented programming: in any call of the form x.method(), the exact method

Subclassing Built-In Types Is Tricky | 491

https://fpy.li/pypydif

4 It is interesting to note that C++ has the notion of virtual and nonvirtual methods. Virtual methods are late
bound, but nonvirtual methods are bound at compile time. Although every method that we can write in
Python is late bound like a virtual method, built-in objects written in C seem to have nonvirtual methods by
default, at least in CPython.

to be called must be determined at runtime, based on the class of the receiver x.4

This sad state of affairs contributes to the issues we saw in “Inconsistent Usage of
__missing__ in the Standard Library” on page 94.

The problem is not limited to calls within an instance—whether self.get() calls
self.__getitem__()—but also happens with overridden methods of other classes
that should be called by the built-in methods. Example 14-2 is adapted from the PyPy
documentation.

Example 14-2. The __getitem__ of AnswerDict is bypassed by dict.update

>>> class AnswerDict(dict):
... def __getitem__(self, key):
... return 42
...
>>> ad = AnswerDict(a='foo')
>>> ad['a']
42
>>> d = {}
>>> d.update(ad)
>>> d['a']
'foo'
>>> d
{'a': 'foo'}

AnswerDict.__getitem__ always returns 42, no matter what the key.

ad is an AnswerDict loaded with the key-value pair ('a', 'foo').

ad['a'] returns 42, as expected.

d is an instance of plain dict, which we update with ad.

The dict.update method ignored our AnswerDict.__getitem__.

Subclassing built-in types like dict or list or str directly is error-
prone because the built-in methods mostly ignore user-defined
overrides. Instead of subclassing the built-ins, derive your classes
from the collections module using UserDict, UserList, and
UserString, which are designed to be easily extended.

492 | Chapter 14: Inheritance: For Better or for Worse

https://fpy.li/14-5
https://fpy.li/14-5
https://fpy.li/14-6

5 If you are curious, the experiment is in the 14-inheritance/strkeydict_dictsub.py file in the fluentpython/
example-code-2e repository.

If you subclass collections.UserDict instead of dict, the issues exposed in Exam‐
ples 14-1 and 14-2 are both fixed. See Example 14-3.

Example 14-3. DoppelDict2 and AnswerDict2 work as expected because they extend
UserDict and not dict

>>> import collections
>>>
>>> class DoppelDict2(collections.UserDict):
... def __setitem__(self, key, value):
... super().__setitem__(key, [value] * 2)
...
>>> dd = DoppelDict2(one=1)
>>> dd
{'one': [1, 1]}
>>> dd['two'] = 2
>>> dd
{'two': [2, 2], 'one': [1, 1]}
>>> dd.update(three=3)
>>> dd
{'two': [2, 2], 'three': [3, 3], 'one': [1, 1]}
>>>
>>> class AnswerDict2(collections.UserDict):
... def __getitem__(self, key):
... return 42
...
>>> ad = AnswerDict2(a='foo')
>>> ad['a']
42
>>> d = {}
>>> d.update(ad)
>>> d['a']
42
>>> d
{'a': 42}

As an experiment to measure the extra work required to subclass a built-in, I rewrote
the StrKeyDict class from Example 3-9 to subclass dict instead of UserDict. In
order to make it pass the same suite of tests, I had to implement __init__, get, and
update because the versions inherited from dict refused to cooperate with the over‐
ridden __missing__, __contains__, and __setitem__. The UserDict subclass from
Example 3-9 has 16 lines, while the experimental dict subclass ended up with 33
lines.5

Subclassing Built-In Types Is Tricky | 493

https://fpy.li/14-7
https://fpy.li/code
https://fpy.li/code

6 By the way, in this regard, PyPy behaves more “correctly” than CPython, at the expense of introducing a
minor incompatibility. See “Differences between PyPy and CPython” for details.

To be clear: this section covered an issue that applies only to method delegation
within the C language code of the built-in types, and only affects classes derived
directly from those types. If you subclass a base class coded in Python, such as
UserDict or MutableMapping, you will not be troubled by this.6

Now let’s focus on an issue that arises with multiple inheritance: if a class has two
superclasses, how does Python decide which attribute to use when we call
super().attr, but both superclasses have an attribute with that name?

Multiple Inheritance and Method Resolution Order
Any language implementing multiple inheritance needs to deal with potential nam‐
ing conflicts when superclasses implement a method by the same name. This is called
the “diamond problem,” illustrated in Figure 14-1 and Example 14-4.

Figure 14-1. Left: Activation sequence for the leaf1.ping() call. Right: Activation
sequence for the leaf1.pong() call.

Example 14-4. diamond.py: classes Leaf, A, B, Root form the graph in Figure 14-1

class Root:
 def ping(self):
 print(f'{self}.ping() in Root')

 def pong(self):
 print(f'{self}.pong() in Root')

 def __repr__(self):

494 | Chapter 14: Inheritance: For Better or for Worse

https://fpy.li/14-5

 cls_name = type(self).__name__
 return f'<instance of {cls_name}>'

class A(Root):
 def ping(self):
 print(f'{self}.ping() in A')
 super().ping()

 def pong(self):
 print(f'{self}.pong() in A')
 super().pong()

class B(Root):
 def ping(self):
 print(f'{self}.ping() in B')
 super().ping()

 def pong(self):
 print(f'{self}.pong() in B')

class Leaf(A, B):
 def ping(self):
 print(f'{self}.ping() in Leaf')
 super().ping()

Root provides ping, pong, and __repr__ to make the output easier to read.

The ping and pong methods in class A both call super().

Only the ping method in class B calls super().

Class Leaf implements only ping, and it calls super().

Now let’s see the effect of calling the ping and pong methods on an instance of Leaf
(Example 14-5).

Example 14-5. Doctests for calling ping and pong on a Leaf object

 >>> leaf1 = Leaf()
 >>> leaf1.ping()
 <instance of Leaf>.ping() in Leaf
 <instance of Leaf>.ping() in A
 <instance of Leaf>.ping() in B
 <instance of Leaf>.ping() in Root

 >>> leaf1.pong()

Multiple Inheritance and Method Resolution Order | 495

7 Classes also have a .mro() method, but that’s an advanced feature of metaclass programming, mentioned in
“Classes as Objects” on page 908. The content of the __mro__ attribute is what matters during normal usage
of a class.

 <instance of Leaf>.pong() in A
 <instance of Leaf>.pong() in B

leaf1 is an instance of Leaf.

Calling leaf1.ping() activates the ping methods in Leaf, A, B, and Root, because
the ping methods in the first three classes call super().ping().

Calling leaf1.pong() activates pong in A via inheritance, which then calls
super.pong(), activating B.pong.

The activation sequences shown in Example 14-5 and Figure 14-1 are determined by
two factors:

• The method resolution order of the Leaf class.
• The use of super() in each method.

Every class has an attribute called __mro__ holding a tuple of references to the super‐
classes in method resolution order, from the current class all the way to the object
class.7 For the Leaf class, this is the __mro__:

>>> Leaf.__mro__ # doctest:+NORMALIZE_WHITESPACE
 (<class 'diamond1.Leaf'>, <class 'diamond1.A'>, <class 'diamond1.B'>,
 <class 'diamond1.Root'>, <class 'object'>)

Looking at Figure 14-1, you may think the MRO describes a
breadth-first search, but that’s just a coincidence for that particular
class hierarchy. The MRO is computed by a published algorithm
called C3. Its use in Python is detailed in Michele Simionato’s “The
Python 2.3 Method Resolution Order”. It’s a challenging read, but
Simionato writes: “unless you make strong use of multiple inheri‐
tance and you have non-trivial hierarchies, you don’t need to
understand the C3 algorithm, and you can easily skip this paper.”

The MRO only determines the activation order, but whether a particular method will
be activated in each of the classes depends on whether each implementation calls
super() or not.

Consider the experiment with the pong method. The Leaf class does not override it,
therefore calling leaf1.pong() activates the implementation in the next class of

496 | Chapter 14: Inheritance: For Better or for Worse

https://fpy.li/14-9
https://fpy.li/14-10
https://fpy.li/14-10

Leaf.__mro__: the A class. Method A.pong calls super().pong(). The B class is next
in the MRO, therefore B.pong is activated. But that method doesn’t call
super().pong(), so the activation sequence ends here.

The MRO takes into account not only the inheritance graph but also the order in
which superclasses are listed in a subclass declaration. In other words, if in dia‐
mond.py (Example 14-4) the Leaf class was declared as Leaf(B, A), then class B
would appear before A in Leaf.__mro__. This would affect the activation order of the
ping methods, and would also cause leaf1.pong() to activate B.pong via inheritance,
but A.pong and Root.pong would never run, because B.pong doesn’t call super().

When a method calls super(), it is a cooperative method. Cooperative methods
enable cooperative multiple inheritance. These terms are intentional: in order to work,
multiple inheritance in Python requires the active cooperation of the methods
involved. In the B class, ping cooperates, but pong does not.

A noncooperative method can be the cause of subtle bugs. Many
coders reading Example 14-4 may expect that when method
A.pong calls super.pong(), that will ultimately activate Root.pong.
But if B.pong is activated before, it drops the ball. That’s why it is
recommended that every method m of a nonroot class should call
super().m().

Cooperative methods must have compatible signatures, because you never know
whether A.ping will be called before or after B.ping. The activation sequence
depends on the order of A and B in the declaration of each subclass that inherits from
both.

Python is a dynamic language, so the interaction of super() with the MRO is also
dynamic. Example 14-6 shows a surprising result of this dynamic behavior.

Example 14-6. diamond2.py: classes to demonstrate the dynamic nature of super()

from diamond import A

class U():
 def ping(self):
 print(f'{self}.ping() in U')
 super().ping()

class LeafUA(U, A):
 def ping(self):
 print(f'{self}.ping() in LeafUA')
 super().ping()

Multiple Inheritance and Method Resolution Order | 497

Class A comes from diamond.py (Example 14-4).

Class U is unrelated to A or Root from the diamond module.

What does super().ping() do? Answer: it depends. Read on.

LeafUA subclasses U and A in this order.

If you create an instance of U and try to call ping, you get an error:

 >>> u = U()
 >>> u.ping()
 Traceback (most recent call last):
 ...
 AttributeError: 'super' object has no attribute 'ping'

The 'super' object returned by super() has no attribute 'ping' because the MRO
of U has two classes: U and object, and the latter has no attribute named 'ping'.

However, the U.ping method is not completely hopeless. Check this out:

 >>> leaf2 = LeafUA()
 >>> leaf2.ping()
 <instance of LeafUA>.ping() in LeafUA
 <instance of LeafUA>.ping() in U
 <instance of LeafUA>.ping() in A
 <instance of LeafUA>.ping() in Root
 >>> LeafUA.__mro__ # doctest:+NORMALIZE_WHITESPACE
 (<class 'diamond2.LeafUA'>, <class 'diamond2.U'>,
 <class 'diamond.A'>, <class 'diamond.Root'>, <class 'object'>)

The super().ping() call in LeafUA activates U.ping, which cooperates by calling
super().ping() too, activating A.ping, and eventually Root.ping.

Note the base classes of LeafUA are (U, A) in that order. If instead the bases were
(A, U), then leaf2.ping() would never reach U.ping, because the super().ping()
in A.ping would activate Root.ping, and that method does not call super().

In a real program, a class like U could be a mixin class: a class intended to be used
together with other classes in multiple inheritance, to provide additional functional‐
ity. We’ll study that shortly, in “Mixin Classes” on page 500.

To wrap up this discussion of the MRO, Figure 14-2 illustrates part of the complex
multiple inheritance graph of the Tkinter GUI toolkit from the Python standard
library.

498 | Chapter 14: Inheritance: For Better or for Worse

Figure 14-2. Left: UML diagram of the Tkinter Text widget class and superclasses.
Right: The long and winding path of Text.__mro__ is drawn with dashed arrows.

To study the picture, start at the Text class at the bottom. The Text class implements
a full-featured, multiline editable text widget. It provides rich functionality in itself,
but also inherits many methods from other classes. The lefthand side shows a plain
UML class diagram. On the right, it’s decorated with arrows showing the MRO, as
listed in Example 14-7 with the help of a print_mro convenience function.

Example 14-7. MRO of tkinter.Text

>>> def print_mro(cls):
... print(', '.join(c.__name__ for c in cls.__mro__))
>>> import tkinter
>>> print_mro(tkinter.Text)
Text, Widget, BaseWidget, Misc, Pack, Place, Grid, XView, YView, object

Now let’s talk about mixins.

Multiple Inheritance and Method Resolution Order | 499

Mixin Classes
A mixin class is designed to be subclassed together with at least one other class in a
multiple inheritance arrangement. A mixin is not supposed to be the only base class
of a concrete class, because it does not provide all the functionality for a concrete
object, but only adds or customizes the behavior of child or sibling classes.

Mixin classes are a convention with no explicit language support in
Python and C++. Ruby allows the explicit definition and use of
modules that work as mixins—collections of methods that may be
included to add functionality to a class. C#, PHP, and Rust imple‐
ment traits, which are also an explicit form of mixin.

Let’s see a simple but handy example of a mixin class.

Case-Insensitive Mappings
Example 14-8 shows UpperCaseMixin, a class designed to provide case-insensitive
access to mappings with string keys, by uppercasing those keys when they are added
or looked up.

Example 14-8. uppermixin.py: UpperCaseMixin supports case-insensitive mappings

import collections

def _upper(key):
 try:
 return key.upper()
 except AttributeError:
 return key

class UpperCaseMixin:
 def __setitem__(self, key, item):
 super().__setitem__(_upper(key), item)

 def __getitem__(self, key):
 return super().__getitem__(_upper(key))

 def get(self, key, default=None):
 return super().get(_upper(key), default)

 def __contains__(self, key):
 return super().__contains__(_upper(key))

500 | Chapter 14: Inheritance: For Better or for Worse

This helper function takes a key of any type, and tries to return key.upper(); if
that fails, it returns the key unchanged.

The mixin implements four essential methods of mappings, always calling
super(), with the key uppercased, if possible.

Since every method ot UpperCaseMixin calls super(), this mixin depends on a sibling
class that implements or inherits methods with the same signature. To make its con‐
tribution, a mixin usually needs to appear before other classes in the MRO of a sub‐
class that uses it. In practice, that means mixins must appear first in the tuple of base
classes in a class declaration. Example 14-9 shows two examples.

Example 14-9. uppermixin.py: two classes that use UpperCaseMixin

class UpperDict(UpperCaseMixin, collections.UserDict):
 pass

class UpperCounter(UpperCaseMixin, collections.Counter):
 """Specialized 'Counter' that uppercases string keys"""

UpperDict needs no implementation of its own, but UpperCaseMixin must be the
first base class, otherwise the methods from UserDict would be called instead.

UpperCaseMixin also works with Counter.

Instead of pass, it’s better to provide a docstring to satisfy the need for a body in
the class statement syntax.

Here are some doctests from uppermixin.py, for UpperDict:

 >>> d = UpperDict([('a', 'letter A'), (2, 'digit two')])
 >>> list(d.keys())
 ['A', 2]
 >>> d['b'] = 'letter B'
 >>> 'b' in d
 True
 >>> d['a'], d.get('B')
 ('letter A', 'letter B')
 >>> list(d.keys())
 ['A', 2, 'B']

And a quick demonstration of UpperCounter:

 >>> c = UpperCounter('BaNanA')
 >>> c.most_common()
 [('A', 3), ('N', 2), ('B', 1)]

Mixin Classes | 501

https://fpy.li/14-11

8 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software (Addison-Wesley).

9 As previously mentioned, Java 8 allows interfaces to provide method implementations as well. The new fea‐
ture is called “Default Methods” in the official Java Tutorial.

UpperDict and UpperCounter seem almost magical, but I had to carefully study the
code of UserDict and Counter to make UpperCaseMixin work with them.

For example, my first version of UpperCaseMixin did not provide the get method.
That version worked with UserDict but not with Counter. The UserDict class inher‐
its get from collections.abc.Mapping, and that get calls __getitem__, which I
implemented. But keys were not uppercased when an UpperCounter was loaded upon
__init__. That happened because Counter.__init__ uses Counter.update, which in
turn relies on the get method inherited from dict. However, the get method in the
dict class does not call __getitem__. This is the heart of the issue discussed in
“Inconsistent Usage of __missing__ in the Standard Library” on page 94. It is also a
stark reminder of the brittle and puzzling nature of programs leveraging inheritance,
even at a small scale.

The next section covers several examples of multiple inheritance, often featuring
mixin classes.

Multiple Inheritance in the Real World
In the Design Patterns book,8 almost all the code is in C++, but the only example of
multiple inheritance is the Adapter pattern. In Python, multiple inheritance is not the
norm either, but there are important examples that I will comment on in this section.

ABCs Are Mixins Too
In the Python standard library, the most visible use of multiple inheritance is the col
lections.abc package. That is not controversial: after all, even Java supports multi‐
ple inheritance of interfaces, and ABCs are interface declarations that may optionally
provide concrete method implementations.9

Python’s official documentation of collections.abc uses the term mixin method for
the concrete methods implemented in many of the collection ABCs. The ABCs that
provide mixin methods play two roles: they are interface definitions and also mixin
classes. For example, the implementation of collections.UserDict relies on several
of the mixin methods provided by collections.abc.MutableMapping.

502 | Chapter 14: Inheritance: For Better or for Worse

https://fpy.li/14-12
https://fpy.li/14-13
https://fpy.li/14-14

ThreadingMixIn and ForkingMixIn
The http.server package provides HTTPServer and ThreadingHTTPServer classes. The
latter was added in Python 3.7. Its documentation says:

class http.server.ThreadingHTTPServer(server_address, RequestHandlerClass)
This class is identical to HTTPServer but uses threads to handle requests by using
the ThreadingMixIn. This is useful to handle web browsers pre-opening sockets,
on which HTTPServer would wait indefinitely.

This is the complete source code for the ThreadingHTTPServer class in Python 3.10:

class ThreadingHTTPServer(socketserver.ThreadingMixIn, HTTPServer):
 daemon_threads = True

The source code of socketserver.ThreadingMixIn has 38 lines, including comments
and docstrings. Example 14-10 shows a summary of its implementation.

Example 14-10. Part of Lib/socketserver.py in Python 3.10

class ThreadingMixIn:
 """Mixin class to handle each request in a new thread."""

 # 8 lines omitted in book listing

 def process_request_thread(self, request, client_address):
 ... # 6 lines omitted in book listing

 def process_request(self, request, client_address):
 ... # 8 lines omitted in book listing

 def server_close(self):
 super().server_close()
 self._threads.join()

process_request_thread does not call super() because it is a new method, not
an override. Its implementation calls three instance methods that HTTPServer
provides or inherits.

This overrides the process_request method that HTTPServer inherits from sock
etserver.BaseServer, starting a thread and delegating the actual work to pro
cess_request_thread running in that thread. It does not call super().

server_close calls super().server_close() to stop taking requests, then waits
for the threads started by process_request to finish their jobs.

The ThreadingMixIn appears in the socketserver module documentation next to
ForkingMixin. The latter is designed to support concurrent servers based on

Multiple Inheritance in the Real World | 503

https://fpy.li/14-15
https://fpy.li/14-16
https://fpy.li/14-17
https://fpy.li/14-18

os.fork(), an API for launching a child process, available in POSIX-compliant
Unix-like systems.

Django Generic Views Mixins

You don’t need to know Django to follow this section. I am using a
small part of the framework as a practical example of multiple
inheritance, and I will try to give all the necessary background,
assuming you have some experience with server-side web develop‐
ment in any language or framework.

In Django, a view is a callable object that takes a request argument—an object repre‐
senting an HTTP request—and returns an object representing an HTTP response.
The different responses are what interests us in this discussion. They can be as simple
as a redirect response, with no content body, or as complex as a catalog page in an
online store, rendered from an HTML template and listing multiple merchandise
with buttons for buying, and links to detail pages.

Originally, Django provided a set of functions, called generic views, that imple‐
mented some common use cases. For example, many sites need to show search
results that include information from numerous items, with the listing spanning mul‐
tiple pages, and for each item a link to a page with detailed information about it.
In Django, a list view and a detail view are designed to work together to solve this
problem: a list view renders search results, and a detail view produces a page for each
individual item.

However, the original generic views were functions, so they were not extensible. If
you needed to do something similar but not exactly like a generic list view, you’d
have to start from scratch.

The concept of class-based views was introduced in Django 1.3, along with a set of
generic view classes organized as base classes, mixins, and ready-to-use concrete
classes. In Django 3.2, the base classes and mixins are in the base module of
the django.views.generic package, pictured in Figure 14-3. At the top of the
diagram we see two classes that take care of very distinct responsibilities: View and
TemplateResponseMixin.

504 | Chapter 14: Inheritance: For Better or for Worse

https://fpy.li/14-19
https://fpy.li/14-20

10 Django programmers know that the as_view class method is the most visible part of the View interface, but
it’s not relevant to us here.

Figure 14-3. UML class diagram for the django.views.generic.base module.

A great resource to study these classes is the Classy Class-Based
Views website, where you can easily navigate through them, see all
methods in each class (inherited, overridden, and added methods),
view diagrams, browse their documentation, and jump to their
source code on GitHub.

View is the base class of all views (it could be an ABC), and it provides core function‐
ality like the dispatch method, which delegates to “handler” methods like get, head,
post, etc., implemented by concrete subclasses to handle the different HTTP verbs.10

The RedirectView class inherits only from View, and you can see that it implements
get, head, post, etc.

Concrete subclasses of View are supposed to implement the handler methods, so why
aren’t those methods part of the View interface? The reason: subclasses are free to

Multiple Inheritance in the Real World | 505

https://fpy.li/14-21
https://fpy.li/14-21
https://fpy.li/14-22

11 If you are into design patterns, you’ll notice that the Django dispatch mechanism is a dynamic variation of the
Template Method pattern. It’s dynamic because the View class does not force subclasses to implement all han‐
dlers, but dispatch checks at runtime if a concrete handler is available for the specific request.

implement just the handlers they want to support. A TemplateView is used only to
display content, so it only implements get. If an HTTP POST request is sent to a Tem
plateView, the inherited View.dispatch method checks that there is no post han‐
dler, and produces an HTTP 405 Method Not Allowed response.11

The TemplateResponseMixin provides functionality that is of interest only to views
that need to use a template. A RedirectView, for example, has no content body, so it
has no need of a template and it does not inherit from this mixin. TemplateResponse
Mixin provides behaviors to TemplateView and other template-rendering views, such
as ListView, DetailView, etc., defined in the django.views.generic subpackages.
Figure 14-4 depicts the django.views.generic.list module and part of the base
module.

For Django users, the most important class in Figure 14-4 is ListView, which is an
aggregate class, with no code at all (its body is just a docstring). When instantiated, a
ListView has an object_list instance attribute through which the template can iter‐
ate to show the page contents, usually the result of a database query returning multi‐
ple objects. All the functionality related to generating this iterable of objects comes
from the MultipleObjectMixin. That mixin also provides the complex pagination
logic—to display part of the results in one page and links to more pages.

Suppose you want to create a view that will not render a template, but will produce a
list of objects in JSON format. That’s why the BaseListView exists. It provides an
easy-to-use extension point that brings together View and MultipleObjectMixin
functionality, without the overhead of the template machinery.

The Django class-based views API is a better example of multiple inheritance than
Tkinter. In particular, it is easy to make sense of its mixin classes: each has a well-
defined purpose, and they are all named with the …Mixin suffix.

506 | Chapter 14: Inheritance: For Better or for Worse

https://fpy.li/14-23

Figure 14-4. UML class diagram for the django.views.generic.list module. Here
the three classes of the base module are collapsed (see Figure 14-3). The ListView class
has no methods or attributes: it’s an aggregate class.

Class-based views were not universally embraced by Django users. Many do use them
in a limited way, as opaque boxes, but when it’s necessary to create something new, a
lot of Django coders continue writing monolithic view functions that take care of all
those responsibilities, instead of trying to reuse the base views and mixins.

It does take some time to learn how to leverage class-based views and how to extend
them to fulfill specific application needs, but I found that it was worthwhile to study
them. They eliminate a lot of boilerplate code, make it easier to reuse solutions, and
even improve team communication—for example, by defining standard names to
templates, and to the variables passed to template contexts. Class-based views are
Django views “on rails.”

Multiple Inheritance in Tkinter
An extreme example of multiple inheritance in Python’s standard library is the
Tkinter GUI toolkit. I used part of the Tkinter widget hierarchy to illustrate the MRO
in Figure 14-2. Figure 14-5 shows all the widget classes in the tkinter base package
(there are more widgets in the tkinter.ttk subpackage).

Multiple Inheritance in the Real World | 507

https://fpy.li/14-24
https://fpy.li/14-25

Figure 14-5. Summary UML diagram for the Tkinter GUI class hierarchy; classes tag‐
ged «mixin» are designed to provide concrete methods to other classes via multiple
inheritance.

Tkinter is 25 years old as I write this. It is not an example of current best practices.
But it shows how multiple inheritance was used when coders did not appreciate its
drawbacks. And it will serve as a counterexample when we cover some good practices
in the next section.

Consider these classes from Figure 14-5:

➊ Toplevel: The class of a top-level window in a Tkinter application.

➋ Widget: The superclass of every visible object that can be placed on a window.

➌ Button: A plain button widget.

➍ Entry: A single-line editable text field.

➎ Text: A multiline editable text field.

Here are the MROs of those classes, displayed by the print_mro function from
Example 14-7:

>>> import tkinter
>>> print_mro(tkinter.Toplevel)
Toplevel, BaseWidget, Misc, Wm, object

508 | Chapter 14: Inheritance: For Better or for Worse

>>> print_mro(tkinter.Widget)
Widget, BaseWidget, Misc, Pack, Place, Grid, object
>>> print_mro(tkinter.Button)
Button, Widget, BaseWidget, Misc, Pack, Place, Grid, object
>>> print_mro(tkinter.Entry)
Entry, Widget, BaseWidget, Misc, Pack, Place, Grid, XView, object
>>> print_mro(tkinter.Text)
Text, Widget, BaseWidget, Misc, Pack, Place, Grid, XView, YView, object

By current standards, the class hierarchy of Tkinter is very deep.
Few parts of the Python standard library have more than three or
four levels of concrete classes, and the same can be said of the Java
class library. However, it is interesting to note that the some of the
deepest hierarchies in the Java class library are precisely in
the packages related to GUI programming: java.awt and
javax.swing. Squeak, the modern, free version of Smalltalk,
includes the powerful and innovative Morphic GUI toolkit, also
with a deep class hierarchy. In my experience, GUI toolkits are
where inheritance is most useful.

Note how these classes relate to others:

• Toplevel is the only graphical class that does not inherit from Widget, because it
is the top-level window and does not behave like a widget; for example, it cannot
be attached to a window or frame. Toplevel inherits from Wm, which provides
direct access functions of the host window manager, like setting the window title
and configuring its borders.

• Widget inherits directly from BaseWidget and from Pack, Place, and Grid. These
last three classes are geometry managers: they are responsible for arranging
widgets inside a window or frame. Each encapsulates a different layout strategy
and widget placement API.

• Button, like most widgets, descends only from Widget, but indirectly from Misc,
which provides dozens of methods to every widget.

• Entry subclasses Widget and XView, which support horizontal scrolling.
• Text subclasses from Widget, XView, and YView for vertical scrolling.

We’ll now discuss some good practices of multiple inheritance and see whether
Tkinter goes along with them.

Multiple Inheritance in the Real World | 509

https://fpy.li/14-26
https://fpy.li/14-27
https://fpy.li/14-28

12 The principle appears on p. 20 of the introduction to the book.

Coping with Inheritance
What Alan Kay wrote in the epigraph remains true: there’s still no general theory
about inheritance that can guide practicing programmers. What we have are rules of
thumb, design patterns, “best practices,” clever acronyms, taboos, etc. Some of these
provide useful guidelines, but none of them are universally accepted or always
applicable.

It’s easy to create incomprehensible and brittle designs using inheritance, even
without multiple inheritance. Because we don’t have a comprehensive theory, here
are a few tips to avoid spaghetti class graphs.

Favor Object Composition over Class Inheritance
The title of this subsection is the second principle of object-oriented design from the
Design Patterns book,12 and is the best advice I can offer here. Once you get comforta‐
ble with inheritance, it’s too easy to overuse it. Placing objects in a neat hierarchy
appeals to our sense of order; programmers do it just for fun.

Favoring composition leads to more flexible designs. For example, in the case of the
tkinter.Widget class, instead of inheriting the methods from all geometry managers,
widget instances could hold a reference to a geometry manager, and invoke its meth‐
ods. After all, a Widget should not “be” a geometry manager, but could use the serv‐
ices of one via delegation. Then you could add a new geometry manager without
touching the widget class hierarchy and without worrying about name clashes. Even
with single inheritance, this principle enhances flexibility, because subclassing is a
form of tight coupling, and tall inheritance trees tend to be brittle.

Composition and delegation can replace the use of mixins to make behaviors avail‐
able to different classes, but cannot replace the use of interface inheritance to define a
hierarchy of types.

Understand Why Inheritance Is Used in Each Case
When dealing with multiple inheritance, it’s useful to keep straight the reasons why
subclassing is done in each particular case. The main reasons are:

• Inheritance of interface creates a subtype, implying an “is-a” relationship. This is
best done with ABCs.

• Inheritance of implementation avoids code duplication by reuse. Mixins can help
with this.

510 | Chapter 14: Inheritance: For Better or for Worse

13 Grady Booch et al., Object-Oriented Analysis and Design with Applications, 3rd ed. (Addison-Wesley), p. 109.

In practice, both uses are often simultaneous, but whenever you can make the intent
clear, do it. Inheritance for code reuse is an implementation detail, and it can often be
replaced by composition and delegation. On the other hand, interface inheritance is
the backbone of a framework. Interface inheritance should use only ABCs as base
classes, if possible.

Make Interfaces Explicit with ABCs
In modern Python, if a class is intended to define an interface, it should be an explicit
ABC or a typing.Protocol subclass. An ABC should subclass only abc.ABC or other
ABCs. Multiple inheritance of ABCs is not problematic.

Use Explicit Mixins for Code Reuse
If a class is designed to provide method implementations for reuse by multiple unre‐
lated subclasses, without implying an “is-a” relationship, it should be an explicit
mixin class. Conceptually, a mixin does not define a new type; it merely bundles
methods for reuse. A mixin should never be instantiated, and concrete classes should
not inherit only from a mixin. Each mixin should provide a single specific behavior,
implementing few and very closely related methods. Mixins should avoid keeping
any internal state; i.e., a mixin class should not have instance attributes.

There is no formal way in Python to state that a class is a mixin, so it is highly recom‐
mended that they are named with a Mixin suffix.

Provide Aggregate Classes to Users
A class that is constructed primarily by inheriting from mixins and does not add its
own structure or behavior is called an aggregate class.

—Booch et al.13

If some combination of ABCs or mixins is particularly useful to client code, provide a
class that brings them together in a sensible way.

For example, here is the complete source code for the Django ListView class on the
bottom right of Figure 14-4:

class ListView(MultipleObjectTemplateResponseMixin, BaseListView):
 """
 Render some list of objects, set by `self.model` or `self.queryset`.
 `self.queryset` can actually be any iterable of items, not just a queryset.
 """

Coping with Inheritance | 511

https://fpy.li/14-29

14 PEP 591 also introduces a Final annotation for variables or attributes that should not be reassigned or over‐
ridden.

The body of ListView is empty, but the class provides a useful service: it brings
together a mixin and a base class that should be used together.

Another example is tkinter.Widget, which has four base classes and no methods or
attributes of its own—just a docstring. Thanks to the Widget aggregate class, we can
create new a widget with the required mixins, without having to figure out in which
order they should be declared to work as intended.

Note that aggregate classes don’t have to be completely empty, but they often are.

Subclass Only Classes Designed for Subclassing
In one comment about this chapter, technical reviewer Leonardo Rochael suggested
the following warning.

Subclassing any complex class and overriding its methods is error-
prone because the superclass methods may ignore the subclass
overrides in unexpected ways. As much as possible, avoid overrid‐
ing methods, or at least restrain yourself to subclassing classes
which are designed to be easily extended, and only in the ways in
which they were designed to be extended.

That’s great advice, but how do we know whether or how a class was designed to be
extended?

The first answer is documentation (sometimes in the form of docstrings or even
comments in code). For example, Python’s socketserver package is described as “a
framework for network servers.” Its BaseServer class is designed for subclassing, as
the name suggests. More importantly, the documentation and the docstring in the
source code of the class explicitly note which of its methods are intended to be over‐
ridden by subclasses.

In Python ≥ 3.8, a new way of making those design constraints explicit is provided by
PEP 591—Adding a final qualifier to typing. The PEP introduces a @final decorator
that can be applied to classes or individual methods, so that IDEs or type checkers
can report misguided attempts to subclass those classes or override those methods.14

512 | Chapter 14: Inheritance: For Better or for Worse

https://fpy.li/14-35
https://fpy.li/14-30
https://fpy.li/14-31
https://fpy.li/14-32
https://fpy.li/14-33
https://fpy.li/pep591
https://fpy.li/14-34

Avoid Subclassing from Concrete Classes
Subclassing concrete classes is more dangerous than subclassing ABCs and mixins,
because instances of concrete classes usually have internal state that can easily be cor‐
rupted when you override methods that depend on that state. Even if your methods
cooperate by calling super(), and the internal state is held in private attributes using
the __x syntax, there are still countless ways a method override can introduce bugs.

In “Waterfowl and ABCs” on page 443, Alex Martelli quotes Scott Meyer’s More
Effective C++, which says: “all non-leaf classes should be abstract.” In other words,
Meyer recommends that only abstract classes should be subclassed.

If you must use subclassing for code reuse, then the code intended for reuse should
be in mixin methods of ABCs or in explicitly named mixin classes.

We will now analyze Tkinter from the point of view of these recommendations.

Tkinter: The Good, the Bad, and the Ugly
Most advice in the previous section is not followed by Tkinter, with the notable
exception of “Provide Aggregate Classes to Users” on page 511. Even then, it’s not a
great example, because composition would probably work better for integrating the
geometry managers into Widget, as discussed in “Favor Object Composition over
Class Inheritance” on page 510.

Keep in mind that Tkinter has been part of the standard library since Python 1.1 was
released in 1994. Tkinter is a layer on top of the excellent Tk GUI toolkit of the Tcl
language. The Tcl/Tk combo is not originally object-oriented, so the Tk API is basi‐
cally a vast catalog of functions. However, the toolkit is object-oriented in its design,
if not in its original Tcl implementation.

The docstring of tkinter.Widget starts with the words “Internal class.” This suggests
that Widget should probably be an ABC. Although Widget has no methods of its own,
it does define an interface. Its message is: “You can count on every Tkinter widget
providing basic widget methods (__init__, destroy, and dozens of Tk API func‐
tions), in addition to the methods of all three geometry managers.” We can agree that
this is not a great interface definition (it’s just too broad), but it is an interface, and
Widget “defines” it as the union of the interfaces of its superclasses.

The Tk class, which encapsulates the GUI application logic, inherits from Wm and
Misc, neither of which are abstract or mixin (Wm is not a proper mixin because
TopLevel subclasses only from it). The name of the Misc class is—by itself—a very
strong code smell. Misc has more than 100 methods, and all widgets inherit from it.
Why is it necessary that every single widget has methods for clipboard handling, text
selection, timer management, and the like? You can’t really paste into a button or

Coping with Inheritance | 513

select text from a scrollbar. Misc should be split into several specialized mixin classes,
and not all widgets should inherit from every one of those mixins.

To be fair, as a Tkinter user, you don’t need to know or use multiple inheritance at
all. It’s an implementation detail hidden behind the widget classes that you will
instantiate or subclass in your own code. But you will suffer the consequences of
excessive multiple inheritance when you type dir(tkinter.Button) and try to find
the method you need among the 214 attributes listed. And you’ll need to face the
complexity if you decide to implement a new Tk widget.

Despite the problems, Tkinter is stable, flexible, and provides a
modern look-and-feel if you use the tkinter.ttk package and its
themed widgets. Also, some of the original widgets, like Canvas
and Text, are incredibly powerful. You can turn a Canvas object
into a simple drag-and-drop drawing application in a matter of
hours. Tkinter and Tcl/Tk are definitely worth a look if you are
interested in GUI programming.

This concludes our tour through the labyrinth of inheritance.

Chapter Summary
This chapter started with a review of the super() function in the context of single
inheritance. We then discussed the problem with subclassing built-in types: their
native methods implemented in C do not call overridden methods in subclasses,
except in very few special cases. That’s why, when we need a custom list, dict, or
str type, it’s easier to subclass UserList, UserDict, or UserString—all defined in the
collections module, which actually wrap the corresponding built-in types and dele‐
gate operations to them—three examples of favoring composition over inheritance in
the standard library. If the desired behavior is very different from what the built-ins
offer, it may be easier to subclass the appropriate ABC from collections.abc and
write your own implementation.

The rest of the chapter was devoted to the double-edged sword of multiple inheri‐
tance. First we saw how the method resolution order, encoded in the __mro__ class
attribute, addresses the problem of potential naming conflicts in inherited methods.
We also saw how the super() built-in behaves, sometimes unexpectedly, in hierar‐
chies with multiple inheritance. The behavior of super() is designed to support
mixin classes, which we then studied through the simple example of the UpperCase
Mixin for case-insensitive mappings.

We saw how multiple inhertance and mixin methods are used in Python’s ABCs, as
well as in the socketserver threading and forking mixins. More complex uses of

514 | Chapter 14: Inheritance: For Better or for Worse

https://fpy.li/collec
https://fpy.li/14-13

multiple inheritance were exemplified by Django’s class-based views and the Tkinter
GUI toolkit. Although Tkinter is not an example of modern best practices, it is an
example of overly complex class hierarchies we may find in legacy systems.

To close the chapter, I presented seven recommendations to cope with inheritance,
and applied some of that advice in a commentary of the Tkinter class hierarchy.

Rejecting inheritance—even single inheritance—is a modern trend. One of the most
successful languages created in the 21st century is Go. It doesn’t have a construct
called “class,” but you can build types that are structs of encapsulated fields and you
can attach methods to those structs. Go allows the definition of interfaces that are
checked by the compiler using structural typing, a.k.a. static duck typing—very simi‐
lar to what we now have with protocol types since Python 3.8. Go has special syntax
for building types and interfaces by composition, but it does not support inheritance
—not even among interfaces.

So perhaps the best advice about inheritance is: avoid it if you can. But often, we
don’t have a choice: the frameworks we use impose their own design choices.

Further Reading
When it comes to reading clarity, properly-done composition is superior to inheri‐
tance. Since code is much more often read than written, avoid subclassing in general,
but especially don’t mix the various types of inheritance, and don’t use subclassing for
code sharing.

—Hynek Schlawack, Subclassing in Python Redux

During the final review of this book, technical reviewer Jürgen Gmach recommended
Hynek Schlawack’s post “Subclassing in Python Redux”—the source of the preceding
quote. Schlawack is the author of the popular attrs package, and was a core contribu‐
tor to the Twisted asynchronous programming framework, a project started by Glyph
Lefkowitz in 2002. Over time, the core team realized they had overused subclassing in
their design, according to Schlawack. His post is long, and cites other important posts
and talks. Highly recommended.

In that same conclusion, Hynek Schlawack wrote: “Don’t forget that more often than
not, a function is all you need.” I agree, and that is precisely why Fluent Python covers
functions in depth before classes and inheritance. My goal was to show how much
you can accomplish with functions leveraging existing classes from the standard
library, before creating your own classes.

Subclassing built-ins, the super function, and advanced features like descriptors and
metaclasses are all introduced in Guido van Rossum’s paper “Unifying types and
classes in Python 2.2”. Nothing really important has changed in these features since
then. Python 2.2 was an amazing feat of language evolution, adding several powerful

Further Reading | 515

https://fpy.li/14-37
https://fpy.li/descr101
https://fpy.li/descr101

new features in a coherent whole, without breaking backward compatibility. The new
features were 100% opt-in. To use them, we just had to explicitly subclass object—
directly or indirectly—to create a so-called “new style class.” In Python 3, every class
subclasses object.

The Python Cookbook, 3rd ed. by David Beazley and Brian K. Jones (O’Reilly) has
several recipes showing the use of super() and mixin classes. You can start from the
illuminating section “8.7. Calling a Method on a Parent Class”, and follow the inter‐
nal references from there.

Raymond Hettinger’s post “Python’s super() considered super!” explains the work‐
ings of super and multiple inheritance in Python from a positive perspective. It was
written in response to “Python’s Super is nifty, but you can’t use it (Previously:
Python’s Super Considered Harmful)” by James Knight. Martijn Pieters’ response to
“How to use super() with one argument?” includes a concise and deep explanation of
super, including its relationship with descriptors, a concept we’ll only study in Chap‐
ter 23. That’s the nature of super. It is simple to use in basic use cases, but is a power‐
ful and complex tool that touches some of Python’s most advanced dynamic features,
rarely found in other languages.

Despite the titles of those posts, the problem is not really the super built-in—which
in Python 3 is not as ugly as it was in Python 2. The real issue is multiple inheritance,
which is inherently complicated and tricky. Michele Simionato goes beyond criticiz‐
ing and actually offers a solution in his “Setting Multiple Inheritance Straight”: he
implements traits, an explict form of mixins that originated in the Self language. Sim‐
ionato has a long series of blog posts about multiple inheritance in Python, including
“The wonders of cooperative inheritance, or using super in Python 3”; “Mixins con‐
sidered harmful,” part 1 and part 2; and “Things to Know About Python Super,” part
1, part 2, and part 3. The oldest posts use the Python 2 super syntax, but are still rele‐
vant.

I read the first edition of Grady Booch et al., Object-Oriented Analysis and Design, 3rd
ed., and highly recommend it as a general primer on object-oriented thinking, inde‐
pendent of programming language. It is a rare book that covers multiple inheritance
without prejudice.

Now more than ever it’s fashionable to avoid inheritance, so here are two references
about how to do that. Brandon Rhodes wrote “The Composition Over Inheritance
Principle”, part of his excellent Python Design Patterns guide. Augie Fackler and
Nathaniel Manista presented “The End Of Object Inheritance & The Beginning Of A
New Modularity” at PyCon 2013. Fackler and Manista talk about organizing systems
around interfaces and functions that handle objects implementing those interfaces,
avoiding the tight coupling and failure modes of classes and inheritance. That
reminds me a lot of the Go way, but they advocate it for Python.

516 | Chapter 14: Inheritance: For Better or for Worse

https://fpy.li/pycook3
https://fpy.li/14-38
https://fpy.li/14-39
https://fpy.li/14-40
https://fpy.li/14-40
https://fpy.li/14-41
https://fpy.li/14-42
https://fpy.li/14-43
https://fpy.li/14-44
https://fpy.li/14-44
https://fpy.li/14-45
https://fpy.li/14-46
https://fpy.li/14-46
https://fpy.li/14-47
https://fpy.li/14-48
https://fpy.li/14-49
https://fpy.li/14-49
https://fpy.li/14-50
https://fpy.li/14-51
https://fpy.li/14-51

15 Alan Kay, “The Early History of Smalltalk,” in SIGPLAN Not. 28, 3 (March 1993), 69–95. Also available
online. Thanks to my friend Christiano Anderson, who shared this reference as I was writing this chapter.

Soapbox

Think about the Classes You Really Need

[We] started to push on the inheritance idea as a way to let novices build on frame‐
works that could only be designed by experts.

—Alan Kay, “The Early History of Smalltalk”15

The vast majority of programmers write applications, not frameworks. Even those
who do write frameworks are likely to spend a lot (if not most) of their time writing
applications. When we write applications, we normally don’t need to code class hier‐
archies. At most, we write classes that subclass from ABCs or other classes provided
by the framework. As application developers, it’s very rare that we need to write a
class that will act as the superclass of another. The classes we code are almost always
leaf classes (i.e., leaves of the inheritance tree).

If, while working as an application developer, you find yourself building multilevel
class hierarchies, it’s likely that one or more of the following applies:

• You are reinventing the wheel. Go look for a framework or library that provides
components you can reuse in your application.

• You are using a badly designed framework. Go look for an alternative.
• You are overengineering. Remember the KISS principle.
• You became bored coding applications and decided to start a new framework.

Congratulations and good luck!

It’s also possible that all of the above apply to your situation: you became bored and
decided to reinvent the wheel by building your own overengineered and badly
designed framework, which is forcing you to code class after class to solve trivial
problems. Hopefully you are having fun, or at least getting paid for it.

Misbehaving Built-Ins: Bug or Feature?

The built-in dict, list, and str types are essential building blocks of Python itself,
so they must be fast—any performance issues in them would severely impact pretty
much everything else. That’s why CPython adopted the shortcuts that cause its built-
in methods to misbehave by not cooperating with methods overridden by subclasses.
A possible way out of this dilemma would be to offer two implementations for each
of those types: one “internal,” optimized for use by the interpreter, and an external,
easily extensible one.

Further Reading | 517

https://fpy.li/14-1

16 My friend and technical reviewer Leonardo Rochael explains better than I could: “The continued existence,
but persistent lack of arrival, of Perl 6 was draining willpower out of the evolution of Perl itself. Now Perl
continues to be developed as a separate language (it’s up to version 5.34 as of now) with no shadow of depre‐
cation because of the language formerly known as Perl 6.”

But wait, this is what we have already: UserDict, UserList, and UserString are not
as fast as the built-ins but are easily extensible. The pragmatic approach taken by
CPython means we also get to use, in our own applications, the highly optimized
implementations that are hard to subclass. Which makes sense, considering that it’s
not so often that we need a custom mapping, list, or string, but we use dict, list,
and str every day. We just need to be aware of the trade-offs involved.

Inheritance Across Languages

Alan Kay coined the term “object-oriented,” and Smalltalk had only single inheri‐
tance, although there are forks with various forms of multiple inheritance support,
including the modern Squeak and Pharo Smalltalk dialects that support traits—a lan‐
guage construct that fulfills the role of a mixin class, while avoiding some of the issues
with multiple inheritance.

The first popular language to implement multiple inheritance was C++, and the fea‐
ture was abused enough that Java—intended as a C++ replacement—was designed
without support for multiple inheritance of implementation (i.e., no mixin classes).
That is, until Java 8 introduced default methods that make interfaces very similar to
the abstract classes used to define interfaces in C++ and in Python. After Java, proba‐
bly the most widely deployed JVM language is Scala, and it implements traits.

Other languages supporting traits are the latest stable versions of PHP and Groovy, as
well as Rust and Raku—the language formerly known as Perl 6.16 So it’s fair to say
that traits are trendy in 2021.

Ruby offers an original take on multiple inheritance: it does not support it, but intro‐
duces mixins as a language feature. A Ruby class can include a module in its body, so
the methods defined in the module become part of the class implementation. This is a
“pure” form of mixin, with no inheritance involved, and it’s clear that a Ruby mixin
has no influence on the type of the class where it’s used. This provides the benefits of
mixins, while avoiding many of its usual problems.

Two new object-oriented languages that are getting a lot of attention severely limit
inheritance: Go and Julia. Both are about programming “objects,” and support
polymorphism, but they avoid the term “class.”

Go has no inheritance at all. Julia has a type hierarchy but subtypes cannot inherit
structure, only behaviors, and only abstract types can be subtyped. In addition, Julia
methods are implemented using multiple dispatch—a more advanced form of the
mechanism we saw in “Single Dispatch Generic Functions” on page 324.

518 | Chapter 14: Inheritance: For Better or for Worse

https://fpy.li/14-53

1 From YouTube video of “A Language Creators’ Conversation: Guido van Rossum, James Gosling, Larry Wall,
and Anders Hejlsberg,” streamed live on April 2, 2019. Quote starts at 1:32:05, edited for brevity. Full tran‐
script available at https://github.com/fluentpython/language-creators.

CHAPTER 15

More About Type Hints

I learned a painful lesson that for small programs, dynamic typing is great. For large
programs you need a more disciplined approach. And it helps if the language gives you
that discipline rather than telling you “Well, you can do whatever you want”.

—Guido van Rossum, a fan of Monty Python1

This chapter is a sequel to Chapter 8, covering more of Python’s gradual type system.
The main topics are:

• Overloaded function signatures
• typing.TypedDict for type hinting dicts used as records
• Type casting
• Runtime access to type hints
• Generic types

— Declaring a generic class
— Variance: invariant, covariant, and contravariant types
— Generic static protocols

What’s New in This Chapter
This chapter is new in the second edition of Fluent Python. Let’s start with overloads.

519

https://fpy.li/15-1
https://github.com/fluentpython/language-creators

Overloaded Signatures
Python functions may accept different combinations of arguments. The @typ
ing.overload decorator allows annotating those different combinations. This is par‐
ticularly important when the return type of the function depends on the type of two
or more parameters.

Consider the sum built-in function. This is the text of help(sum):

>>> help(sum)
sum(iterable, /, start=0)
 Return the sum of a 'start' value (default: 0) plus an iterable of numbers

 When the iterable is empty, return the start value.
 This function is intended specifically for use with numeric values and may
 reject non-numeric types.

The sum built-in is written in C, but typeshed has overloaded type hints for it, in
builtins.pyi:

@overload
def sum(__iterable: Iterable[_T]) -> Union[_T, int]: ...
@overload
def sum(__iterable: Iterable[_T], start: _S) -> Union[_T, _S]: ...

First let’s look at the overall syntax of overloads. That’s all the code about the sum
you’ll find in the stub file (.pyi). The implementation would be in a different file. The
ellipsis (...) has no function other than to fulfill the syntactic requirement for a
function body, similar to pass. So .pyi files are valid Python files.

As mentioned in “Annotating Positional Only and Variadic Parameters” on page 295,
the two leading underscores in __iterable are a PEP 484 convention for positional-
only arguments that is enforced by Mypy. It means you can call sum(my_list), but
not sum(__iterable = my_list).

The type checker tries to match the given arguments with each overloaded signature,
in order. The call sum(range(100), 1000) doesn’t match the first overload, because
that signature has only one parameter. But it matches the second.

You can also use @overload in a regular Python module, by writing the overloaded
signatures right before the function’s actual signature and implementation.
Example 15-1 shows how sum would appear annotated and implemented in a Python
module.

Example 15-1. mysum.py: definition of the sum function with overloaded signatures

import functools
import operator
from collections.abc import Iterable

520 | Chapter 15: More About Type Hints

https://fpy.li/15-2

from typing import overload, Union, TypeVar

T = TypeVar('T')
S = TypeVar('S')

@overload
def sum(it: Iterable[T]) -> Union[T, int]: ...
@overload
def sum(it: Iterable[T], /, start: S) -> Union[T, S]: ...
def sum(it, /, start=0):
 return functools.reduce(operator.add, it, start)

We need this second TypeVar in the second overload.

This signature is for the simple case: sum(my_iterable). The result type may be T
—the type of the elements that my_iterable yields—or it may be int if the itera‐
ble is empty, because the default value of the start parameter is 0.

When start is given, it can be of any type S, so the result type is Union[T, S].
This is why we need S. If we reused T, then the type of start would have to be
the same type as the elements of Iterable[T].

The signature of the actual function implementation has no type hints.

That’s a lot of lines to annotate a one-line function. Probably overkill, I know. At
least it wasn’t a foo function.

If you want to learn about @overload by reading code, typeshed has hundreds of
examples. On typeshed, the stub file for Python’s built-ins has 186 overloads as I write
this—more than any other in the standard library.

Take Advantage of Gradual Typing

Aiming for 100% of annotated code may lead to type hints that add
lots of noise but little value. Refactoring to simplify type hinting
can lead to cumbersome APIs. Sometimes it’s better to be prag‐
matic and leave a piece of code without type hints.

The handy APIs we call Pythonic are often hard to annotate. In the next section we’ll
see an example: six overloads are needed to properly annotate the flexible max built-in
function.

Max Overload
It is difficult to add type hints to functions that leverage the powerful dynamic fea‐
tures of Python.

Overloaded Signatures | 521

https://fpy.li/15-3

While studying typeshed, I found bug report #4051: Mypy failed to warn that it is ille‐
gal to pass None as one of the arguments to the built-in max() function, or to pass an
iterable that at some point yields None. In either case, you get a runtime exception like
this one:

TypeError: '>' not supported between instances of 'int' and 'NoneType'

The documentation of max starts with this sentence:

Return the largest item in an iterable or the largest of two or more arguments.

To me, that’s a very intuitive description.

But if I must annotate a function described in those terms, I have to ask: which is it?
An iterable or two or more arguments?

The reality is more complicated because max also takes two optional keyword argu‐
ments: key and default.

I coded max in Python to make it easier to see the relationship between how it works
and the overloaded annotations (the built-in max is in C); see Example 15-2.

Example 15-2. mymax.py: Python rewrite of max function

imports and definitions omitted, see next listing

MISSING = object()
EMPTY_MSG = 'max() arg is an empty sequence'

overloaded type hints omitted, see next listing

def max(first, *args, key=None, default=MISSING):
 if args:
 series = args
 candidate = first
 else:
 series = iter(first)
 try:
 candidate = next(series)
 except StopIteration:
 if default is not MISSING:
 return default
 raise ValueError(EMPTY_MSG) from None
 if key is None:
 for current in series:
 if candidate < current:
 candidate = current
 else:
 candidate_key = key(candidate)
 for current in series:
 current_key = key(current)

522 | Chapter 15: More About Type Hints

https://fpy.li/shed4051

2 I am grateful to Jelle Zijlstra—a typeshed maintainer—who taught me several things, including how to reduce
my original nine overloads to six.

 if candidate_key < current_key:
 candidate = current
 candidate_key = current_key
 return candidate

The focus of this example is not the logic of max, so I will not spend time with its
implementation, other than explaining MISSING. The MISSING constant is a unique
object instance used as a sentinel. It is the default value for the default= keyword
argument, so that max can accept default=None and still distinguish between these
two situations:

1. The user did not provide a value for default=, so it is MISSING, and max raises
ValueError if first is an empty iterable.

2. The user provided some value for default=, including None, so max returns that
value if first is an empty iterable.

To fix issue #4051, I wrote the code in Example 15-3.2

Example 15-3. mymax.py: top of the module, with imports, definitions, and overloads

from collections.abc import Callable, Iterable
from typing import Protocol, Any, TypeVar, overload, Union

class SupportsLessThan(Protocol):
 def __lt__(self, other: Any) -> bool: ...

T = TypeVar('T')
LT = TypeVar('LT', bound=SupportsLessThan)
DT = TypeVar('DT')

MISSING = object()
EMPTY_MSG = 'max() arg is an empty sequence'

@overload
def max(__arg1: LT, __arg2: LT, *args: LT, key: None = ...) -> LT:
 ...
@overload
def max(__arg1: T, __arg2: T, *args: T, key: Callable[[T], LT]) -> T:
 ...
@overload
def max(__iterable: Iterable[LT], *, key: None = ...) -> LT:
 ...
@overload
def max(__iterable: Iterable[T], *, key: Callable[[T], LT]) -> T:

Overloaded Signatures | 523

https://fpy.li/shed4051

 ...
@overload
def max(__iterable: Iterable[LT], *, key: None = ...,
 default: DT) -> Union[LT, DT]:
 ...
@overload
def max(__iterable: Iterable[T], *, key: Callable[[T], LT],
 default: DT) -> Union[T, DT]:
 ...

My Python implementation of max is about the same length as all those typing
imports and declarations. Thanks to duck typing, my code has no isinstance
checks, and provides the same error checking as those type hints—but only at run‐
time, of course.

A key benefit of @overload is declaring the return type as precisely as possible,
according to the types of the arguments given. We’ll see that benefit next by studying
the overloads for max in groups of one or two at a time.

Arguments implementing SupportsLessThan, but key and default not provided
@overload
def max(__arg1: LT, __arg2: LT, *_args: LT, key: None = ...) -> LT:
 ...
... lines omitted ...
@overload
def max(__iterable: Iterable[LT], *, key: None = ...) -> LT:
 ...

In these cases, the inputs are either separate arguments of type LT implementing
SupportsLessThan, or an Iterable of such items. The return type of max is the same
as the actual arguments or items, as we saw in “Bounded TypeVar” on page 284.

Sample calls that match these overloads:

max(1, 2, -3) # returns 2
max(['Go', 'Python', 'Rust']) # returns 'Rust'

Argument key provided, but no default
@overload
def max(__arg1: T, __arg2: T, *_args: T, key: Callable[[T], LT]) -> T:
 ...
... lines omitted ...
@overload
def max(__iterable: Iterable[T], *, key: Callable[[T], LT]) -> T:
 ...

The inputs can be separate items of any type T or a single Iterable[T], and key=
must be a callable that takes an argument of the same type T, and returns a value that

524 | Chapter 15: More About Type Hints

implements SupportsLessThan. The return type of max is the same as the actual argu‐
ments.

Sample calls that match these overloads:

max(1, 2, -3, key=abs) # returns -3
max(['Go', 'Python', 'Rust'], key=len) # returns 'Python'

Argument default provided, but no key
@overload
def max(__iterable: Iterable[LT], *, key: None = ...,
 default: DT) -> Union[LT, DT]:
 ...

The input is an iterable of items of type LT implementing SupportsLessThan. The
default= argument is the return value when the Iterable is empty. Therefore the
return type of max must be a Union of type LT and the type of the default argument.

Sample calls that match these overloads:

max([1, 2, -3], default=0) # returns 2
max([], default=None) # returns None

Arguments key and default provided
@overload
def max(__iterable: Iterable[T], *, key: Callable[[T], LT],
 default: DT) -> Union[T, DT]:
 ...

The inputs are:

• An Iterable of items of any type T
• Callable that takes an argument of type T and returns a value of type LT that

implements SupportsLessThan
• A default value of any type DT

The return type of max must be a Union of type T or the type of the default
argument:

max([1, 2, -3], key=abs, default=None) # returns -3
max([], key=abs, default=None) # returns None

Takeaways from Overloading max
Type hints allow Mypy to flag a call like max([None, None]) with this error message:

mymax_demo.py:109: error: Value of type variable "_LT" of "max"
 cannot be "None"

Overloaded Signatures | 525

On the other hand, having to write so many lines to support the type checker may
discourage people from writing convenient and flexible functions like max. If I had to
reinvent the min function as well, I could refactor and reuse most of the implementa‐
tion of max. But I’d have to copy and paste all overloaded declarations—even though
they would be identical for min, except for the function name.

My friend João S. O. Bueno—one of the smartest Python devs I know—tweeted this:

Although it is this hard to express the signature of max—it fits in one’s mind quite
easily. My understanding is that the expressiveness of annotation markings is very
limited, compared to that of Python.

Now let’s study the TypedDict typing construct. It is not as useful as I imagined at
first, but has its uses. Experimenting with TypedDict demonstrates the limitations of
static typing for handling dynamic structures, such as JSON data.

TypedDict
It’s tempting to use TypedDict to protect against errors while han‐
dling dynamic data structures like JSON API responses. But the
examples here make clear that correct handling of JSON must be
done at runtime, and not with static type checking. For runtime
checking of JSON-like structures using type hints, check out the
pydantic package on PyPI.

Python dictionaries are sometimes used as records, with the keys used as field names
and field values of different types.

For example, consider a record describing a book in JSON or Python:

{"isbn": "0134757599",
 "title": "Refactoring, 2e",
 "authors": ["Martin Fowler", "Kent Beck"],
 "pagecount": 478}

Before Python 3.8, there was no good way to annotate a record like that, because the
mapping types we saw in “Generic Mappings” on page 276 limit all values to have the
same type.

Here are two lame attempts to annotate a record like the preceding JSON object:

Dict[str, Any]

The values may be of any type.

526 | Chapter 15: More About Type Hints

https://fpy.li/15-4
https://fpy.li/15-5

Dict[str, Union[str, int, List[str]]]

Hard to read, and doesn’t preserve the relationship between field names and
their respective field types: title is supposed to be a str, it can’t be an int or a
List[str].

PEP 589—TypedDict: Type Hints for Dictionaries with a Fixed Set of Keys addressed
that problem. Example 15-4 shows a simple TypedDict.

Example 15-4. books.py: the BookDict definition

from typing import TypedDict

class BookDict(TypedDict):
 isbn: str
 title: str
 authors: list[str]
 pagecount: int

At first glance, typing.TypedDict may seem like a data class builder, similar to
typing.NamedTuple—covered in Chapter 5.

The syntactic similarity is misleading. TypedDict is very different. It exists only for
the benefit of type checkers, and has no runtime effect.

TypedDict provides two things:

• Class-like syntax to annotate a dict with type hints for the value of each “field.”
• A constructor that tells the type checker to expect a dict with the keys and values

as specified.

At runtime, a TypedDict constructor such as BookDict is a placebo: it has the same
effect as calling the dict constructor with the same arguments.

The fact that BookDict creates a plain dict also means that:

• The “fields” in the pseudoclass definition don’t create instance attributes.
• You can’t write initializers with default values for the “fields.”
• Method definitions are not allowed.

Let’s explore the behavior of a BookDict at runtime (Example 15-5).

Example 15-5. Using a BookDict, but not quite as intended

>>> from books import BookDict
>>> pp = BookDict(title='Programming Pearls',
... authors='Jon Bentley',

TypedDict | 527

https://fpy.li/pep589

... isbn='0201657880',

... pagecount=256)
>>> pp
{'title': 'Programming Pearls', 'authors': 'Jon Bentley', 'isbn': '0201657880',
 'pagecount': 256}
>>> type(pp)
<class 'dict'>
>>> pp.title
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'dict' object has no attribute 'title'
>>> pp['title']
'Programming Pearls'
>>> BookDict.__annotations__
{'isbn': <class 'str'>, 'title': <class 'str'>, 'authors': typing.List[str],
 'pagecount': <class 'int'>}

You can call BookDict like a dict constructor with keyword arguments, or pass‐
ing a dict argument—including a dict literal.

Oops…I forgot authors takes a list. But gradual typing means no type checking
at runtime.

The result of calling BookDict is a plain dict…

…therefore you can’t read the data using object.field notation.

The type hints are in BookDict.__annotations__, and not in pp.

Without a type checker, TypedDict is as useful as comments: it may help people read
the code, but that’s it. In contrast, the class builders from Chapter 5 are useful even if
you don’t use a type checker, because at runtime they generate or enhance a custom
class that you can instantiate. They also provide several useful methods or functions
listed in Table 5-1.

Example 15-6 builds a valid BookDict and tries some operations on it. This shows
how TypedDict enables Mypy to catch errors, shown in Example 15-7.

Example 15-6. demo_books.py: legal and illegal operations on a BookDict

from books import BookDict
from typing import TYPE_CHECKING

def demo() -> None:
 book = BookDict(
 isbn='0134757599',
 title='Refactoring, 2e',
 authors=['Martin Fowler', 'Kent Beck'],

528 | Chapter 15: More About Type Hints

 pagecount=478
)
 authors = book['authors']
 if TYPE_CHECKING:
 reveal_type(authors)
 authors = 'Bob'
 book['weight'] = 4.2
 del book['title']

if __name__ == '__main__':
 demo()

Remember to add a return type, so that Mypy doesn’t ignore the function.

This is a valid BookDict: all the keys are present, with values of the correct types.

Mypy will infer the type of authors from the annotation for the 'authors' key
in BookDict.

typing.TYPE_CHECKING is only True when the program is being type checked. At
runtime, it’s always false.

The previous if statement prevents reveal_type(authors) from being called at
runtime. reveal_type is not a runtime Python function, but a debugging facility
provided by Mypy. That’s why there is no import for it. See its output in
Example 15-7.

The last three lines of the demo function are illegal. They will cause error mes‐
sages in Example 15-7.

Type checking demo_books.py from Example 15-6, we get Example 15-7.

Example 15-7. Type checking demo_books.py

…/typeddict/ $ mypy demo_books.py
demo_books.py:13: note: Revealed type is 'built-ins.list[built-ins.str]'
demo_books.py:14: error: Incompatible types in assignment
 (expression has type "str", variable has type "List[str]")
demo_books.py:15: error: TypedDict "BookDict" has no key 'weight'
demo_books.py:16: error: Key 'title' of TypedDict "BookDict" cannot be deleted
Found 3 errors in 1 file (checked 1 source file)

TypedDict | 529

3 As of May 2020, pytype allows it. But its FAQ says it will be disallowed in the future. See the question, “Why
didn’t pytype catch that I changed the type of an annotated variable?” in the pytype FAQ.

4 I prefer to use the lxml package to generate and parse XML: it’s easy to get started, full-featured, and fast.
Unfortunately, lxml and Python’s own ElementTree don’t fit the limited RAM of my hypothetical microcon‐
troller.

This note is the result of reveal_type(authors).

The type of the authors variable was inferred from the type of the book['au
thors'] expression that initialized it. You can’t assign a str to a variable of type
List[str]. Type checkers usually don’t allow the type of a variable to change.3

Cannot assign to a key that is not part of the BookDict definition.

Cannot delete a key that is part of the BookDict definition.

Now let’s see BookDict used in function signatures, to type check function calls.

Imagine you need to generate XML from book records, similar to this:

<BOOK>
 <ISBN>0134757599</ISBN>
 <TITLE>Refactoring, 2e</TITLE>
 <AUTHOR>Martin Fowler</AUTHOR>
 <AUTHOR>Kent Beck</AUTHOR>
 <PAGECOUNT>478</PAGECOUNT>
</BOOK>

If you were writing MicroPython code to be embedded in a tiny microcontroller, you
might write a function like what’s shown in Example 15-8.4

Example 15-8. books.py: to_xml function

AUTHOR_ELEMENT = '<AUTHOR>{}</AUTHOR>'

def to_xml(book: BookDict) -> str:
 elements: list[str] = []
 for key, value in book.items():
 if isinstance(value, list):
 elements.extend(
 AUTHOR_ELEMENT.format(n) for n in value)
 else:
 tag = key.upper()
 elements.append(f'<{tag}>{value}</{tag}>')
 xml = '\n\t'.join(elements)
 return f'<BOOK>\n\t{xml}\n</BOOK>'

530 | Chapter 15: More About Type Hints

https://fpy.li/15-6
https://fpy.li/15-6
https://fpy.li/15-8
https://fpy.li/15-9

5 The Mypy documentation discusses this in its “Common issues and solutions” page, in the section, “Types of
empty collections”.

6 Brett Cannon, Guido van Rossum, and others have been discussing how to type hint json.loads() since
2016 in Mypy issue #182: Define a JSON type.

The whole point of the example: using BookDict in the function signature.

It’s often necessary to annotate collections that start empty, otherwise Mypy can’t
infer the type of the elements.5

Mypy understands isinstance checks, and treats value as a list in this block.

When I used key == 'authors' as the condition for the if guarding this block,
Mypy found an error in this line: "object" has no attribute "__iter__",
because it inferred the type of value returned from book.items() as object,
which doesn’t support the __iter__ method required by the generator expres‐
sion. With the isinstance check, this works because Mypy knows that value is a
list in this block.

Example 15-9 shows a function that parses a JSON str and returns a BookDict.

Example 15-9. books_any.py: from_json function

def from_json(data: str) -> BookDict:
 whatever = json.loads(data)
 return whatever

The return type of json.loads() is Any.6

I can return whatever—of type Any—because Any is consistent-with every type,
including the declared return type, BookDict.

The second point of Example 15-9 is very important to keep in mind: Mypy will not
flag any problem in this code, but at runtime the value in whatever may not conform
to the BookDict structure—in fact, it may not be a dict at all!

If you run Mypy with --disallow-any-expr, it will complain about the two lines in
the body of from_json:

…/typeddict/ $ mypy books_any.py --disallow-any-expr
books_any.py:30: error: Expression has type "Any"
books_any.py:31: error: Expression has type "Any"
Found 2 errors in 1 file (checked 1 source file)

TypedDict | 531

https://fpy.li/15-10
https://fpy.li/15-11
https://fpy.li/15-11
https://fpy.li/15-12

Lines 30 and 31 mentioned in the previous snippet are the body of the from_json
function. We can silence the type error by adding a type hint to the initialization of
the whatever variable, as in Example 15-10.

Example 15-10. books.py: from_json function with variable annotation

def from_json(data: str) -> BookDict:
 whatever: BookDict = json.loads(data)
 return whatever

--disallow-any-expr does not cause errors when an expression of type Any is
immediately assigned to a variable with a type hint.

Now whatever is of type BookDict, the declared return type.

Don’t be lulled into a false sense of type safety by Example 15-10!
Looking at the code at rest, the type checker cannot predict that
json.loads() will return anything that resembles a BookDict.
Only runtime validation can guarantee that.

Static type checking is unable to prevent errors with code that is inherently dynamic,
such as json.loads(), which builds Python objects of different types at runtime, as
Examples 15-11, 15-12, and 15-13 demonstrate.

Example 15-11. demo_not_book.py: from_json returns an invalid BookDict, and
to_xml accepts it

from books import to_xml, from_json
from typing import TYPE_CHECKING

def demo() -> None:
 NOT_BOOK_JSON = """
 {"title": "Andromeda Strain",
 "flavor": "pistachio",
 "authors": true}
 """
 not_book = from_json(NOT_BOOK_JSON)
 if TYPE_CHECKING:
 reveal_type(not_book)
 reveal_type(not_book['authors'])

 print(not_book)
 print(not_book['flavor'])

 xml = to_xml(not_book)
 print(xml)

532 | Chapter 15: More About Type Hints

if __name__ == '__main__':
 demo()

This line does not produce a valid BookDict—see the content of NOT_BOOK_JSON.

Let’s have Mypy reveal a couple of types.

This should not be a problem: print can handle object and every other type.

BookDict has no 'flavor' key, but the JSON source does…what will happen?

Remember the signature: def to_xml(book: BookDict) -> str:.

What will the XML output look like?

Now we check demo_not_book.py with Mypy (Example 15-12).

Example 15-12. Mypy report for demo_not_book.py, reformatted for clarity

…/typeddict/ $ mypy demo_not_book.py
demo_not_book.py:12: note: Revealed type is
 'TypedDict('books.BookDict', {'isbn': built-ins.str,
 'title': built-ins.str,
 'authors': built-ins.list[built-ins.str],
 'pagecount': built-ins.int})'
demo_not_book.py:13: note: Revealed type is 'built-ins.list[built-ins.str]'
demo_not_book.py:16: error: TypedDict "BookDict" has no key 'flavor'
Found 1 error in 1 file (checked 1 source file)

The revealed type is the nominal type, not the runtime content of not_book.

Again, this is the nominal type of not_book['authors'], as defined in BookDict.
Not the runtime type.

This error is for line print(not_book['flavor']): that key does not exist in the
nominal type.

Now let’s run demo_not_book.py, showing the output in Example 15-13.

Example 15-13. Output of running demo_not_book.py

…/typeddict/ $ python3 demo_not_book.py
{'title': 'Andromeda Strain', 'flavor': 'pistachio', 'authors': True}
pistachio
<BOOK>

TypedDict | 533

 <TITLE>Andromeda Strain</TITLE>
 <FLAVOR>pistachio</FLAVOR>
 <AUTHORS>True</AUTHORS>
</BOOK>

This is not really a BookDict.

The value of not_book['flavor'].

to_xml takes a BookDict argument, but there is no runtime checking: garbage in,
garbage out.

Example 15-13 shows that demo_not_book.py outputs nonsense, but has no runtime
errors. Using a TypedDict while handling JSON data did not provide much type
safety.

If you look at the code for to_xml in Example 15-8 through the lens of duck typing,
the argument book must provide an .items() method that returns an iterable of
tuples like (key, value) where:

• key must have an .upper() method
• value can be anything

The point of this demonstration: when handling data with a dynamic structure, such
as JSON or XML, TypedDict is absolutely not a replacement for data validation at
runtime. For that, use pydantic.

TypedDict has more features, including support for optional keys, a limited form of
inheritance, and an alternative declaration syntax. If you want to know more about it,
please review PEP 589—TypedDict: Type Hints for Dictionaries with a Fixed Set of
Keys.

Now let’s turn our attention to a function that is best avoided, but sometimes is
unavoidable: typing.cast.

Type Casting
No type system is perfect, and neither are the static type checkers, the type hints in
the typeshed project, or the type hints in the third-party packages that have them.

The typing.cast() special function provides one way to handle type checking mal‐
functions or incorrect type hints in code we can’t fix. The Mypy 0.930 documentation
explains:

Casts are used to silence spurious type checker warnings and give the type checker a
little help when it can’t quite understand what is going on.

534 | Chapter 15: More About Type Hints

https://fpy.li/15-5
https://fpy.li/pep589
https://fpy.li/pep589
https://fpy.li/15-14

7 The use of enumerate in the example is intended to confuse the type checker. A simpler implementation
yielding strings directly instead of going through the enumerate index is correctly analyzed by Mypy, and the
cast() is not needed.

At runtime, typing.cast does absolutely nothing. This is its implementation:

def cast(typ, val):
 """Cast a value to a type.
 This returns the value unchanged. To the type checker this
 signals that the return value has the designated type, but at
 runtime we intentionally don't check anything (we want this
 to be as fast as possible).
 """
 return val

PEP 484 requires type checkers to “blindly believe” the type stated in the cast. The
“Casts” section of PEP 484 gives an example where the type checker needs the guid‐
ance of cast:

from typing import cast

def find_first_str(a: list[object]) -> str:
 index = next(i for i, x in enumerate(a) if isinstance(x, str))
 # We only get here if there's at least one string
 return cast(str, a[index])

The next() call on the generator expression will either return the index of a str item
or raise StopIteration. Therefore, find_first_str will always return a str if no
exception is raised, and str is the declared return type.

But if the last line were just return a[index], Mypy would infer the return type as
object because the a argument is declared as list[object]. So the cast() is
required to guide Mypy.7

Here is another example with cast, this time to correct an outdated type hint for
Python’s standard library. In Example 21-12, I create an asyncio Server object and I
want to get the address the server is listening to. I coded this line:

addr = server.sockets[0].getsockname()

But Mypy reported this error:

Value of type "Optional[List[socket]]" is not indexable

The type hint for Server.sockets on typeshed in May 2021 is valid for Python 3.6,
where the sockets attribute could be None. But in Python 3.7, sockets became a
property with a getter that always returns a list—which may be empty if the server
has no sockets. And since Python 3.8, the getter returns a tuple (used as an immuta‐
ble sequence).

Type Casting | 535

https://fpy.li/15-15
https://fpy.li/15-16

8 I reported typeshed issue #5535, “Wrong type hint for asyncio.base_events.Server sockets attribute.” and it
was quickly fixed by Sebastian Rittau. However, I decided to keep the example because it illustrates a com‐
mon use case for cast, and the cast I wrote is harmless.

9 To be honest, I originally appended a # type: ignore comment to the line with server.sockets[0] because
after a little research I found similar lines the asyncio documentation and in a test case, so I suspected the
problem was not in my code.

10 19 May 2020 message to the typing-sig mailing list.

Since I can’t fix typeshed right now,8 I added a cast, like this:

from asyncio.trsock import TransportSocket
from typing import cast

... many lines omitted ...

 socket_list = cast(tuple[TransportSocket, ...], server.sockets)
 addr = socket_list[0].getsockname()

Using cast in this case required a couple of hours to understand the problem and
read asyncio source code to find the correct type of the sockets: the TransportSocket
class from the undocumented asyncio.trsock module. I also had to add two import
statements and another line of code for readability.9 But the code is safer.

The careful reader may note that sockets[0] could raise IndexError if sockets is
empty. However, as far as I understand asyncio, that cannot happen in
Example 21-12 because the server is ready to accept connections by the time I read
its sockets attribute, therefore it will not be empty. Anyway, IndexError is a runtime
error. Mypy can’t spot the problem even in a trivial case like print([][0]).

Don’t get too comfortable using cast to silence Mypy, because
Mypy is usually right when it reports an error. If you are using
cast very often, that’s a code smell. Your team may be misusing
type hints, or you may have low-quality dependencies in your
codebase.

Despite the downsides, there are valid uses for cast. Here is something Guido van
Rossum wrote about it:

What’s wrong with the occasional cast() call or # type: ignore comment?10

536 | Chapter 15: More About Type Hints

https://fpy.li/15-17
https://fpy.li/15-18
https://fpy.li/15-19
https://fpy.li/15-21
https://fpy.li/15-20

11 The syntax # type: ignore[code] allows you to specify which Mypy error code is being silenced, but the
codes are not always easy to interpret. See “Error codes” in the Mypy documentation.

12 I will not go into the implementation of clip, but you can read the whole module in clip_annot.py if you’re
curious.

It is unwise to completely ban the use of cast, especially because the other work‐
arounds are worse:

• # type: ignore is less informative.11

• Using Any is contagious: since Any is consistent-with all types, abusing it may pro‐
duce cascading effects through type inference, undermining the type checker’s
ability to detect errors in other parts of the code.

Of course, not all typing mishaps can be fixed with cast. Sometimes we need #
type: ignore, the occasional Any, or even leaving a function without type hints.

Next, let’s talk about using annotations at runtime.

Reading Type Hints at Runtime
At import time, Python reads the type hints in functions, classes, and modules, and
stores them in attributes named __annotations__. For instance, consider the clip
function in Example 15-14.12

Example 15-14. clipannot.py: annotated signature of a clip function

def clip(text: str, max_len: int = 80) -> str:

The type hints are stored as a dict in the __annotations__ attribute of the function:

>>> from clip_annot import clip
>>> clip.__annotations__
{'text': <class 'str'>, 'max_len': <class 'int'>, 'return': <class 'str'>}

The 'return' key maps to the return type hint after the -> symbol in Example 15-14.

Note that the annotations are evaluated by the interpreter at import time, just as
parameter default values are also evaluated. That’s why the values in the annotations
are the Python classes str and int, and not the strings 'str' and 'int'. The import
time evaluation of annotations is the standard as of Python 3.10, but that may change
if PEP 563 or PEP 649 become the standard behavior.

Reading Type Hints at Runtime | 537

https://fpy.li/15-22
https://fpy.li/15-23
https://fpy.li/pep563
https://fpy.li/pep649

Problems with Annotations at Runtime
The increased use of type hints raised two problems:

• Importing modules uses more CPU and memory when many type hints are used.
• Referring to types not yet defined requires using strings instead of actual types.

Both issues are relevant. The first is because of what we just saw: annotations are
evaluated by the interpreter at import time and stored in the __annotations__
attribute. Let’s focus now on the second issue.

Storing annotations as strings is sometimes required because of the “forward refer‐
ence” problem: when a type hint needs to refer to a class defined below in the same
module. However, a common manifestation of the problem in source code doesn’t
look like a forward reference at all: that’s when a method returns a new object of the
same class. Since the class object is not defined until Python completely evaluates the
class body, type hints must use the name of the class as a string. Here is an example:

class Rectangle:
 # ... lines omitted ...
 def stretch(self, factor: float) -> 'Rectangle':
 return Rectangle(width=self.width * factor)

Writing forward referencing type hints as strings is the standard and required prac‐
tice as of Python 3.10. Static type checkers were designed to deal with that issue from
the beginning.

But at runtime, if you write code to read the return annotation for stretch, you will
get a string 'Rectangle' instead of a reference to the actual type, the Rectangle class.
Now your code needs to figure out what that string means.

The typing module includes three functions and a class categorized as Introspection
helpers, the most important being typing.get_type_hints. Part of its documenta‐
tion states:

get_type_hints(obj, globals=None, locals=None, include_extras=False)

[…] This is often the same as obj.__annotations__. In addition, forward refer‐
ences encoded as string literals are handled by evaluating them in globals and
locals namespaces. […]

Since Python 3.10, the new inspect.get_annotations(…) func‐
tion should be used instead of typing.get_type_hints. However,
some readers may not be using Python 3.10 yet, so in the examples
I’ll use typing.get_type_hints, which is available since the typ
ing module was added in Python 3.5.

538 | Chapter 15: More About Type Hints

https://fpy.li/15-24
https://fpy.li/15-24
https://fpy.li/15-25

PEP 563—Postponed Evaluation of Annotations was approved to make it unneces‐
sary to write annotations as strings, and to reduce the runtime costs of type hints. Its
main idea is described in these two sentences of the “Abstract”:

This PEP proposes changing function annotations and variable annotations so that
they are no longer evaluated at function definition time. Instead, they are preserved in
annotations in string form.

Beginning with Python 3.7, that’s how annotations are handled in any module that
starts with this import statement:

from __future__ import annotations

To demonstrate its effect, I put a copy of the same clip function from Example 15-14
in a clip_annot_post.py module with that __future__ import line at the top.

At the console, here’s what I get when I import that module and read the annotations
from clip:

>>> from clip_annot_post import clip
>>> clip.__annotations__
{'text': 'str', 'max_len': 'int', 'return': 'str'}

As you can see, all the type hints are now plain strings, despite the fact they are not
written as quoted strings in the definition of clip (Example 15-14).

The typing.get_type_hints function is able to resolve many type hints, including
those in clip:

>>> from clip_annot_post import clip
>>> from typing import get_type_hints
>>> get_type_hints(clip)
{'text': <class 'str'>, 'max_len': <class 'int'>, 'return': <class 'str'>}

Calling get_type_hints gives us the real types—even in some cases where the origi‐
nal type hint is written as a quoted string. That’s the recommended way to read type
hints at runtime.

The PEP 563 behavior was scheduled to become default in Python 3.10, with no
__future__ import needed. However, the maintainers of FastAPI and pydantic raised
the alarm that the change would break their code which relies on type hints at run‐
time, and cannot use get_type_hints reliably.

In the ensuing discussion on the python-dev mailing list, Łukasz Langa—the author
of PEP 563—described some limitations of that function:

[…] it turned out that typing.get_type_hints() has limits that make its use in gen‐
eral costly at runtime, and more importantly insufficient to resolve all types. The most
common example deals with non-global context in which types are generated (e.g.,
inner classes, classes within functions, etc.). But one of the crown examples of forward
references: classes with methods accepting or returning objects of their own type, also

Reading Type Hints at Runtime | 539

https://fpy.li/pep563
https://fpy.li/15-26

13 Message “PEP 563 in light of PEP 649”, posted April 16, 2021.

isn’t properly handled by typing.get_type_hints() if a class generator is used.
There’s some trickery we can do to connect the dots but in general it’s not great.13

Python’s Steering Council decided to postpone making PEP 563 the default behavior
until Python 3.11 or later, giving more time to developers to come up with a solution
that addresses the issues PEP 563 tried to solve, without breaking widespread uses of
type hints at runtime. PEP 649—Deferred Evaluation Of Annotations Using Descrip‐
tors is under consideration as a possible solution, but a different compromise may be
reached.

To summarize: reading type hints at runtime is not 100% reliable as of Python 3.10
and is likely to change in 2022.

Companies using Python at a very large scale want the benefits of
static typing, but they don’t want to pay the price for the evaluation
of the type hints at import time. Static checking happens at devel‐
oper workstations and dedicated CI servers, but loading modules
happens at a much higher frequency and volume in the production
containers, and this cost is not negligible at scale.
This creates tension in the Python community between those who
want type hints to be stored as strings only—to reduce the loading
costs—versus those who also want to use type hints at runtime, like
the creators and users of pydantic and FastAPI, who would rather
have type objects stored instead of having to evaluate those annota‐
tions, a challenging task.

Dealing with the Problem
Given the unstable situation at present, if you need to read annotations at runtime, I
recommend:

• Avoid reading __annotations__ directly; instead, use inspect.get_annota
tions (from Python 3.10) or typing.get_type_hints (since Python 3.5).

• Write a custom function of your own as a thin wrapper around in spect

.get_annotations or typing.get_type_hints, and have the rest of your code‐
base call that custom function, so that future changes are localized to a single
function.

To demonstrate the second point, here are the first lines of the Checked class defined
in Example 24-5, which we’ll study in Chapter 24:

540 | Chapter 15: More About Type Hints

https://fpy.li/15-27
https://fpy.li/pep649
https://fpy.li/pep649

class Checked:
 @classmethod
 def _fields(cls) -> dict[str, type]:
 return get_type_hints(cls)
 # ... more lines ...

The Checked._fields class method protects other parts of the module from depend‐
ing directly on typing.get_type_hints. If get_type_hints changes in the future,
requiring additional logic, or you want to replace it with inspect.get_annotations,
the change is limited to Checked._fields and does not affect the rest of your
program.

Given the ongoing discussions and proposed changes for runtime
inspection of type hints, the official “Annotations Best Practices”
document is required reading, and is likely to be updated on the
road to Python 3.11. That how-to was written by Larry Hastings,
the author of PEP 649—Deferred Evaluation Of Annotations Using
Descriptors, an alternative proposal to address the runtime issues
raised by PEP 563—Postponed Evaluation of Annotations.

The remaining sections of this chapter cover generics, starting with how to define a
generic class that can be parameterized by its users.

Implementing a Generic Class
In Example 13-7 we defined the Tombola ABC: an interface for classes that work like
a bingo cage. The LottoBlower class from Example 13-10 is a concrete implementa‐
tion. Now we’ll study a generic version of LottoBlower used like in Example 15-15.

Example 15-15. generic_lotto_demo.py: using a generic lottery blower class

from generic_lotto import LottoBlower

machine = LottoBlower[int](range(1, 11))

first = machine.pick()
remain = machine.inspect()

To instantiate a generic class, we give it an actual type parameter, like int here.

Mypy will correctly infer that first is an int…

… and that remain is a tuple of integers.

Implementing a Generic Class | 541

https://fpy.li/15-28
https://fpy.li/pep649
https://fpy.li/pep649
https://fpy.li/pep563

In addition, Mypy reports violations of the parameterized type with helpful messages,
such as what’s shown in Example 15-16.

Example 15-16. generic_lotto_errors.py: errors reported by Mypy

from generic_lotto import LottoBlower

machine = LottoBlower[int]([1, .2])
error: List item 1 has incompatible type "float";
expected "int"

machine = LottoBlower[int](range(1, 11))

machine.load('ABC')
error: Argument 1 to "load" of "LottoBlower"
has incompatible type "str";
expected "Iterable[int]"
note: Following member(s) of "str" have conflicts:
note: Expected:
note: def __iter__(self) -> Iterator[int]
note: Got:
note: def __iter__(self) -> Iterator[str]

Upon instantiation of LottoBlower[int], Mypy flags the float.

When calling .load('ABC'), Mypy explains why a str won’t do: str.__iter__
returns an Iterator[str], but LottoBlower[int] requires an Iterator[int].

Example 15-17 is the implementation.

Example 15-17. generic_lotto.py: a generic lottery blower class

import random

from collections.abc import Iterable
from typing import TypeVar, Generic

from tombola import Tombola

T = TypeVar('T')

class LottoBlower(Tombola, Generic[T]):

 def __init__(self, items: Iterable[T]) -> None:
 self._balls = list[T](items)

 def load(self, items: Iterable[T]) -> None:
 self._balls.extend(items)

542 | Chapter 15: More About Type Hints

 def pick(self) -> T:
 try:
 position = random.randrange(len(self._balls))
 except ValueError:
 raise LookupError('pick from empty LottoBlower')
 return self._balls.pop(position)

 def loaded(self) -> bool:
 return bool(self._balls)

 def inspect(self) -> tuple[T, ...]:
 return tuple(self._balls)

Generic class declarations often use multiple inheritance, because we need to
subclass Generic to declare the formal type parameters—in this case, T.

The items argument in __init__ is of type Iterable[T], which becomes Itera
ble[int] when an instance is declared as LottoBlower[int].

The load method is likewise constrained.

The return type of T now becomes int in a LottoBlower[int].

No type variable here.

Finally, T sets the type of the items in the returned tuple.

The “User-defined generic types” section of the typing module
documentation is short, presents good examples, and provides a
few more details that I do not cover here.

Now that we’ve seen how to implement a generic class, let’s define the terminology to
talk about generics.

Implementing a Generic Class | 543

https://fpy.li/15-29

14 The terms are from Joshua Bloch’s classic book, Effective Java, 3rd ed. (Addison-Wesley). The definitions and
examples are mine.

Basic Jargon for Generic Types
Here are a few definitions that I found useful when studying generics:14

Generic type
A type declared with one or more type variables.
Examples: LottoBlower[T], abc.Mapping[KT, VT]

Formal type parameter
The type variables that appear in a generic type declaration.
Example: KT and VT in the previous example abc.Mapping[KT, VT]

Parameterized type
A type declared with actual type parameters.
Examples: LottoBlower[int], abc.Mapping[str, float]

Actual type parameter
The actual types given as parameters when a parameterized type is declared.
Example: the int in LottoBlower[int]

The next topic is about how to make generic types more flexible, introducing the
concepts of covariance, contravariance, and invariance.

Variance
Depending on your experience with generics in other languages,
this may be the most challenging section in the book. The concept
of variance is abstract, and a rigorous presentation would make
this section look like pages from a math book.
In practice, variance is mostly relevant to library authors who want
to support new generic container types or provide callback-based
APIs. Even then, you can avoid much complexity by supporting
only invariant containers—which is mostly what we have now in
the Python standard library. So, on a first reading, you can skip the
whole section or just read the sections about invariant types.

We first saw the concept of variance in “Variance in Callable types” on page 292,
applied to parameterized generic Callable types. Here we’ll expand the concept to
cover generic collection types, using a “real world” analogy to make this abstract con‐
cept more concrete.

544 | Chapter 15: More About Type Hints

15 I first saw the cafeteria analogy for variance in Erik Meijer’s Foreword in The Dart Programming Language
book by Gilad Bracha (Addison-Wesley).

16 Much better than banning books!

Imagine that a school cafeteria has a rule that only juice dispensers can be installed.15

General beverage dispensers are not allowed because they may serve sodas, which are
banned by the school board.16

An Invariant Dispenser
Let’s try to model the cafeteria scenario with a generic BeverageDispenser class that
can be parameterized on the type of beverage. See Example 15-18.

Example 15-18. invariant.py: type definitions and install function

from typing import TypeVar, Generic

class Beverage:
 """Any beverage."""

class Juice(Beverage):
 """Any fruit juice."""

class OrangeJuice(Juice):
 """Delicious juice from Brazilian oranges."""

T = TypeVar('T')

class BeverageDispenser(Generic[T]):
 """A dispenser parameterized on the beverage type."""
 def __init__(self, beverage: T) -> None:
 self.beverage = beverage

 def dispense(self) -> T:
 return self.beverage

def install(dispenser: BeverageDispenser[Juice]) -> None:
 """Install a fruit juice dispenser."""

Beverage, Juice, and OrangeJuice form a type hierarchy.

Simple TypeVar declaration.

BeverageDispenser is parameterized on the type of beverage.

Variance | 545

install is a module-global function. Its type hint enforces the rule that only a
juice dispenser is acceptable.

Given the definitions in Example 15-18, the following code is legal:

juice_dispenser = BeverageDispenser(Juice())
install(juice_dispenser)

However, this is not legal:

beverage_dispenser = BeverageDispenser(Beverage())
install(beverage_dispenser)
mypy: Argument 1 to "install" has
incompatible type "BeverageDispenser[Beverage]"
expected "BeverageDispenser[Juice]"

A dispenser that serves any Beverage is not acceptable because the cafeteria requires
a dispenser that is specialized for Juice.

Somewhat surprisingly, this code is also illegal:

orange_juice_dispenser = BeverageDispenser(OrangeJuice())
install(orange_juice_dispenser)
mypy: Argument 1 to "install" has
incompatible type "BeverageDispenser[OrangeJuice]"
expected "BeverageDispenser[Juice]"

A dispenser specialized for OrangeJuice is not allowed either. Only BeverageDis
penser[Juice] will do. In the typing jargon, we say that BeverageDis

penser(Generic[T]) is invariant when BeverageDispenser[OrangeJuice] is not
compatible with BeverageDispenser[Juice]—despite the fact that OrangeJuice is a
subtype-of Juice.

Python mutable collection types—such as list and set—are invariant. The Lotto
Blower class from Example 15-17 is also invariant.

A Covariant Dispenser
If we want to be more flexible and model dispensers as a generic class that can accept
some beverage type and also its subtypes, we must make it covariant. Example 15-19
shows how we’d declare BeverageDispenser.

Example 15-19. covariant.py: type definitions and install function

T_co = TypeVar('T_co', covariant=True)

class BeverageDispenser(Generic[T_co]):
 def __init__(self, beverage: T_co) -> None:
 self.beverage = beverage

546 | Chapter 15: More About Type Hints

 def dispense(self) -> T_co:
 return self.beverage

def install(dispenser: BeverageDispenser[Juice]) -> None:
 """Install a fruit juice dispenser."""

Set covariant=True when declaring the type variable; _co is a conventional suf‐
fix for covariant type parameters on typeshed.

Use T_co to parameterize the Generic special class.

Type hints for install are the same as in Example 15-18.

The following code works because now both the Juice dispenser and the Orange
Juice dispenser are valid in a covariant BeverageDispenser:

juice_dispenser = BeverageDispenser(Juice())
install(juice_dispenser)

orange_juice_dispenser = BeverageDispenser(OrangeJuice())
install(orange_juice_dispenser)

But a dispenser for an arbitrary Beverage is not acceptable:

beverage_dispenser = BeverageDispenser(Beverage())
install(beverage_dispenser)
mypy: Argument 1 to "install" has
incompatible type "BeverageDispenser[Beverage]"
expected "BeverageDispenser[Juice]"

That’s covariance: the subtype relationship of the parameterized dispensers varies in
the same direction as the subtype relationship of the type parameters.

A Contravariant Trash Can
Now we’ll model the cafeteria rule for deploying a trash can. Let’s assume food and
drinks are served in biodegradable packages, and leftovers as well as single-use uten‐
sils are also biodegradable. The trash cans must be suitable for biodegradable refuse.

Variance | 547

For the sake of this didactic example, let’s make simplifying
assumptions to classify trash in a neat hierarchy:

• Refuse is the most general type of trash. All trash is refuse.
• Biodegradable is a specific type of trash that can be decom‐

posed by organisms over time. Some Refuse is not Biodegrad
able.

• Compostable is a specific type of Biodegradable trash that can
be efficiently turned into organic fertilizer in a compost bin or
in a composting facility. Not all Biodegradable trash is Compo
stable in our definition.

In order to model the rule for an acceptable trash can in the cafeteria, we need to
introduce the concept of “contravariance” through an example using it, as shown in
Example 15-20.

Example 15-20. contravariant.py: type definitions and install function

from typing import TypeVar, Generic

class Refuse:
 """Any refuse."""

class Biodegradable(Refuse):
 """Biodegradable refuse."""

class Compostable(Biodegradable):
 """Compostable refuse."""

T_contra = TypeVar('T_contra', contravariant=True)

class TrashCan(Generic[T_contra]):
 def put(self, refuse: T_contra) -> None:
 """Store trash until dumped."""

def deploy(trash_can: TrashCan[Biodegradable]):
 """Deploy a trash can for biodegradable refuse."""

A type hierarchy for refuse: Refuse is the most general type, Compostable is the
most specific.

T_contra is a conventional name for a contravariant type variable.

TrashCan is contravariant on the type of refuse.

Given those definitions, these types of trash cans are acceptable:

548 | Chapter 15: More About Type Hints

bio_can: TrashCan[Biodegradable] = TrashCan()
deploy(bio_can)

trash_can: TrashCan[Refuse] = TrashCan()
deploy(trash_can)

The more general TrashCan[Refuse] is acceptable because it can take any kind of
refuse, including Biodegradable. However, a TrashCan[Compostable] will not do,
because it cannot take Biodegradable:

compost_can: TrashCan[Compostable] = TrashCan()
deploy(compost_can)
mypy: Argument 1 to "deploy" has
incompatible type "TrashCan[Compostable]"
expected "TrashCan[Biodegradable]"

Let’s summarize the concepts we just saw.

Variance Review
Variance is a subtle property. The following sections recap the concept of invariant,
covariant, and contravariant types, and provide some rules of thumb to reason about
them.

Invariant types

A generic type L is invariant when there is no supertype or subtype relationship
between two parameterized types, regardless of the relationship that may exist
between the actual parameters. In other words, if L is invariant, then L[A] is not a
supertype or a subtype of L[B]. They are inconsistent in both ways.

As mentioned, Python’s mutable collections are invariant by default. The list type is
a good example: list[int] is not consistent-with list[float] and vice versa.

In general, if a formal type parameter appears in type hints of method arguments,
and the same parameter appears in method return types, that parameter must be
invariant to ensure type safety when updating and reading from the collection.

For example, here is part of the type hints for the list built-in on typeshed:

class list(MutableSequence[_T], Generic[_T]):
 @overload
 def __init__(self) -> None: ...
 @overload
 def __init__(self, iterable: Iterable[_T]) -> None: ...
 # ... lines omitted ...
 def append(self, __object: _T) -> None: ...
 def extend(self, __iterable: Iterable[_T]) -> None: ...
 def pop(self, __index: int = ...) -> _T: ...
 # etc...

Variance | 549

https://fpy.li/15-30

Note that _T appears in the arguments of __init__, append, and extend, and as the
return type of pop. There is no way to make such a class type safe if it is covariant or
contravariant in _T.

Covariant types

Consider two types A and B, where B is consistent-with A, and neither of them is Any.
Some authors use the <: and :> symbols to denote type relationships like this:

A :> B

A is a supertype-of or the same as B.

B <: A

B is a subtype-of or the same as A.

Given A :> B, a generic type C is covariant when C[A] :> C[B].

Note the direction of the :> symbol is the same in both cases where A is to the left
of B. Covariant generic types follow the subtype relationship of the actual type
parameters.

Immutable containers can be covariant. For example, this is how the typing.Frozen
Set class is documented as a covariant with a type variable using the conventional
name T_co:

class FrozenSet(frozenset, AbstractSet[T_co]):

Applying the :> notation to parameterized types, we have:

 float :> int
frozenset[float] :> frozenset[int]

Iterators are another example of covariant generics: they are not read-only collections
like a frozenset, but they only produce output. Any code expecting an abc.Itera
tor[float] yielding floats can safely use an abc.Iterator[int] yielding integers.
Callable types are covariant on the return type for a similar reason.

Contravariant types

Given A :> B, a generic type K is contravariant if K[A] <: K[B].

Contravariant generic types reverse the subtype relationship of the actual type
parameters.

The TrashCan class exemplifies this:

 Refuse :> Biodegradable
TrashCan[Refuse] <: TrashCan[Biodegradable]

550 | Chapter 15: More About Type Hints

https://fpy.li/15-31

A contravariant container is usually a write-only data structure, also known as a
“sink.” There are no examples of such collections in the standard library, but there
are a few types with contravariant type parameters.

Callable[[ParamType, …], ReturnType] is contravariant on the parameter types,
but covariant on the ReturnType, as we saw in “Variance in Callable types” on page
292. In addition, Generator, Coroutine, and AsyncGenerator have one contravariant
type parameter. The Generator type is described in “Generic Type Hints for Classic
Coroutines” on page 650; Coroutine and AsyncGenerator are described in Chapter 21.

For the present discussion about variance, the main point is that the contravariant
formal parameter defines the type of the arguments used to invoke or send data to
the object, while different covariant formal parameters define the types of outputs
produced by the object—the yield type or the return type, depending on the object.
The meanings of “send” and “yield” are explained in “Classic Coroutines” on page 641.

We can derive useful guidelines from these observations of covariant outputs and
contravariant inputs.

Variance rules of thumb
Finally, here are a few rules of thumb to reason about when thinking through
variance:

• If a formal type parameter defines a type for data that comes out of the object, it
can be covariant.

• If a formal type parameter defines a type for data that goes into the object after
its initial construction, it can be contravariant.

• If a formal type parameter defines a type for data that comes out of the object
and the same parameter defines a type for data that goes into the object, it must
be invariant.

• To err on the safe side, make formal type parameters invariant.

Callable[[ParamType, …], ReturnType] demonstrates rules #1 and #2: The Return
Type is covariant, and each ParamType is contravariant.

By default, TypeVar creates formal parameters that are invariant, and that’s how the
mutable collections in the standard library are annotated.

“Generic Type Hints for Classic Coroutines” on page 650 continues the present discus‐
sion about variance.

Next, let’s see how to define generic static protocols, applying the idea of covariance
to a couple of new examples.

Variance | 551

https://fpy.li/15-32
https://fpy.li/typecoro
https://fpy.li/15-33

Implementing a Generic Static Protocol
The Python 3.10 standard library provides a few generic static protocols. One of them
is SupportsAbs, implemented like this in the typing module:

@runtime_checkable
class SupportsAbs(Protocol[T_co]):
 """An ABC with one abstract method __abs__ that is covariant in its
 return type."""
 __slots__ = ()

 @abstractmethod
 def __abs__(self) -> T_co:
 pass

T_co is declared according to the naming convention:

T_co = TypeVar('T_co', covariant=True)

Thanks to SupportsAbs, Mypy recognizes this code as valid, as you can see in
Example 15-21.

Example 15-21. abs_demo.py: use of the generic SupportsAbs protocol

import math
from typing import NamedTuple, SupportsAbs

class Vector2d(NamedTuple):
 x: float
 y: float

 def __abs__(self) -> float:
 return math.hypot(self.x, self.y)

def is_unit(v: SupportsAbs[float]) -> bool:
 """'True' if the magnitude of 'v' is close to 1."""
 return math.isclose(abs(v), 1.0)

assert issubclass(Vector2d, SupportsAbs)

v0 = Vector2d(0, 1)
sqrt2 = math.sqrt(2)
v1 = Vector2d(sqrt2 / 2, sqrt2 / 2)
v2 = Vector2d(1, 1)
v3 = complex(.5, math.sqrt(3) / 2)
v4 = 1

assert is_unit(v0)
assert is_unit(v1)
assert not is_unit(v2)
assert is_unit(v3)

552 | Chapter 15: More About Type Hints

https://fpy.li/15-34

assert is_unit(v4)

print('OK')

Defining __abs__ makes Vector2d consistent-with SupportsAbs.

Parameterizing SupportsAbs with float ensures…

…that Mypy accepts abs(v) as the first argument for math.isclose.

Thanks to @runtime_checkable in the definition of SupportsAbs, this is a valid
runtime assertion.

The remaining code all passes Mypy checks and runtime assertions.

The int type is also consistent-with SupportsAbs. According to typeshed,
int.__abs__ returns an int, which is consistent-with the float type parameter
declared in the is_unit type hint for the v argument.

Similarly, we can write a generic version of the RandomPicker protocol presented in
Example 13-18, which was defined with a single method pick returning Any.

Example 15-22 shows how to make a generic RandomPicker covariant on the return
type of pick.

Example 15-22. generic_randompick.py: definition of generic RandomPicker

from typing import Protocol, runtime_checkable, TypeVar

T_co = TypeVar('T_co', covariant=True)

@runtime_checkable
class RandomPicker(Protocol[T_co]):
 def pick(self) -> T_co: ...

Declare T_co as covariant.

This makes RandomPicker generic with a covariant formal type parameter.

Use T_co as the return type.

Implementing a Generic Static Protocol | 553

https://fpy.li/15-35

The generic RandomPicker protocol can be covariant because its only formal parame‐
ter is used in a return type.

With this, we can call it a chapter.

Chapter Summary
The chapter started with a simple example of using @overload, followed by a much
more complex example that we studied in detail: the overloaded signatures required
to correctly annotate the max built-in function.

The typing.TypedDict special construct came next. I chose to cover it here, and not
in Chapter 5 where we saw typing.NamedTuple, because TypedDict is not a class
builder; it’s merely a way to add type hints to a variable or argument that requires a
dict with a specific set of string keys, and specific types for each key—which happens
when we use a dict as a record, often in the context of handling with JSON data.
That section was a bit long because using TypedDict can give a false sense of security,
and I wanted to show how runtime checks and error handling are really inevitable
when trying to make statically structured records out of mappings that are dynamic
in nature.

Next we talked about typing.cast, a function designed to let us guide the work of
the type checker. It’s important to carefully consider when to use cast, because over‐
using it hinders the type checker.

Runtime access to type hints came next. The key point was to use typing.
get_type_hints instead of reading the __annotations__ attribute directly. However,
that function may be unreliable with some annotations, and we saw that Python core
developers are still working on a way to make type hints usable at runtime, while
reducing their impact on CPU and memory usage.

The final sections were about generics, starting with the LottoBlower generic class—
which we later learned is an invariant generic class. That example was followed by
definitions of four basic terms: generic type, formal type parameter, parameterized
type, and actual type parameter.

The major topic of variance was presented next, using cafeteria beverage dispensers
and trash cans as “real life” examples of invariant, covariant, and contravariant
generic types. Next we reviewed, formalized, and further applied those concepts to
examples in Python’s standard library.

Lastly, we saw how a generic static protocol is defined, first considering the typ
ing.SupportsAbs protocol, and then applying the same idea to the RandomPicker
example, making it more strict than the original protocol from Chapter 13.

554 | Chapter 15: More About Type Hints

Python’s type system is a huge and rapidly evolving subject. This
chapter is not comprehensive. I chose to focus on topics that are
either widely applicable, particularly challenging, or conceptually
important and therefore likely to be relevant for a long time.

Further Reading
Python’s static type system was complex as initially designed, and is getting more
complex with each passing year. Table 15-1 lists all the PEPs that I am aware of as of
May 2021. It would take a whole book to cover everything.

Table 15-1. PEPs about type hints, with links in the titles. PEP with numbers marked with *
are important enough to be mentioned in the opening paragraph of the typing
documentation. Question marks in the Python column indicate PEPs under discussion or
not yet implemented; “n/a” appears in informational PEPs with no specific Python version.

PEP Title Python Year
3107 Function Annotations 3.0 2006

483* The Theory of Type Hints n/a 2014

484* Type Hints 3.5 2014

482 Literature Overview for Type Hints n/a 2015

526* Syntax for Variable Annotations 3.6 2016

544* Protocols: Structural subtyping (static duck typing) 3.8 2017

557 Data Classes 3.7 2017

560 Core support for typing module and generic types 3.7 2017

561 Distributing and Packaging Type Information 3.7 2017

563 Postponed Evaluation of Annotations 3.7 2017

586* Literal Types 3.8 2018

585 Type Hinting Generics In Standard Collections 3.9 2019

589* TypedDict: Type Hints for Dictionaries with a Fixed Set of Keys 3.8 2019

591* Adding a final qualifier to typing 3.8 2019

593 Flexible function and variable annotations ? 2019

604 Allow writing union types as X | Y 3.10 2019

612 Parameter Specification Variables 3.10 2019

613 Explicit Type Aliases 3.10 2020

645 Allow writing optional types as x? ? 2020

646 Variadic Generics ? 2020

647 User-Defined Type Guards 3.10 2021

649 Deferred Evaluation Of Annotations Using Descriptors ? 2021

655 Marking individual TypedDict items as required or potentially-missing ? 2021

Further Reading | 555

https://fpy.li/typing
https://fpy.li/typing
https://fpy.li/pep3107
https://fpy.li/pep483
https://fpy.li/pep484
https://fpy.li/pep482
https://fpy.li/pep526
https://fpy.li/pep544
https://fpy.li/pep557
https://fpy.li/pep560
https://fpy.li/pep561
https://fpy.li/pep563
https://fpy.li/pep586
https://fpy.li/pep585
https://fpy.li/pep589
https://fpy.li/pep591
https://fpy.li/pep593
https://fpy.li/pep604
https://fpy.li/pep612
https://fpy.li/pep613
https://fpy.li/pep645
https://fpy.li/pep646
https://fpy.li/pep647
https://fpy.li/pep649
https://fpy.li/pep655

17 As a reader of footnotes, you may recall that I credited Erik Meijer for the cafeteria analogy to explain
variance.

18 That book was written for Dart 1. There are significant changes in Dart 2, including in the type system. Nev‐
ertheless, Bracha is an important researcher in the field of programming language design, and I found the
book valuable for his perspective on the design of Dart.

Python’s official documentation hardly keeps up with all that, so Mypy’s documenta‐
tion is an essential reference. Robust Python by Patrick Viafore (O’Reilly) is the first
book with extensive coverage of Python’s static type system that I know about, pub‐
lished August 2021. You may be reading the second such book right now.

The subtle topic of variance has its own section in PEP 484, and is also covered in the
“Generics” page of Mypy, as well as in its invaluable “Common Issues” page.

PEP 362—Function Signature Object is worth reading if you intend to use the
inspect module that complements the typing.get_type_hints function.

If you are interested in the history of Python, you may like to know that Guido van
Rossum posted “Adding Optional Static Typing to Python” on December 23, 2004.

“Python 3 Types in the Wild: A Tale of Two Type Systems” is a research paper by
Ingkarat Rak-amnouykit and others from the Rensselaer Polytechnic Institute and
IBM TJ Watson Research Center. The paper surveys the use of type hints in open
source projects on GitHub, showing that most projects don’t use them, and also that
most projects that have type hints apparently don’t use a type checker. I found most
interesting the discussion of the different semantics of Mypy and Google’s pytype,
which they conclude are “essentially two different type systems.”

Two seminal papers about gradual typing are Gilad Bracha’s “Pluggable Type Sys‐
tems”, and “Static Typing Where Possible, Dynamic Typing When Needed: The End
of the Cold War Between Programming Languages” by Eric Meijer and Peter Dray‐
ton.17

I learned a lot reading the relevant parts of some books about other languages that
implement some of the same ideas:

• Atomic Kotlin by Bruce Eckel and Svetlana Isakova (Mindview)
• Effective Java, 3rd ed., by Joshua Bloch (Addison-Wesley)
• Programming with Types: TypeScript Examples by Vlad Riscutia (Manning)
• Programming TypeScript by Boris Cherny (O’Reilly)
• The Dart Programming Language by Gilad Bracha (Addison-Wesley)18

For some critical views on type systems, I recommend Victor Youdaiken’s posts “Bad
ideas in type theory” and “Types considered harmful II”.

556 | Chapter 15: More About Type Hints

https://fpy.li/mypy
https://fpy.li/mypy
https://fpy.li/15-36
https://fpy.li/15-37
https://fpy.li/15-38
https://fpy.li/15-39
https://fpy.li/pep362
https://fpy.li/15-40
https://fpy.li/15-41
https://fpy.li/15-42
https://fpy.li/15-42
https://fpy.li/15-43
https://fpy.li/15-43
https://fpy.li/15-44
https://fpy.li/15-45
https://fpy.li/15-46
https://fpy.li/15-47
https://fpy.li/15-48
https://fpy.li/15-49
https://fpy.li/15-49
https://fpy.li/15-50

Finally, I was surprised to find “Generics Considered Harmful” by Ken Arnold, a
core contributor to Java from the beginning, as well as coauthor of the first four edi‐
tions of the official The Java Programming Language book (Addison-Wesley)—in
collaboration with James Gosling, the lead designer of Java.

Sadly, Arnold’s criticism applies to Python’s static type system as well. While reading
the many rules and special cases of the typing PEPs, I was constantly reminded of this
passage from Gosling’s post:

Which brings up the problem that I always cite for C++: I call it the “Nth order excep‐
tion to the exception rule.” It sounds like this: “You can do x, except in case y, unless y
does z, in which case you can if …”

Fortunately, Python has a key advantage over Java and C++: an optional type system.
We can squelch type checkers and omit type hints when they become too
cumbersome.

Soapbox

Typing Rabbit Holes

When using a type checker, we are sometimes forced to discover and import classes
we did not need to know about, and our code has no need to reference—except to
write type hints. Such classes are undocumented, probably because they are consid‐
ered implementation details by the authors of the packages. Here are two examples
from the standard library.

To use cast() in the server.sockets example in “Type Casting” on page 534, I had
to scour the vast asyncio documentation and then browse the source code of several
modules in that package to discover the undocumented TransportSocket class in the
equally undocumented asyncio.trsock module. Using socket.socket instead of
TransportSocket would be incorrect, because the latter is explicitly not a subtype of
the former, according to a docstring in the source code.

I fell into a similar rabbit hole when I added type hints to Example 19-13, a simple
demonstration of multiprocessing. That example uses SimpleQueue objects, which
you get by calling multiprocessing.SimpleQueue(). However, I could not use that
name in a type hint, because it turns out that multiprocessing.SimpleQueue is not a
class! It’s a bound method of the undocumented multiprocessing.BaseContext
class, which builds and returns an instance of the SimpleQueue class defined in the
undocumented multiprocessing.queues module.

In each of those cases I had to spend a couple of hours to find the right undocumen‐
ted class to import, just to write a single type hint. This kind of research is part of the
job when writing a book. But when writing application code, I’d probably avoid such

Further Reading | 557

https://fpy.li/15-51
https://fpy.li/15-52

19 See the last paragraph of the section “Covariance and Contravariance” in PEP 484.

scavenger hunts for a single offending line and just write # type: ignore. Sometimes
that’s the only cost-effective solution.

Variance Notation in Other Languages

Variance is a difficult topic, and Python’s type hints syntax is not as good as it could
be. This is evidenced by this direct quote from PEP 484:

Covariance or contravariance is not a property of a type variable, but a property of a
generic class defined using this variable.19

If that is the case, why are covariance and contravariance declared with TypeVar and
not on the generic class?

The authors of PEP 484 worked under the severe self-imposed constraint that type
hints should be supported without making any change to the interpreter. This
required the introduction of TypeVar to define type variables, and also the abuse of []
to provide Klass[T] syntax for generics—instead of the Klass<T> notation used in
other popular languages, including C#, Java, Kotlin, and TypeScript. None of these
languages require type variables to be declared before use.

In addition, the syntax of Kotlin and C# makes it clear whether the type parameter is
covariant, contravariant, or invariant exactly where it makes sense: in the class or
interface declaration.

In Kotlin, we could declare the BeverageDispenser like this:

class BeverageDispenser<out T> {
 // etc...
}

The out modifier in the formal type parameter means T is an “output” type, therefore
BeverageDispenser is covariant.

558 | Chapter 15: More About Type Hints

https://fpy.li/15-37

You can probably guess how TrashCan would be declared:

class TrashCan<in T> {
 // etc...
}

Given T as an “input” formal type parameter, then TrashCan is contravariant.

If neither in nor out appear, then the class is invariant on the parameter.

It’s easy to recall the “Variance rules of thumb” on page 551 when out and in are
used in the formal type parameters.

This suggests that a good naming convention for covariant and contravariant type
variables in Python would be:

T_out = TypeVar('T_out', covariant=True)
T_in = TypeVar('T_in', contravariant=True)

Then we could define the classes like this:

class BeverageDispenser(Generic[T_out]):
 ...

class TrashCan(Generic[T_in]):
 ...

Is it too late to change the naming convention established in PEP 484?

Further Reading | 559

1 Source: “The C Family of Languages: Interview with Dennis Ritchie, Bjarne Stroustrup, and James Gosling”.

CHAPTER 16

Operator Overloading

There are some things that I kind of feel torn about, like operator overloading. I left
out operator overloading as a fairly personal choice because I had seen too many
people abuse it in C++.

—James Gosling, creator of Java1

In Python, you can compute compound interest using a formula written like this:

interest = principal * ((1 + rate) ** periods - 1)

Operators that appear between operands, like 1 + rate, are infix operators. In
Python, the infix operators can handle any arbitrary type. Thus, if you are dealing
with real money, you can make sure that principal, rate, and periods are exact
numbers—instances of the Python decimal.Decimal class—and that formula will
work as written, producing an exact result.

But in Java, if you switch from float to BigDecimal to get exact results, you can’t use
infix operators anymore, because they only work with the primitive types. This is the
same formula coded to work with BigDecimal numbers in Java:

BigDecimal interest = principal.multiply(BigDecimal.ONE.add(rate)
 .pow(periods).subtract(BigDecimal.ONE));

It’s clear that infix operators make formulas more readable. Operator overloading is
necessary to support infix operator notation with user-defined or extension types,
such as NumPy arrays. Having operator overloading in a high-level, easy-to-use lan‐
guage was probably a key reason for the huge success of Python in data science,
including financial and scientific applications.

561

https://fpy.li/16-1

2 The remaining ABCs in Python’s standard library are still valuable for goose typing and static typing. The
issue with the numbers ABCs is explained in “The numbers ABCs and Numeric Protocols” on page 478.

In “Emulating Numeric Types” on page 9 (Chapter 1) we saw some trivial implemen‐
tations of operators in a bare-bones Vector class. The __add__ and __mul__ methods
in Example 1-2 were written to show how special methods support operator over‐
loading, but there are subtle problems in their implementations that we overlooked.
Also, in Example 11-2, we noted that the Vector2d.__eq__ method considers this to
be True: Vector(3, 4) == [3, 4]—which may or not make sense. We will address
these matters in this chapter, as well as:

• How an infix operator method should signal it cannot handle an operand
• Using duck typing or goose typing to deal with operands of various types
• The special behavior of the rich comparison operators (e.g., ==, >, <=, etc.)
• The default handling of augmented assignment operators such as +=, and how to

overload them

What’s New in This Chapter
Goose typing is a key part of Python, but the numbers ABCs are not supported in
static typing, so I changed Example 16-11 to use duck typing instead of an explicit
isinstance check against numbers.Real.2

I covered the @ matrix multiplication operator in the first edition of Fluent Python as
an upcoming change when 3.5 was still in alpha. Accordingly, that operator is no
longer in a side note, but is integrated in the flow of the chapter in “Using @ as an
Infix Operator” on page 574. I leveraged goose typing to make the implementation
of __matmul__ safer than the one in the first edition, without compromising on
flexibility.

“Further Reading” on page 587 now has a couple of new references—including a blog
post by Guido van Rossum. I also added mentions of two libraries that showcase
effective use of operator overloading outside the domain of mathematics: pathlib
and Scapy.

Operator Overloading 101
Operator overloading allows user-defined objects to interoperate with infix operators
such as + and |, or unary operators like - and ~. More generally, function invocation

562 | Chapter 16: Operator Overloading

3 See https://en.wikipedia.org/wiki/Bitwise_operation#NOT for an explanation of the bitwise not.

(()), attribute access (.), and item access/slicing ([]) are also operators in Python,
but this chapter covers unary and infix operators.

Operator overloading has a bad name in some circles. It is a language feature that can
be (and has been) abused, resulting in programmer confusion, bugs, and unexpected
performance bottlenecks. But if used well, it leads to pleasurable APIs and readable
code. Python strikes a good balance among flexibility, usability, and safety by impos‐
ing some limitations:

• We cannot change the meaning of the operators for the built-in types.
• We cannot create new operators, only overload existing ones.
• A few operators can’t be overloaded: is, and, or, not (but the bitwise &, |, ~, can).

In Chapter 12, we already had one infix operator in Vector: ==, supported by the
__eq__ method. In this chapter, we’ll improve the implementation of __eq__ to better
handle operands of types other than Vector. However, the rich comparison operators
(==, !=, >, <, >=, <=) are special cases in operator overloading, so we’ll start by over‐
loading four arithmetic operators in Vector: the unary - and +, followed by the infix
+ and *.

Let’s start with the easiest topic: unary operators.

Unary Operators
The Python Language Reference, “6.5. Unary arithmetic and bitwise operations” lists
three unary operators, shown here with their associated special methods:

-, implemented by __neg__
Arithmetic unary negation. If x is -2 then -x == 2.

+, implemented by __pos__
Arithmetic unary plus. Usually x == +x, but there are a few cases when that’s not
true. See “When x and +x Are Not Equal” on page 565 if you’re curious.

~, implemented by __invert__
Bitwise not, or bitwise inverse of an integer, defined as ~x == -(x+1). If x is 2
then ~x == -3.3

The “Data Model” chapter of The Python Language Reference also lists the abs()
built-in function as a unary operator. The associated special method is __abs__, as
we’ve seen before.

Unary Operators | 563

https://en.wikipedia.org/wiki/Bitwise_operation#NOT
https://fpy.li/16-2
https://fpy.li/16-3

It’s easy to support the unary operators. Simply implement the appropriate special
method, which will take just one argument: self. Use whatever logic makes sense in
your class, but stick to the general rule of operators: always return a new object. In
other words, do not modify the receiver (self), but create and return a new instance
of a suitable type.

In the case of - and +, the result will probably be an instance of the same class as
self. For unary +, if the receiver is immutable you should return self; otherwise,
return a copy of self. For abs(), the result should be a scalar number.

As for ~, it’s difficult to say what would be a sensible result if you’re not dealing with
bits in an integer. In the pandas data analysis package, the tilde negates boolean filter‐
ing conditions; see “Boolean indexing” in the pandas documentation for examples.

As promised before, we’ll implement several new operators on the Vector class from
Chapter 12. Example 16-1 shows the __abs__ method we already had in
Example 12-16, and the newly added __neg__ and __pos__ unary operator method.

Example 16-1. vector_v6.py: unary operators - and + added to Example 12-16

 def __abs__(self):
 return math.hypot(*self)

 def __neg__(self):
 return Vector(-x for x in self)

 def __pos__(self):
 return Vector(self)

To compute -v, build a new Vector with every component of self negated.

To compute +v, build a new Vector with every component of self.

Recall that Vector instances are iterable, and the Vector.__init__ takes an iterable
argument, so the implementations of __neg__ and __pos__ are short and sweet.

We’ll not implement __invert__, so if the user tries ~v on a Vector instance, Python
will raise TypeError with a clear message: “bad operand type for unary ~: 'Vector'.”

The following sidebar covers a curiosity that may help you win a bet about unary +
someday.

564 | Chapter 16: Operator Overloading

https://fpy.li/pandas
https://fpy.li/16-4

When x and +x Are Not Equal
Everybody expects that x == +x, and that is true almost all the time in Python, but I
found two cases in the standard library where x != +x.

The first case involves the decimal.Decimal class. You can have x != +x if x is a
Decimal instance created in an arithmetic context and +x is then evaluated in a con‐
text with different settings. For example, x is calculated in a context with a certain
precision, but the precision of the context is changed and then +x is evaluated. See
Example 16-2 for a demonstration.

Example 16-2. A change in the arithmetic context precision may cause x to differ
from +x

>>> import decimal

>>> ctx = decimal.getcontext()

>>> ctx.prec = 40

>>> one_third = decimal.Decimal('1') / decimal.Decimal('3')

>>> one_third
Decimal('0.33')

>>> one_third == +one_third
True

>>> ctx.prec = 28

>>> one_third == +one_third
False

>>> +one_third
Decimal('0.3333333333333333333333333333')

Get a reference to the current global arithmetic context.

Set the precision of the arithmetic context to 40.

Compute 1/3 using the current precision.

Inspect the result; there are 40 digits after the decimal point.

one_third == +one_third is True.

Lower precision to 28—the default for Decimal arithmetic.

Now one_third == +one_third is False.

Inspect +one_third; there are 28 digits after the '.' here.

Unary Operators | 565

The fact is that each occurrence of the expression +one_third produces a new Deci
mal instance from the value of one_third, but using the precision of the current
arithmetic context.

You can find the second case where x != +x in the collections.Counter documen‐
tation. The Counter class implements several arithmetic operators, including infix +
to add the tallies from two Counter instances. However, for practical reasons,
Counter addition discards from the result any item with a negative or zero count.
And the prefix + is a shortcut for adding an empty Counter, therefore it produces a
new Counter, preserving only the tallies that are greater than zero. See Example 16-3.

Example 16-3. Unary + produces a new Counter without zeroed or negative tallies

>>> ct = Counter('abracadabra')
>>> ct
Counter({'a': 5, 'r': 2, 'b': 2, 'd': 1, 'c': 1})
>>> ct['r'] = -3
>>> ct['d'] = 0
>>> ct
Counter({'a': 5, 'b': 2, 'c': 1, 'd': 0, 'r': -3})
>>> +ct
Counter({'a': 5, 'b': 2, 'c': 1})

As you can see, +ct returns a counter where all tallies are greater than zero.

Now, back to our regularly scheduled programming.

Overloading + for Vector Addition
The Vector class is a sequence type, and the section “3.3.6. Emulating container
types” in the “Data Model” chapter of the official Python documentation says that
sequences should support the + operator for concatenation and * for repetition.
However, here we will implement + and * as mathematical vector operations, which
are a bit harder but more meaningful for a Vector type.

If users want to concatenate or repeat Vector instances, they can
convert them to tuples or lists, apply the operator, and convert
back—thanks to the fact that Vector is iterable and can be con‐
structed from an iterable:

>>> v_concatenated = Vector(list(v1) + list(v2))
>>> v_repeated = Vector(tuple(v1) * 5)

Adding two Euclidean vectors results in a new vector in which the components are
the pairwise additions of the components of the operands. To illustrate:

566 | Chapter 16: Operator Overloading

https://fpy.li/16-5
https://fpy.li/16-5
https://fpy.li/16-6
https://fpy.li/16-6

>>> v1 = Vector([3, 4, 5])
>>> v2 = Vector([6, 7, 8])
>>> v1 + v2
Vector([9.0, 11.0, 13.0])
>>> v1 + v2 == Vector([3 + 6, 4 + 7, 5 + 8])
True

What happens if we try to add two Vector instances of different lengths? We could
raise an error, but considering practical applications (such as information retrieval),
it’s better to fill out the shortest Vector with zeros. This is the result we want:

>>> v1 = Vector([3, 4, 5, 6])
>>> v3 = Vector([1, 2])
>>> v1 + v3
Vector([4.0, 6.0, 5.0, 6.0])

Given these basic requirements, we can implement __add__ like in Example 16-4.

Example 16-4. Vector.__add__ method, take #1

 # inside the Vector class

 def __add__(self, other):
 pairs = itertools.zip_longest(self, other, fillvalue=0.0)
 return Vector(a + b for a, b in pairs)

pairs is a generator that produces tuples (a, b), where a is from self, and b is
from other. If self and other have different lengths, fillvalue supplies the
missing values for the shortest iterable.

A new Vector is built from a generator expression, producing one addition for
each (a, b) from pairs.

Note how __add__ returns a new Vector instance, and does not change self or
other.

Special methods implementing unary or infix operators should
never change the value of the operands. Expressions with such
operators are expected to produce results by creating new objects.
Only augmented assignment operators may change the first
operand (self), as discussed in “Augmented Assignment Opera‐
tors” on page 580.

Example 16-4 allows adding Vector to a Vector2d, and Vector to a tuple or to any
iterable that produces numbers, as Example 16-5 proves.

Overloading + for Vector Addition | 567

Example 16-5. Vector.__add__ take #1 supports non-Vector objects, too

>>> v1 = Vector([3, 4, 5])
>>> v1 + (10, 20, 30)
Vector([13.0, 24.0, 35.0])
>>> from vector2d_v3 import Vector2d
>>> v2d = Vector2d(1, 2)
>>> v1 + v2d
Vector([4.0, 6.0, 5.0])

Both uses of + in Example 16-5 work because __add__ uses zip_longest(…), which
can consume any iterable, and the generator expression to build the new Vector
merely performs a + b with the pairs produced by zip_longest(…), so an iterable
producing any number items will do.

However, if we swap the operands (Example 16-6), the mixed-type additions fail.

Example 16-6. Vector.__add__ take #1 fails with non-Vector left operands

>>> v1 = Vector([3, 4, 5])
>>> (10, 20, 30) + v1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: can only concatenate tuple (not "Vector") to tuple
>>> from vector2d_v3 import Vector2d
>>> v2d = Vector2d(1, 2)
>>> v2d + v1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'Vector2d' and 'Vector'

To support operations involving objects of different types, Python implements a spe‐
cial dispatching mechanism for the infix operator special methods. Given an expres‐
sion a + b, the interpreter will perform these steps (also see Figure 16-1):

1. If a has __add__, call a.__add__(b) and return result unless it’s NotImplemented.
2. If a doesn’t have __add__, or calling it returns NotImplemented, check if b has

__radd__, then call b.__radd__(a) and return result unless it’s NotImplemented.
3. If b doesn’t have __radd__, or calling it returns NotImplemented, raise TypeError

with an unsupported operand types message.

568 | Chapter 16: Operator Overloading

4 The Python documentation uses both terms. The “Data Model” chapter uses “reflected,” but “9.1.2.2. Imple‐
menting the arithmetic operations” in the numbers module docs mention “forward” and “reverse” methods,
and I find this terminology better, because “forward” and “reversed” clearly name each of the directions,
while “reflected” doesn’t have an obvious opposite.

The __radd__ method is called the “reflected” or “reversed” ver‐
sion of __add__. I prefer to call them “reversed” special methods.4

Figure 16-1. Flowchart for computing a + b with __add__ and __radd__.

Therefore, to make the mixed-type additions in Example 16-6 work, we need to
implement the Vector.__radd__ method, which Python will invoke as a fallback if
the left operand does not implement __add__, or if it does but returns NotImplemen
ted to signal that it doesn’t know how to handle the right operand.

Overloading + for Vector Addition | 569

https://fpy.li/dtmodel
https://fpy.li/16-7
https://fpy.li/16-7

Do not confuse NotImplemented with NotImplementedError. The
first, NotImplemented, is a special singleton value that an infix
operator special method should return to tell the interpreter it
cannot handle a given operand. In contrast, NotImplementedError
is an exception that stub methods in abstract classes may raise to
warn that subclasses must implement them.

The simplest implementation of __radd__ that works is shown in Example 16-7.

Example 16-7. The Vector methods __add__ and __radd__

 # inside the Vector class

 def __add__(self, other):
 pairs = itertools.zip_longest(self, other, fillvalue=0.0)
 return Vector(a + b for a, b in pairs)

 def __radd__(self, other):
 return self + other

No changes to __add__ from Example 16-4; listed here because __radd__ uses it.

__radd__ just delegates to __add__.

Often, __radd__ can be as simple as that: just invoke the proper operator, therefore
delegating to __add__ in this case. This applies to any commutative operator; + is
commutative when dealing with numbers or our vectors, but it’s not commutative
when concatenating sequences in Python.

If __radd__ simply calls __add__, here is another way to achieve the same effect:

 def __add__(self, other):
 pairs = itertools.zip_longest(self, other, fillvalue=0.0)
 return Vector(a + b for a, b in pairs)

 __radd__ = __add__

The methods in Example 16-7 work with Vector objects, or any iterable with
numeric items, such as a Vector2d, a tuple of integers, or an array of floats. But if
provided with a noniterable object, __add__ raises an exception with a message that is
not very helpful, as in Example 16-8.

Example 16-8. Vector.__add__ method needs an iterable operand

>>> v1 + 1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

570 | Chapter 16: Operator Overloading

 File "vector_v6.py", line 328, in __add__
 pairs = itertools.zip_longest(self, other, fillvalue=0.0)
TypeError: zip_longest argument #2 must support iteration

Even worse, we get a misleading message if an operand is iterable but its items cannot
be added to the float items in the Vector. See Example 16-9.

Example 16-9. Vector.__add__ method needs an iterable with numeric items

>>> v1 + 'ABC'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "vector_v6.py", line 329, in __add__
 return Vector(a + b for a, b in pairs)
 File "vector_v6.py", line 243, in __init__
 self._components = array(self.typecode, components)
 File "vector_v6.py", line 329, in <genexpr>
 return Vector(a + b for a, b in pairs)
TypeError: unsupported operand type(s) for +: 'float' and 'str'

I tried to add Vector and a str, but the message complains about float and str.

The problems in Examples 16-8 and 16-9 actually go deeper than obscure error mes‐
sages: if an operator special method cannot return a valid result because of type
incompatibility, it should return NotImplemented and not raise TypeError. By
returning NotImplemented, you leave the door open for the implementer of the other
operand type to perform the operation when Python tries the reversed method call.

In the spirit of duck typing, we will refrain from testing the type of the other
operand, or the type of its elements. We’ll catch the exceptions and return NotImple
mented. If the interpreter has not yet reversed the operands, it will try that. If the
reverse method call returns NotImplemented, then Python will raise TypeError with a
standard error message like “unsupported operand type(s) for +: Vector and str.”

The final implementation of the special methods for Vector addition is in
Example 16-10.

Example 16-10. vector_v6.py: operator + methods added to vector_v5.py
(Example 12-16)

 def __add__(self, other):
 try:
 pairs = itertools.zip_longest(self, other, fillvalue=0.0)
 return Vector(a + b for a, b in pairs)
 except TypeError:
 return NotImplemented

Overloading + for Vector Addition | 571

 def __radd__(self, other):
 return self + other

Note that __add__ now catches a TypeError and returns NotImplemented.

If an infix operator method raises an exception, it aborts the opera‐
tor dispatch algorithm. In the particular case of TypeError, it is
often better to catch it and return NotImplemented. This allows
the interpreter to try calling the reversed operator method, which
may correctly handle the computation with the swapped operands,
if they are of different types.

At this point, we have safely overloaded the + operator by writing __add__ and
__radd__. We will now tackle another infix operator: *.

Overloading * for Scalar Multiplication
What does Vector([1, 2, 3]) * x mean? If x is a number, that would be a scalar
product, and the result would be a new Vector with each component multiplied by x
—also known as an elementwise multiplication:

>>> v1 = Vector([1, 2, 3])
>>> v1 * 10
Vector([10.0, 20.0, 30.0])
>>> 11 * v1
Vector([11.0, 22.0, 33.0])

Another kind of product involving Vector operands would be the
dot product of two vectors—or matrix multiplication, if you take
one vector as a 1 × N matrix and the other as an N × 1 matrix. We
will implement that operator in our Vector class in “Using @ as an
Infix Operator” on page 574.

Back to our scalar product, again we start with the simplest __mul__ and __rmul__
methods that could possibly work:

 # inside the Vector class

 def __mul__(self, scalar):
 return Vector(n * scalar for n in self)

 def __rmul__(self, scalar):
 return self * scalar

Those methods do work, except when provided with incompatible operands. The
scalar argument has to be a number that when multiplied by a float produces

572 | Chapter 16: Operator Overloading

another float (because our Vector class uses an array of floats internally). So a com
plex number will not do, but the scalar can be an int, a bool (because bool is a sub‐
class of int), or even a fractions.Fraction instance. In Example 16-11, the __mul__
method does not make an explicit type check on scalar, but instead converts it into
a float, and returns NotImplemented if that fails. That’s a clear example of duck
typing.

Example 16-11. vector_v7.py: operator * methods added

class Vector:
 typecode = 'd'

 def __init__(self, components):
 self._components = array(self.typecode, components)

 # many methods omitted in book listing, see vector_v7.py
 # in https://github.com/fluentpython/example-code-2e

 def __mul__(self, scalar):
 try:
 factor = float(scalar)
 except TypeError:
 return NotImplemented
 return Vector(n * factor for n in self)

 def __rmul__(self, scalar):
 return self * scalar

If scalar cannot be converted to float…

…we don’t know how to handle it, so we return NotImplemented to let Python
try __rmul__ on the scalar operand.

In this example, __rmul__ works fine by just performing self * scalar, dele‐
gating to the __mul__ method.

With Example 16-11, we can multiply Vectors by scalar values of the usual, and not
so usual, numeric types:

>>> v1 = Vector([1.0, 2.0, 3.0])
>>> 14 * v1
Vector([14.0, 28.0, 42.0])
>>> v1 * True
Vector([1.0, 2.0, 3.0])
>>> from fractions import Fraction
>>> v1 * Fraction(1, 3)
Vector([0.3333333333333333, 0.6666666666666666, 1.0])

Overloading * for Scalar Multiplication | 573

5 See “Soapbox” on page 588 for a discussion of the problem.

Now that we can multiply Vector by scalars, let’s see how to implement Vector by
Vector products.

In the first edition of Fluent Python, I used goose typing in
Example 16-11: I checked the scalar argument of __mul__ with
isinstance(scalar, numbers.Real). Now I avoid using the num
bers ABCs because they are not supported by PEP 484, and using
types at runtime that cannot also be statically checked seems a bad
idea to me.
Alternatively, I could have checked against the typing.Supports
Float protocol that we saw in “Runtime Checkable Static Proto‐
cols” on page 468. I chose duck typing in that example because I
think fluent Pythonistas should be comfortable with that coding
pattern.
On the other hand, __matmul__ in Example 16-12 is a good exam‐
ple of goose typing, new in this second edition.

Using @ as an Infix Operator
The @ sign is well-known as the prefix of function decorators, but since 2015, it can
also be used as an infix operator. For years, the dot product was written as
numpy.dot(a, b) in NumPy. The function call notation makes longer formulas
harder to translate from mathematical notation to Python,5 so the numerical comput‐
ing community lobbied for PEP 465—A dedicated infix operator for matrix multipli‐
cation, which was implemented in Python 3.5. Today, you can write a @ b to
compute the dot product of two NumPy arrays.

The @ operator is supported by the special methods __matmul__, __rmatmul__, and
__imatmul__, named for “matrix multiplication.” These methods are not used any‐
where in the standard library at this time, but are recognized by the interpreter since
Python 3.5, so the NumPy team—and the rest of us—can support the @ operator in
user-defined types. The parser was also changed to handle the new operator (a @ b
was a syntax error in Python 3.4).

These simple tests show how @ should work with Vector instances:

>>> va = Vector([1, 2, 3])
>>> vz = Vector([5, 6, 7])
>>> va @ vz == 38.0 # 1*5 + 2*6 + 3*7
True
>>> [10, 20, 30] @ vz

574 | Chapter 16: Operator Overloading

https://fpy.li/pep465
https://fpy.li/pep465

380.0
>>> va @ 3
Traceback (most recent call last):
...
TypeError: unsupported operand type(s) for @: 'Vector' and 'int'

Example 16-12 shows the code of the relevant special methods.

Example 16-12. vector_v7.py: operator @ methods

class Vector:
 # many methods omitted in book listing

 def __matmul__(self, other):
 if (isinstance(other, abc.Sized) and
 isinstance(other, abc.Iterable)):
 if len(self) == len(other):
 return sum(a * b for a, b in zip(self, other))
 else:
 raise ValueError('@ requires vectors of equal length.')
 else:
 return NotImplemented

 def __rmatmul__(self, other):
 return self @ other

Both operands must implement __len__ and __iter__…

…and have the same length to allow…

…a beautiful application of sum, zip, and generator expression.

New zip() Feature in Python 3.10

The zip built-in accepts a strict keyword-only optional argument
since Python 3.10. When strict=True, the function raises ValueEr
ror when the iterables have different lengths. The default is False.
This new strict behavior is in line with Python’s fail fast philoso‐
phy. In Example 16-12, I’d replace the inner if with a try/except
ValueError and add strict=True to the zip call.

Example 16-12 is a good example of goose typing in practice. If we tested the other
operand against Vector, we’d deny users the flexibility of using lists or arrays as
operands to @. As long as one operand is a Vector, our @ implementation supports
other operands that are instances of abc.Sized and abc.Iterable. Both of these
ABCs implement the __subclasshook__, therefore any object providing __len__ and
__iter__ satisfies our test—no need to actually subclass those ABCs or even register

Using @ as an Infix Operator | 575

https://fpy.li/16-8

with them, as explained in “Structural Typing with ABCs” on page 464. In particular,
our Vector class does not subclass either abc.Sized or abc.Iterable, but it does
pass the isinstance checks against those ABCs because it has the necessary methods.

Let’s review the arithmetic operators supported by Python, before diving into the
special category of “Rich Comparison Operators” on page 577.

Wrapping-Up Arithmetic Operators
Implementing +, *, and @, we saw the most common patterns for coding infix opera‐
tors. The techniques we described are applicable to all operators listed in Table 16-1
(the in-place operators will be covered in “Augmented Assignment Operators” on
page 580).

Table 16-1. Infix operator method names (the in-place operators are used for augmented
assignment; comparison operators are in Table 16-2)

Operator Forward Reverse In-place Description

+ __add__ __radd__ __iadd__ Addition or concatenation

- __sub__ __rsub__ __isub__ Subtraction

* __mul__ __rmul__ __imul__ Multiplication or
repetition

/ __truediv__ __rtruediv__ __itruediv__ True division

// __floordiv__ __rfloordiv__ __ifloordiv__ Floor division

% __mod__ __rmod__ __imod__ Modulo

divmod() __divmod__ __rdivmod__ __idivmod__ Returns tuple of floor
division quotient and
modulo

**, pow() __pow__ __rpow__ __ipow__ Exponentiationa

@ __matmul__ __rmatmul__ __imatmul__ Matrix multiplication

& __and__ __rand__ __iand__ Bitwise and

| __or__ __ror__ __ior__ Bitwise or

^ __xor__ __rxor__ __ixor__ Bitwise xor

<< __lshift__ __rlshift__ __ilshift__ Bitwise shift left

>> __rshift__ __rrshift__ __irshift__ Bitwise shift right
a pow takes an optional third argument, modulo: pow(a, b, modulo), also supported by the special methods when
invoked directly (e.g., a.__pow__(b, modulo)).

The rich comparison operators use a different set of rules.

576 | Chapter 16: Operator Overloading

Rich Comparison Operators
The handling of the rich comparison operators ==, !=, >, <, >=, and <= by the Python
interpreter is similar to what we just saw, but differs in two important aspects:

• The same set of methods is used in forward and reverse operator calls. The rules
are summarized in Table 16-2. For example, in the case of ==, both the forward
and reverse calls invoke __eq__, only swapping arguments; and a forward call to
__gt__ is followed by a reverse call to __lt__ with the arguments swapped.

• In the case of == and !=, if the reverse method is missing, or returns NotImplemen
ted, Python compares the object IDs instead of raising TypeError.

Table 16-2. Rich comparison operators: reverse methods invoked when the initial method
call returns NotImplemented

Group Infix operator Forward method call Reverse method call Fallback
Equality a == b a.__eq__(b) b.__eq__(a) Return id(a) == id(b)

a != b a.__ne__(b) b.__ne__(a) Return not (a == b)

Ordering a > b a.__gt__(b) b.__lt__(a) Raise TypeError

a < b a.__lt__(b) b.__gt__(a) Raise TypeError

a >= b a.__ge__(b) b.__le__(a) Raise TypeError

a <= b a.__le__(b) b.__ge__(a) Raise TypeError

Given these rules, let’s review and improve the behavior of the Vector.__eq__
method, which was coded as follows in vector_v5.py (Example 12-16):

class Vector:
 # many lines omitted

 def __eq__(self, other):
 return (len(self) == len(other) and
 all(a == b for a, b in zip(self, other)))

That method produces the results in Example 16-13.

Example 16-13. Comparing a Vector to a Vector, a Vector2d, and a tuple

>>> va = Vector([1.0, 2.0, 3.0])
>>> vb = Vector(range(1, 4))
>>> va == vb
True
>>> vc = Vector([1, 2])
>>> from vector2d_v3 import Vector2d
>>> v2d = Vector2d(1, 2)
>>> vc == v2d

Rich Comparison Operators | 577

True
>>> t3 = (1, 2, 3)
>>> va == t3
True

Two Vector instances with equal numeric components compare equal.

A Vector and a Vector2d are also equal if their components are equal.

A Vector is also considered equal to a tuple or any iterable with numeric items
of equal value.

The result in Example 16-13 is probably not desirable. Do we really want a Vector to
be considered equal to a tuple containing the same numbers? I have no hard rule
about this; it depends on the application context. The “Zen of Python” says:

In the face of ambiguity, refuse the temptation to guess.

Excessive liberality in the evaluation of operands may lead to surprising results, and
programmers hate surprises.

Taking a clue from Python itself, we can see that [1,2] == (1, 2) is False. There‐
fore, let’s be conservative and do some type checking. If the second operand is a
Vector instance (or an instance of a Vector subclass), then use the same logic as the
current __eq__. Otherwise, return NotImplemented and let Python handle that. See
Example 16-14.

Example 16-14. vector_v8.py: improved __eq__ in the Vector class

 def __eq__(self, other):
 if isinstance(other, Vector):
 return (len(self) == len(other) and
 all(a == b for a, b in zip(self, other)))
 else:
 return NotImplemented

If the other operand is an instance of Vector (or of a Vector subclass), perform
the comparison as before.

Otherwise, return NotImplemented.

If you run the tests in Example 16-13 with the new Vector.__eq__ from
Example 16-14, what you get now is shown in Example 16-15.

578 | Chapter 16: Operator Overloading

Example 16-15. Same comparisons as Example 16-13: last result changed

>>> va = Vector([1.0, 2.0, 3.0])
>>> vb = Vector(range(1, 4))
>>> va == vb
True
>>> vc = Vector([1, 2])
>>> from vector2d_v3 import Vector2d
>>> v2d = Vector2d(1, 2)
>>> vc == v2d
True
>>> t3 = (1, 2, 3)
>>> va == t3
False

Same result as before, as expected.

Same result as before, but why? Explanation coming up.

Different result; this is what we wanted. But why does it work? Read on…

Among the three results in Example 16-15, the first one is no news, but the last two
were caused by __eq__ returning NotImplemented in Example 16-14. Here is what
happens in the example with a Vector and a Vector2d, vc == v2d, step-by-step:

1. To evaluate vc == v2d, Python calls Vector.__eq__(vc, v2d).
2. Vector.__eq__(vc, v2d) verifies that v2d is not a Vector and returns

NotImplemented.
3. Python gets the NotImplemented result, so it tries Vector2d.__eq__(v2d, vc).
4. Vector2d.__eq__(v2d, vc) turns both operands into tuples and compares

them: the result is True (the code for Vector2d.__eq__ is in Example 11-11).

As for the comparison va == t3, between Vector and tuple in Example 16-15, the
actual steps are:

1. To evaluate va == t3, Python calls Vector.__eq__(va, t3).
2. Vector.__eq__(va, t3) verifies that t3 is not a Vector and returns

NotImplemented.
3. Python gets the NotImplemented result, so it tries tuple.__eq__(t3, va).

Rich Comparison Operators | 579

6 The logic for object.__eq__ and object.__ne__ is in function object_richcompare in Objects/typeobject.c
in the CPython source code.

4. tuple.__eq__(t3, va) has no idea what a Vector is, so it returns
NotImplemented.

5. In the special case of ==, if the reversed call returns NotImplemented, Python
compares object IDs as a last resort.

We don’t need to implement __ne__ for != because the fallback behavior of __ne__
inherited from object suits us: when __eq__ is defined and does not return NotImple
mented, __ne__ returns that result negated.

In other words, given the same objects we used in Example 16-15, the results for !=
are consistent:

>>> va != vb
False
>>> vc != v2d
False
>>> va != (1, 2, 3)
True

The __ne__ inherited from object works like the following code—except that the
original is written in C:6

 def __ne__(self, other):
 eq_result = self == other
 if eq_result is NotImplemented:
 return NotImplemented
 else:
 return not eq_result

After covering the essentials of infix operator overloading, let’s turn to a different
class of operators: the augmented assignment operators.

Augmented Assignment Operators
Our Vector class already supports the augmented assignment operators += and *=.
That’s because augmented assignment works with immutable receivers by creating
new instances and rebinding the lefthand variable.

Example 16-16 shows them in action.

Example 16-16. Using += and *= with Vector instances

>>> v1 = Vector([1, 2, 3])
>>> v1_alias = v1

580 | Chapter 16: Operator Overloading

https://fpy.li/16-9

>>> id(v1)
4302860128
>>> v1 += Vector([4, 5, 6])
>>> v1
Vector([5.0, 7.0, 9.0])
>>> id(v1)
4302859904
>>> v1_alias
Vector([1.0, 2.0, 3.0])
>>> v1 *= 11
>>> v1
Vector([55.0, 77.0, 99.0])
>>> id(v1)
4302858336

Create an alias so we can inspect the Vector([1, 2, 3]) object later.

Remember the ID of the initial Vector bound to v1.

Perform augmented addition.

The expected result…

…but a new Vector was created.

Inspect v1_alias to confirm the original Vector was not altered.

Perform augmented multiplication.

Again, the expected result, but a new Vector was created.

If a class does not implement the in-place operators listed in Table 16-1, the augmen‐
ted assignment operators work as syntactic sugar: a += b is evaluated exactly as a =
a + b. That’s the expected behavior for immutable types, and if you have __add__,
then += will work with no additional code.

However, if you do implement an in-place operator method such as __iadd__, that
method is called to compute the result of a += b. As the name says, those operators
are expected to change the lefthand operand in place, and not create a new object as
the result.

The in-place special methods should never be implemented for
immutable types like our Vector class. This is fairly obvious, but
worth stating anyway.

Augmented Assignment Operators | 581

To show the code of an in-place operator, we will extend the BingoCage class from
Example 13-9 to implement __add__ and __iadd__.

We’ll call the subclass AddableBingoCage. Example 16-17 is the behavior we want for
the + operator.

Example 16-17. The + operator creates a new AddableBingoCage instance

 >>> vowels = 'AEIOU'
 >>> globe = AddableBingoCage(vowels)
 >>> globe.inspect()
 ('A', 'E', 'I', 'O', 'U')
 >>> globe.pick() in vowels
 True
 >>> len(globe.inspect())
 4
 >>> globe2 = AddableBingoCage('XYZ')
 >>> globe3 = globe + globe2
 >>> len(globe3.inspect())
 7
 >>> void = globe + [10, 20]
 Traceback (most recent call last):
 ...
 TypeError: unsupported operand type(s) for +: 'AddableBingoCage' and 'list'

Create a globe instance with five items (each of the vowels).

Pop one of the items, and verify it is one of the vowels.

Confirm that the globe is down to four items.

Create a second instance, with three items.

Create a third instance by adding the previous two. This instance has seven
items.

Attempting to add an AddableBingoCage to a list fails with TypeError. That
error message is produced by the Python interpreter when our __add__ method
returns NotImplemented.

Because an AddableBingoCage is mutable, Example 16-18 shows how it will work
when we implement __iadd__.

582 | Chapter 16: Operator Overloading

Example 16-18. An existing AddableBingoCage can be loaded with += (continuing
from Example 16-17)

 >>> globe_orig = globe
 >>> len(globe.inspect())
 4
 >>> globe += globe2
 >>> len(globe.inspect())
 7
 >>> globe += ['M', 'N']
 >>> len(globe.inspect())
 9
 >>> globe is globe_orig
 True
 >>> globe += 1
 Traceback (most recent call last):
 ...
 TypeError: right operand in += must be 'Tombola' or an iterable

Create an alias so we can check the identity of the object later.

globe has four items here.

An AddableBingoCage instance can receive items from another instance of the
same class.

The righthand operand of += can also be any iterable.

Throughout this example, globe has always referred to the same object as
globe_orig.

Trying to add a noniterable to an AddableBingoCage fails with a proper error
message.

Note that the += operator is more liberal than + with regard to the second operand.
With +, we want both operands to be of the same type (AddableBingoCage, in this
case), because if we accepted different types, this might cause confusion as to the type
of the result. With the +=, the situation is clearer: the lefthand object is updated in
place, so there’s no doubt about the type of the result.

I validated the contrasting behavior of + and += by observing how
the list built-in type works. Writing my_list + x, you can only
concatenate one list to another list, but if you write my_list +=
x, you can extend the lefthand list with items from any iterable x
on the righthand side. This is how the list.extend() method
works: it accepts any iterable argument.

Augmented Assignment Operators | 583

7 The iter built-in function will be covered in the next chapter. Here I could have used tuple(other), and it
would work, but at the cost of building a new tuple when all the .load(…) method needs is to iterate over its
argument.

Now that we are clear on the desired behavior for AddableBingoCage, we can look at
its implementation in Example 16-19. Recall that BingoCage, from Example 13-9, is a
concrete subclass of the Tombola ABC from Example 13-7.

Example 16-19. bingoaddable.py: AddableBingoCage extends BingoCage to support +
and +=

from tombola import Tombola
from bingo import BingoCage

class AddableBingoCage(BingoCage):

 def __add__(self, other):
 if isinstance(other, Tombola):
 return AddableBingoCage(self.inspect() + other.inspect())
 else:
 return NotImplemented

 def __iadd__(self, other):
 if isinstance(other, Tombola):
 other_iterable = other.inspect()
 else:
 try:
 other_iterable = iter(other)
 except TypeError:
 msg = ('right operand in += must be '
 "'Tombola' or an iterable")
 raise TypeError(msg)
 self.load(other_iterable)
 return self

AddableBingoCage extends BingoCage.

Our __add__ will only work with an instance of Tombola as the second operand.

In __iadd__, retrieve items from other, if it is an instance of Tombola.

Otherwise, try to obtain an iterator over other.7

If that fails, raise an exception explaining what the user should do. When possi‐
ble, error messages should explicitly guide the user to the solution.

584 | Chapter 16: Operator Overloading

If we got this far, we can load the other_iterable into self.

Very important: augmented assignment special methods of mutable objects must
return self. That’s what users expect.

We can summarize the whole idea of in-place operators by contrasting the return
statements that produce results in __add__ and __iadd__ in Example 16-19:

__add__

The result is produced by calling the constructor AddableBingoCage to build a
new instance.

__iadd__

The result is produced by returning self, after it has been modified.

To wrap up this example, a final observation on Example 16-19: by design, no
__radd__ was coded in AddableBingoCage, because there is no need for it. The for‐
ward method __add__ will only deal with righthand operands of the same type, so if
Python is trying to compute a + b, where a is an AddableBingoCage and b is not, we
return NotImplemented—maybe the class of b can make it work. But if the expression
is b + a and b is not an AddableBingoCage, and it returns NotImplemented, then it’s
better to let Python give up and raise TypeError because we cannot handle b.

In general, if a forward infix operator method (e.g., __mul__) is
designed to work only with operands of the same type as self, it’s
useless to implement the corresponding reverse method (e.g.,
__rmul__) because that, by definition, will only be invoked when
dealing with an operand of a different type.

This concludes our exploration of operator overloading in Python.

Chapter Summary
We started this chapter by reviewing some restrictions Python imposes on operator
overloading: no redefining of operators in the built-in types themselves, overloading
limited to existing operators, with a few operators left out (is, and, or, not).

We got down to business with the unary operators, implementing __neg__ and
__pos__. Next came the infix operators, starting with +, supported by the __add__
method. We saw that unary and infix operators are supposed to produce results by
creating new objects, and should never change their operands. To support operations
with other types, we return the NotImplemented special value—not an exception—
allowing the interpreter to try again by swapping the operands and calling the reverse

Chapter Summary | 585

special method for that operator (e.g., __radd__). The algorithm Python uses to han‐
dle infix operators is summarized in the flowchart in Figure 16-1.

Mixing operand types requires detecting operands we can’t handle. In this chapter,
we did this in two ways: in the duck typing way, we just went ahead and tried the
operation, catching a TypeError exception if it happened; later, in __mul__ and
__matmul__, we did it with an explicit isinstance test. There are pros and cons to
these approaches: duck typing is more flexible, but explicit type checking is more
predictable.

In general, libraries should leverage duck typing—opening the door for objects
regardless of their types, as long as they support the necessary operations. However,
Python’s operator dispatch algorithm may produce misleading error messages or
unexpected results when combined with duck typing. For this reason, the discipline
of type checking using isinstance calls against ABCs is often useful when writing
special methods for operator overloading. That’s the technique dubbed goose typing
by Alex Martelli—which we saw in “Goose Typing” on page 442. Goose typing is a
good compromise between flexibility and safety, because existing or future user-
defined types can be declared as actual or virtual subclasses of an ABC. In addition, if
an ABC implements the __subclasshook__, then objects pass isinstance checks
against that ABC by providing the required methods—no subclassing or registration
required.

The next topic we covered was the rich comparison operators. We implemented ==
with __eq__ and discovered that Python provides a handy implementation of != in
the __ne__ inherited from the object base class. The way Python evaluates these
operators along with >, <, >=, and <= is slightly different, with special logic for choos‐
ing the reverse method, and fallback handling for == and !=, which never generate
errors because Python compares the object IDs as a last resort.

In the last section, we focused on augmented assignment operators. We saw that
Python handles them by default as a combination of plain operator followed by
assignment, that is: a += b is evaluated exactly as a = a + b. That always creates a
new object, so it works for mutable or immutable types. For mutable objects, we can
implement in-place special methods such as __iadd__ for +=, and alter the value of
the lefthand operand. To show this at work, we left behind the immutable Vector
class and worked on implementing a BingoCage subclass to support += for adding
items to the random pool, similar to the way the list built-in supports += as a short‐
cut for the list.extend() method. While doing this, we discussed how + tends to be
stricter than += regarding the types it accepts. For sequence types, + usually requires
that both operands are of the same type, while += often accepts any iterable as the
righthand operand.

586 | Chapter 16: Operator Overloading

Further Reading
Guido van Rossum wrote a good defense of operator overloading in “Why operators
are useful”. Trey Hunner blogged “Tuple ordering and deep comparisons in Python”,
arguing that the rich comparison operators in Python are more flexible and powerful
than programmers may realize when coming from other languages.

Operator overloading is one area of Python programming where isinstance tests are
common. The best practice around such tests is goose typing, covered in “Goose Typ‐
ing” on page 442. If you skipped that, make sure to read it.

The main reference for the operator special methods is the “Data Model” chapter of
the Python documentation. Another relevant reading is “9.1.2.2. Implementing the
arithmetic operations” in the numbers module of The Python Standard Library.

A clever example of operator overloading appeared in the pathlib package, added in
Python 3.4. Its Path class overloads the / operator to build filesystem paths from
strings, as shown in this example from the documentation:

>>> p = Path('/etc')
>>> q = p / 'init.d' / 'reboot'
>>> q
PosixPath('/etc/init.d/reboot')

Another nonarithmetic example of operator overloading is in the Scapy library, used
to “send, sniff, dissect, and forge network packets.” In Scapy, the / operator builds
packets by stacking fields from different network layers. See “Stacking layers” for
details.

If you are about to implement comparison operators, study functools.total_order
ing. That is a class decorator that automatically generates methods for all rich com‐
parison operators in any class that defines at least a couple of them. See the functools
module docs.

If you are curious about operator method dispatching in languages with dynamic
typing, two seminal readings are “A Simple Technique for Handling Multiple Poly‐
morphism” by Dan Ingalls (member of the original Smalltalk team), and “Arithmetic
and Double Dispatching in Smalltalk-80” by Kurt J. Hebel and Ralph Johnson (John‐
son became famous as one of the authors of the original Design Patterns book). Both
papers provide deep insight into the power of polymorphism in languages with
dynamic typing, like Smalltalk, Python, and Ruby. Python does not use double dis‐
patching for handling operators as described in those articles. The Python algorithm
using forward and reverse operators is easier for user-defined classes to support than
double dispatching, but requires special handling by the interpreter. In contrast,
classic double dispatching is a general technique you can use in Python or any

Further Reading | 587

https://fpy.li/16-10
https://fpy.li/16-10
https://fpy.li/16-11
https://fpy.li/dtmodel
https://fpy.li/16-7
https://fpy.li/16-7
https://fpy.li/16-13
https://fpy.li/16-14
https://fpy.li/16-15
https://fpy.li/16-16
https://fpy.li/16-16
https://fpy.li/16-17
https://fpy.li/16-17
https://fpy.li/16-18
https://fpy.li/16-18

object-oriented language beyond the specific context of infix operators, and in fact
Ingalls, Hebel, and Johnson use very different examples to describe it.

The article, “The C Family of Languages: Interview with Dennis Ritchie, Bjarne
Stroustrup, and James Gosling”, from which I quoted the epigraph for this chapter,
appeared in Java Report, 5(7), July 2000, and C++ Report, 12(7), July/August 2000,
along with two other snippets I used in this chapter’s “Soapbox” (next). If you are
into programming language design, do yourself a favor and read that interview.

Soapbox

Operator Overloading: Pros and Cons

James Gosling, quoted at the start of this chapter, made the conscious decision to
leave operator overloading out when he designed Java. In that same interview (“The
C Family of Languages: Interview with Dennis Ritchie, Bjarne Stroustrup, and James
Gosling”) he says:

Probably about 20 to 30 percent of the population think of operator overloading as
the spawn of the devil; somebody has done something with operator overloading that
has just really ticked them off, because they’ve used like + for list insertion and it
makes life really, really confusing. A lot of that problem stems from the fact that
there are only about half a dozen operators you can sensibly overload, and yet there
are thousands or millions of operators that people would like to define—so you have
to pick, and often the choices conflict with your sense of intuition.

Guido van Rossum picked the middle way in supporting operator overloading: he did
not leave the door open for users creating new arbitrary operators like <=> or :-),
which prevents a Tower of Babel of custom operators, and allows the Python parser
to be simple. Python also does not let you overload the operators of the built-in types,
another limitation that promotes readability and predictable performance.

Gosling goes on to say:

Then there’s a community of about 10 percent that have actually used operator over‐
loading appropriately and who really care about it, and for whom it’s actually really
important; this is almost exclusively people who do numerical work, where the nota‐
tion is very important to appealing to people’s intuition, because they come into it
with an intuition about what the + means, and the ability to say “a + b” where a and b
are complex numbers or matrices or something really does make sense.

Of course, there are benefits to disallowing operator overloading in a language. I’ve
seen the argument that C is better than C++ for systems programming because oper‐
ator overloading in C++ can make costly operations seem trivial. Two successful
modern languages that compile to binary executables made opposite choices: Go
doesn’t have operator overloading, but Rust does.

588 | Chapter 16: Operator Overloading

https://fpy.li/16-1
https://fpy.li/16-1
https://fpy.li/16-20
https://fpy.li/16-20
https://fpy.li/16-20
https://fpy.li/16-21

But overloaded operators, when used sensibly, do make code easier to read and write.
It’s a great feature to have in a modern high-level language.

A Glimpse at Lazy Evaluation

If you look closely at the traceback in Example 16-9, you’ll see evidence of the lazy
evaluation of generator expressions. Example 16-20 is that same traceback, now with
callouts.

Example 16-20. Same as Example 16-9

>>> v1 + 'ABC'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "vector_v6.py", line 329, in __add__

 return Vector(a + b for a, b in pairs)
 File "vector_v6.py", line 243, in __init__

 self._components = array(self.typecode, components)
 File "vector_v6.py", line 329, in <genexpr>

 return Vector(a + b for a, b in pairs)
TypeError: unsupported operand type(s) for +: 'float' and 'str'

The Vector call gets a generator expression as its components argument. No
problem at this stage.

The components genexp is passed to the array constructor. Within the array
constructor, Python tries to iterate over the genexp, causing the evaluation of the
first item a + b. That’s when the TypeError occurs.

The exception propagates to the Vector constructor call, where it is reported.

This shows how the generator expression is evaluated at the latest possible moment,
and not where it is defined in the source code.

In contrast, if the Vector constructor was invoked as Vector([a + b for a, b in
pairs]), then the exception would happen right there, because the list comprehen‐
sion tried to build a list to be passed as the argument to the Vector() call. The body
of Vector.__init__ would not be reached at all.

Chapter 17 will cover generator expressions in detail, but I did not want to let this
accidental demonstration of their lazy nature go unnoticed.

Further Reading | 589

https://fpy.li/16-22

PART IV

Control Flow

1 From “Revenge of the Nerds”, a blog post.

CHAPTER 17

Iterators, Generators,
and Classic Coroutines

When I see patterns in my programs, I consider it a sign of trouble. The shape of a
program should reflect only the problem it needs to solve. Any other regularity in the
code is a sign, to me at least, that I’m using abstractions that aren’t powerful enough—
often that I’m generating by hand the expansions of some macro that I need to write.

—Paul Graham, Lisp hacker and venture capitalist1

Iteration is fundamental to data processing: programs apply computations to data
series, from pixels to nucleotides. If the data doesn’t fit in memory, we need to fetch
the items lazily—one at a time and on demand. That’s what an iterator does. This
chapter shows how the Iterator design pattern is built into the Python language so
you never need to code it by hand.

Every standard collection in Python is iterable. An iterable is an object that provides
an iterator, which Python uses to support operations like:

• for loops
• List, dict, and set comprehensions
• Unpacking assignments
• Construction of collection instances

593

https://fpy.li/17-1

This chapter covers the following topics:

• How Python uses the iter() built-in function to handle iterable objects
• How to implement the classic Iterator pattern in Python
• How the classic Iterator pattern can be replaced by a generator function or gen‐

erator expression
• How a generator function works in detail, with line-by-line descriptions
• Leveraging the general-purpose generator functions in the standard library
• Using yield from expressions to combine generators
• Why generators and classic coroutines look alike but are used in very different

ways and should not be mixed

What’s New in This Chapter
“Subgenerators with yield from” on page 632 grew from one to six pages. It now
includes simpler experiments demonstrating the behavior of generators with yield
from, and an example of traversing a tree data structure, developed step-by-step.

New sections explain the type hints for Iterable, Iterator, and Generator types.

The last major section of this chapter, “Classic Coroutines” on page 641, is a 9-page
introduction to a topic that filled a 40-page chapter in the first edition. I updated and
moved the “Classic Coroutines” chapter to a post in the companion website because
it was the most challenging chapter for readers, but its subject matter is less relevant
after Python 3.5 introduced native coroutines—which we’ll study in Chapter 21.

We’ll get started studying how the iter() built-in function makes sequences iterable.

A Sequence of Words
We’ll start our exploration of iterables by implementing a Sentence class: you give its
constructor a string with some text, and then you can iterate word by word. The first
version will implement the sequence protocol, and it’s iterable because all sequences
are iterable—as we’ve seen since Chapter 1. Now we’ll see exactly why.

Example 17-1 shows a Sentence class that extracts words from a text by index.

Example 17-1. sentence.py: a Sentence as a sequence of words

import re
import reprlib

594 | Chapter 17: Iterators, Generators, and Classic Coroutines

https://fpy.li/oldcoro
https://fpy.li/oldcoro

2 We first used reprlib in “Vector Take #1: Vector2d Compatible” on page 399.

RE_WORD = re.compile(r'\w+')

class Sentence:

 def __init__(self, text):
 self.text = text
 self.words = RE_WORD.findall(text)

 def __getitem__(self, index):
 return self.words[index]

 def __len__(self):
 return len(self.words)

 def __repr__(self):
 return 'Sentence(%s)' % reprlib.repr(self.text)

.findall returns a list with all nonoverlapping matches of the regular expres‐
sion, as a list of strings.

self.words holds the result of .findall, so we simply return the word at the
given index.

To complete the sequence protocol, we implement __len__ although it is not
needed to make an iterable.

reprlib.repr is a utility function to generate abbreviated string representations
of data structures that can be very large.2

By default, reprlib.repr limits the generated string to 30 characters. See the console
session in Example 17-2 to see how Sentence is used.

Example 17-2. Testing iteration on a Sentence instance

>>> s = Sentence('"The time has come," the Walrus said,')
>>> s
Sentence('"The time ha... Walrus said,')
>>> for word in s:
... print(word)
The
time
has
come
the

A Sequence of Words | 595

Walrus
said
>>> list(s)
['The', 'time', 'has', 'come', 'the', 'Walrus', 'said']

A sentence is created from a string.

Note the output of __repr__ using ... generated by reprlib.repr.

Sentence instances are iterable; we’ll see why in a moment.

Being iterable, Sentence objects can be used as input to build lists and other
iterable types.

In the following pages, we’ll develop other Sentence classes that pass the tests in
Example 17-2. However, the implementation in Example 17-1 is different from the
others because it’s also a sequence, so you can get words by index:

>>> s[0]
'The'
>>> s[5]
'Walrus'
>>> s[-1]
'said'

Python programmers know that sequences are iterable. Now we’ll see precisely why.

Why Sequences Are Iterable: The iter Function
Whenever Python needs to iterate over an object x, it automatically calls iter(x).

The iter built-in function:

1. Checks whether the object implements __iter__, and calls that to obtain an
iterator.

2. If __iter__ is not implemented, but __getitem__ is, then iter() creates an iter‐
ator that tries to fetch items by index, starting from 0 (zero).

3. If that fails, Python raises TypeError, usually saying 'C' object is not itera
ble, where C is the class of the target object.

That is why all Python sequences are iterable: by definition, they all implement
__getitem__. In fact, the standard sequences also implement __iter__, and yours
should too, because iteration via __getitem__ exists for backward compatibility and
may be gone in the future—although it is not deprecated as of Python 3.10, and I
doubt it will ever be removed.

596 | Chapter 17: Iterators, Generators, and Classic Coroutines

As mentioned in “Python Digs Sequences” on page 436, this is an extreme form of
duck typing: an object is considered iterable not only when it implements the special
method __iter__, but also when it implements __getitem__. Take a look:

>>> class Spam:
... def __getitem__(self, i):
... print('->', i)
... raise IndexError()
...
>>> spam_can = Spam()
>>> iter(spam_can)
<iterator object at 0x10a878f70>
>>> list(spam_can)
-> 0
[]
>>> from collections import abc
>>> isinstance(spam_can, abc.Iterable)
False

If a class provides __getitem__, the iter() built-in accepts an instance of that class
as iterable and builds an iterator from the instance. Python’s iteration machinery will
call __getitem__ with indexes starting from 0, and will take an IndexError as a
signal that there are no more items.

Note that although spam_can is iterable (its __getitem__ could provide items), it is
not recognized as such by an isinstance against abc.Iterable.

In the goose-typing approach, the definition for an iterable is simpler but not as flexi‐
ble: an object is considered iterable if it implements the __iter__ method. No sub‐
classing or registration is required, because abc.Iterable implements the
__subclasshook__, as seen in “Structural Typing with ABCs” on page 464. Here is a
demonstration:

>>> class GooseSpam:
... def __iter__(self):
... pass
...
>>> from collections import abc
>>> issubclass(GooseSpam, abc.Iterable)
True
>>> goose_spam_can = GooseSpam()
>>> isinstance(goose_spam_can, abc.Iterable)
True

As of Python 3.10, the most accurate way to check whether an
object x is iterable is to call iter(x) and handle a TypeError excep‐
tion if it isn’t. This is more accurate than using isinstance(x,
abc.Iterable), because iter(x) also considers the legacy
__getitem__ method, while the Iterable ABC does not.

Why Sequences Are Iterable: The iter Function | 597

Explicitly checking whether an object is iterable may not be worthwhile if right after
the check you are going to iterate over the object. After all, when the iteration is
attempted on a noniterable, the exception Python raises is clear enough: TypeError:
'C' object is not iterable. If you can do better than just raising TypeError, then
do so in a try/except block instead of doing an explicit check. The explicit check
may make sense if you are holding on to the object to iterate over it later; in this case,
catching the error early makes debugging easier.

The iter() built-in is more often used by Python itself than by our own code.
There’s a second way we can use it, but it’s not widely known.

Using iter with a Callable
We can call iter() with two arguments to create an iterator from a function or any
callable object. In this usage, the first argument must be a callable to be invoked
repeatedly (with no arguments) to produce values, and the second argument is a sen‐
tinel: a marker value which, when returned by the callable, causes the iterator to raise
StopIteration instead of yielding the sentinel.

The following example shows how to use iter to roll a six-sided die until a 1 is rolled:

>>> def d6():
... return randint(1, 6)
...
>>> d6_iter = iter(d6, 1)
>>> d6_iter
<callable_iterator object at 0x10a245270>
>>> for roll in d6_iter:
... print(roll)
...
4
3
6
3

Note that the iter function here returns a callable_iterator. The for loop in the
example may run for a very long time, but it will never display 1, because that is the
sentinel value. As usual with iterators, the d6_iter object in the example becomes
useless once exhausted. To start over, we must rebuild the iterator by invoking
iter() again.

The documentation for iter includes the following explanation and example code:

One useful application of the second form of iter() is to build a block-reader. For
example, reading fixed-width blocks from a binary database file until the end of file is
reached:

from functools import partial

598 | Chapter 17: Iterators, Generators, and Classic Coroutines

https://fpy.li/17-2
https://fpy.li/17-2
https://fpy.li/17-3

with open('mydata.db', 'rb') as f:
 read64 = partial(f.read, 64)
 for block in iter(read64, b''):
 process_block(block)

For clarity, I’ve added the read64 assignment, which is not in the original example.
The partial() function is necessary because the callable given to iter() must not
require arguments. In the example, an empty bytes object is the sentinel, because
that’s what f.read returns when there are no more bytes to read.

The next section details the relationship between iterables and iterators.

Iterables Versus Iterators
From the explanation in “Why Sequences Are Iterable: The iter Function” on page
596 we can extrapolate a definition:

iterable
Any object from which the iter built-in function can obtain an iterator. Objects
implementing an __iter__ method returning an iterator are iterable. Sequences
are always iterable, as are objects implementing a __getitem__ method that
accepts 0-based indexes.

It’s important to be clear about the relationship between iterables and iterators:
Python obtains iterators from iterables.

Here is a simple for loop iterating over a str. The str 'ABC' is the iterable here. You
don’t see it, but there is an iterator behind the curtain:

>>> s = 'ABC'
>>> for char in s:
... print(char)
...
A
B
C

If there was no for statement and we had to emulate the for machinery by hand with
a while loop, this is what we’d have to write:

>>> s = 'ABC'
>>> it = iter(s)
>>> while True:
... try:
... print(next(it))
... except StopIteration:
... del it
... break
...
A

Iterables Versus Iterators | 599

https://fpy.li/17-3

B
C

Build an iterator it from the iterable.

Repeatedly call next on the iterator to obtain the next item.

The iterator raises StopIteration when there are no further items.

Release reference to it—the iterator object is discarded.

Exit the loop.

StopIteration signals that the iterator is exhausted. This exception is handled inter‐
nally by the iter() built-in that is part of the logic of for loops and other iteration
contexts like list comprehensions, iterable unpacking, etc.

Python’s standard interface for an iterator has two methods:

__next__

Returns the next item in the series, raising StopIteration if there are no more.

__iter__

Returns self; this allows iterators to be used where an iterable is expected, for
example, in a for loop.

That interface is formalized in the collections.abc.Iterator ABC, which declares
the __next__ abstract method, and subclasses Iterable—where the abstract
__iter__ method is declared. See Figure 17-1.

Figure 17-1. The Iterable and Iterator ABCs. Methods in italic are abstract. A con‐
crete Iterable.__iter__ should return a new Iterator instance. A concrete Itera
tor must implement __next__. The Iterator.__iter__ method just returns the
instance itself.

The source code for collections.abc.Iterator is in Example 17-3.

600 | Chapter 17: Iterators, Generators, and Classic Coroutines

Example 17-3. abc.Iterator class; extracted from Lib/_collections_abc.py

class Iterator(Iterable):

 __slots__ = ()

 @abstractmethod
 def __next__(self):
 'Return the next item from the iterator. When exhausted, raise StopIteration'
 raise StopIteration

 def __iter__(self):
 return self

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Iterator:
 return _check_methods(C, '__iter__', '__next__')
 return NotImplemented

__subclasshook__ supports structural type checks with isinstance and issub
class. We saw it in “Structural Typing with ABCs” on page 464.

_check_methods traverses the __mro__ of the class to check whether the methods
are implemented in its base classes. It’s defined in that same Lib/_collec‐
tions_abc.py module. If the methods are implemented, the C class will be recog‐
nized as a virtual subclass of Iterator. In other words, issubclass(C,

Iterable) will return True.

The Iterator ABC abstract method is it.__next__() in Python 3
and it.next() in Python 2. As usual, you should avoid calling spe‐
cial methods directly. Just use the next(it): this built-in function
does the right thing in Python 2 and 3—which is useful for those
migrating codebases from 2 to 3.

The Lib/types.py module source code in Python 3.9 has a comment that says:

Iterators in Python aren't a matter of type but of protocol. A large
and changing number of builtin types implement *some* flavor of
iterator. Don't check the type! Use hasattr to check for both
"__iter__" and "__next__" attributes instead.

In fact, that’s exactly what the __subclasshook__ method of the abc.Iterator ABC
does.

Iterables Versus Iterators | 601

https://fpy.li/17-5
https://fpy.li/17-6

Given the advice from Lib/types.py and the logic implemented in
Lib/_collections_abc.py, the best way to check if an object x is an
iterator is to call isinstance(x, abc.Iterator). Thanks to Itera
tor.__subclasshook__, this test works even if the class of x is not
a real or virtual subclass of Iterator.

Back to our Sentence class from Example 17-1, you can clearly see how the iterator is
built by iter() and consumed by next() using the Python console:

>>> s3 = Sentence('Life of Brian')
>>> it = iter(s3)
>>> it # doctest: +ELLIPSIS
<iterator object at 0x...>
>>> next(it)
'Life'
>>> next(it)
'of'
>>> next(it)
'Brian'
>>> next(it)
Traceback (most recent call last):
 ...
StopIteration
>>> list(it)
[]
>>> list(iter(s3))
['Life', 'of', 'Brian']

Create a sentence s3 with three words.

Obtain an iterator from s3.

next(it) fetches the next word.

There are no more words, so the iterator raises a StopIteration exception.

Once exhausted, an iterator will always raise StopIteration, which makes it
look like it’s empty.

To go over the sentence again, a new iterator must be built.

Because the only methods required of an iterator are __next__ and __iter__, there is
no way to check whether there are remaining items, other than to call next() and
catch StopIteration. Also, it’s not possible to “reset” an iterator. If you need to start
over, you need to call iter() on the iterable that built the iterator in the first place.
Calling iter() on the iterator itself won’t help either, because—as mentioned—

602 | Chapter 17: Iterators, Generators, and Classic Coroutines

3 Thanks to tech reviewer Leonardo Rochael for this fine example.

Iterator.__iter__ is implemented by returning self, so this will not reset a deple‐
ted iterator.

That minimal interface is sensible, because in reality not all iterators are resettable.
For example, if an iterator is reading packets from the network, there’s no way to
rewind it.3

The first version of Sentence from Example 17-1 was iterable thanks to the special
treatment the iter() built-in gives to sequences. Next, we will implement Sentence
variations that implement __iter__ to return iterators.

Sentence Classes with __iter__
The next variations of Sentence implement the standard iterable protocol, first by
implementing the Iterator design pattern, and then with generator functions.

Sentence Take #2: A Classic Iterator
The next Sentence implementation follows the blueprint of the classic Iterator design
pattern from the Design Patterns book. Note that it is not idiomatic Python, as the
next refactorings will make very clear. But it is useful to show the distinction between
an iterable collection and an iterator that works with it.

The Sentence class in Example 17-4 is iterable because it implements the __iter__
special method, which builds and returns a SentenceIterator. That’s how an itera‐
ble and an iterator are related.

Example 17-4. sentence_iter.py: Sentence implemented using the Iterator pattern

import re
import reprlib

RE_WORD = re.compile(r'\w+')

class Sentence:

 def __init__(self, text):
 self.text = text
 self.words = RE_WORD.findall(text)

 def __repr__(self):
 return f'Sentence({reprlib.repr(self.text)})'

Sentence Classes with __iter__ | 603

 def __iter__(self):
 return SentenceIterator(self.words)

class SentenceIterator:

 def __init__(self, words):
 self.words = words
 self.index = 0

 def __next__(self):
 try:
 word = self.words[self.index]
 except IndexError:
 raise StopIteration()
 self.index += 1
 return word

 def __iter__(self):
 return self

The __iter__ method is the only addition to the previous Sentence implemen‐
tation. This version has no __getitem__, to make it clear that the class is iterable
because it implements __iter__.

__iter__ fulfills the iterable protocol by instantiating and returning an iterator.

SentenceIterator holds a reference to the list of words.

self.index determines the next word to fetch.

Get the word at self.index.

If there is no word at self.index, raise StopIteration.

Increment self.index.

Return the word.

Implement self.__iter__.

The code in Example 17-4 passes the tests in Example 17-2.

Note that implementing __iter__ in SentenceIterator is not actually needed
for this example to work, but it is the right thing to do: iterators are supposed to
implement both __next__ and __iter__, and doing so makes our iterator pass
the issubclass(SentenceIterator, abc.Iterator) test. If we had subclassed

604 | Chapter 17: Iterators, Generators, and Classic Coroutines

SentenceIterator from abc.Iterator, we’d inherit the concrete abc.Itera

tor.__iter__ method.

That is a lot of work (for us spoiled Python programmers, anyway). Note how most
code in SentenceIterator deals with managing the internal state of the iterator.
Soon we’ll see how to avoid that bookkeeping. But first, a brief detour to address an
implementation shortcut that may be tempting, but is just wrong.

Don’t Make the Iterable an Iterator for Itself
A common cause of errors in building iterables and iterators is to confuse the two. To
be clear: iterables have an __iter__ method that instantiates a new iterator every
time. Iterators implement a __next__ method that returns individual items, and an
__iter__ method that returns self.

Therefore, iterators are also iterable, but iterables are not iterators.

It may be tempting to implement __next__ in addition to __iter__ in the Sentence
class, making each Sentence instance at the same time an iterable and iterator over
itself. But this is rarely a good idea. It’s also a common antipattern, according to Alex
Martelli who has a lot of experience reviewing Python code at Google.

The “Applicability” section about the Iterator design pattern in the Design Patterns
book says:

Use the Iterator pattern

• to access an aggregate object’s contents without exposing its internal
representation.

• to support multiple traversals of aggregate objects.

• to provide a uniform interface for traversing different aggregate structures (that
is, to support polymorphic iteration).

To “support multiple traversals,” it must be possible to obtain multiple independent
iterators from the same iterable instance, and each iterator must keep its own internal
state, so a proper implementation of the pattern requires each call to iter(my_itera
ble) to create a new, independent, iterator. That is why we need the SentenceItera
tor class in this example.

Now that the classic Iterator pattern is properly demonstrated, we can let it go.
Python incorporated the yield keyword from Barbara Liskov’s CLU language, so we
don’t need to “generate by hand” the code to implement iterators.

The next sections present more idiomatic versions of Sentence.

Sentence Classes with __iter__ | 605

https://fpy.li/17-7

4 When reviewing this code, Alex Martelli suggested the body of this method could simply be return
iter(self.words). He is right: the result of calling self.words.__iter__() would also be an iterator, as it
should be. However, I used a for loop with yield here to introduce the syntax of a generator function, which
requires the yield keyword, as we’ll see in the next section. During review of the second edition of this book,
Leonardo Rochael suggested yet another shortcut for the body of __iter__: yield from self.words. We’ll
also cover yield from later in this chapter.

Sentence Take #3: A Generator Function
A Pythonic implementation of the same functionality uses a generator, avoiding all
the work to implement the SentenceIterator class. A proper explanation of the gen‐
erator comes right after Example 17-5.

Example 17-5. sentence_gen.py: Sentence implemented using a generator

import re
import reprlib

RE_WORD = re.compile(r'\w+')

class Sentence:

 def __init__(self, text):
 self.text = text
 self.words = RE_WORD.findall(text)

 def __repr__(self):
 return 'Sentence(%s)' % reprlib.repr(self.text)

 def __iter__(self):
 for word in self.words:
 yield word

done!

Iterate over self.words.

Yield the current word.

Explicit return is not necessary; the function can just “fall through” and return
automatically. Either way, a generator function doesn’t raise StopIteration: it
simply exits when it’s done producing values.4

No need for a separate iterator class!

606 | Chapter 17: Iterators, Generators, and Classic Coroutines

5 Sometimes I add a gen prefix or suffix when naming generator functions, but this is not a common practice.
And you can’t do that if you’re implementing an iterable, of course: the necessary special method must be
named __iter__.

6 Thanks to David Kwast for suggesting this example.

Here again we have a different implementation of Sentence that passes the tests in
Example 17-2.

Back in the Sentence code in Example 17-4, __iter__ called the SentenceIterator
constructor to build an iterator and return it. Now the iterator in Example 17-5 is in
fact a generator object, built automatically when the __iter__ method is called,
because __iter__ here is a generator function.

A full explanation of generators follows.

How a Generator Works
Any Python function that has the yield keyword in its body is a generator function: a
function which, when called, returns a generator object. In other words, a generator
function is a generator factory.

The only syntax distinguishing a plain function from a generator
function is the fact that the latter has a yield keyword somewhere
in its body. Some argued that a new keyword like gen should be
used instead of def to declare generator functions, but Guido did
not agree. His arguments are in PEP 255 — Simple Generators.5

Example 17-6 shows the behavior of a simple generator function.6

Example 17-6. A generator function that yields three numbers

>>> def gen_123():
... yield 1
... yield 2
... yield 3
...
>>> gen_123 # doctest: +ELLIPSIS
<function gen_123 at 0x...>
>>> gen_123() # doctest: +ELLIPSIS
<generator object gen_123 at 0x...>
>>> for i in gen_123():
... print(i)
1
2

Sentence Classes with __iter__ | 607

https://fpy.li/pep255

3
>>> g = gen_123()
>>> next(g)
1
>>> next(g)
2
>>> next(g)
3
>>> next(g)
Traceback (most recent call last):
 ...
StopIteration

The body of a generator function often has yield inside a loop, but not necessar‐
ily; here I just repeat yield three times.

Looking closely, we see gen_123 is a function object.

But when invoked, gen_123() returns a generator object.

Generator objects implement the Iterator interface, so they are also iterable.

We assign this new generator object to g, so we can experiment with it.

Because g is an iterator, calling next(g) fetches the next item produced by yield.

When the generator function returns, the generator object raises StopIteration.

A generator function builds a generator object that wraps the body of the function.
When we invoke next() on the generator object, execution advances to the next
yield in the function body, and the next() call evaluates to the value yielded when
the function body is suspended. Finally, the enclosing generator object created by
Python raises StopIteration when the function body returns, in accordance with the
Iterator protocol.

I find it helpful to be rigorous when talking about values obtained
from a generator. It’s confusing to say a generator “returns” values.
Functions return values. Calling a generator function returns a
generator. A generator yields values. A generator doesn’t “return”
values in the usual way: the return statement in the body of a gen‐
erator function causes StopIteration to be raised by the generator
object. If you return x in the generator, the caller can retrieve the
value of x from the StopIteration exception, but usually that is
done automatically using the yield from syntax, as we’ll see in
“Returning a Value from a Coroutine” on page 646.

608 | Chapter 17: Iterators, Generators, and Classic Coroutines

Example 17-7 makes the interaction between a for loop and the body of the function
more explicit.

Example 17-7. A generator function that prints messages when it runs

>>> def gen_AB():
... print('start')
... yield 'A'
... print('continue')
... yield 'B'
... print('end.')
...
>>> for c in gen_AB():
... print('-->', c)
...
start
--> A
continue
--> B
end.
>>>

The first implicit call to next() in the for loop at will print 'start' and stop
at the first yield, producing the value 'A'.

The second implicit call to next() in the for loop will print 'continue' and stop
at the second yield, producing the value 'B'.

The third call to next() will print 'end.' and fall through the end of the func‐
tion body, causing the generator object to raise StopIteration.

To iterate, the for machinery does the equivalent of g = iter(gen_AB()) to get
a generator object, and then next(g) at each iteration.

The loop prints --> and the value returned by next(g). This output will appear
only after the output of the print calls inside the generator function.

The text start comes from print('start') in the generator body.

yield 'A' in the generator body yields the value A consumed by the for loop,
which gets assigned to the c variable and results in the output --> A.

Iteration continues with a second call to next(g), advancing the generator body
from yield 'A' to yield 'B'. The text continue is output by the second print
in the generator body.

Sentence Classes with __iter__ | 609

yield 'B' yields the value B consumed by the for loop, which gets assigned to
the c loop variable, so the loop prints --> B.

Iteration continues with a third call to next(it), advancing to the end of the
body of the function. The text end. appears in the output because of the third
print in the generator body.

When the generator function runs to the end, the generator object raises StopIt
eration. The for loop machinery catches that exception, and the loop termi‐
nates cleanly.

Now hopefully it’s clear how Sentence.__iter__ in Example 17-5 works: __iter__
is a generator function which, when called, builds a generator object that implements
the Iterator interface, so the SentenceIterator class is no longer needed.

That second version of Sentence is more concise than the first, but it’s not as lazy as
it could be. Nowadays, laziness is considered a good trait, at least in programming
languages and APIs. A lazy implementation postpones producing values to the last
possible moment. This saves memory and may avoid wasting CPU cycles, too.

We’ll build lazy Sentence classes next.

Lazy Sentences
The final variations of Sentence are lazy, taking advantage of a lazy function from the
re module.

Sentence Take #4: Lazy Generator
The Iterator interface is designed to be lazy: next(my_iterator) yields one item at
a time. The opposite of lazy is eager: lazy evaluation and eager evaluation are techni‐
cal terms in programming language theory.

Our Sentence implementations so far have not been lazy because the __init__
eagerly builds a list of all words in the text, binding it to the self.words attribute.
This requires processing the entire text, and the list may use as much memory as the
text itself (probably more; it depends on how many nonword characters are in the
text). Most of this work will be in vain if the user only iterates over the first couple of
words. If you wonder, “Is there a lazy way of doing this in Python?” the answer is
often “Yes.”

The re.finditer function is a lazy version of re.findall. Instead of a list, re.fin
diter returns a generator yielding re.MatchObject instances on demand. If there are
many matches, re.finditer saves a lot of memory. Using it, our third version of

610 | Chapter 17: Iterators, Generators, and Classic Coroutines

Sentence is now lazy: it only reads the next word from the text when it is needed. The
code is in Example 17-8.

Example 17-8. sentence_gen2.py: Sentence implemented using a generator function
calling the re.finditer generator function

import re
import reprlib

RE_WORD = re.compile(r'\w+')

class Sentence:

 def __init__(self, text):
 self.text = text

 def __repr__(self):
 return f'Sentence({reprlib.repr(self.text)})'

 def __iter__(self):
 for match in RE_WORD.finditer(self.text):
 yield match.group()

No need to have a words list.

finditer builds an iterator over the matches of RE_WORD on self.text, yielding
MatchObject instances.

match.group() extracts the matched text from the MatchObject instance.

Generators are a great shortcut, but the code can be made even more concise with a
generator expression.

Sentence Take #5: Lazy Generator Expression
We can replace simple generator functions like the one in the previous Sentence
class (Example 17-8) with a generator expression. As a list comprehension builds
lists, a generator expression builds generator objects. Example 17-9 contrasts their
behavior.

Example 17-9. The gen_AB generator function is used by a list comprehension, then by
a generator expression

>>> def gen_AB():
... print('start')
... yield 'A'

Lazy Sentences | 611

... print('continue')

... yield 'B'

... print('end.')

...
>>> res1 = [x*3 for x in gen_AB()]
start
continue
end.
>>> for i in res1:
... print('-->', i)
...
--> AAA
--> BBB
>>> res2 = (x*3 for x in gen_AB())
>>> res2
<generator object <genexpr> at 0x10063c240>
>>> for i in res2:
... print('-->', i)
...
start
--> AAA
continue
--> BBB
end.

This is the same gen_AB function from Example 17-7.

The list comprehension eagerly iterates over the items yielded by the generator
object returned by gen_AB(): 'A' and 'B'. Note the output in the next lines:
start, continue, end.

This for loop iterates over the res1 list built by the list comprehension.

The generator expression returns res2, a generator object. The generator is not
consumed here.

Only when the for loop iterates over res2, this generator gets items from
gen_AB. Each iteration of the for loop implicitly calls next(res2), which in turn
calls next() on the generator object returned by gen_AB(), advancing it to the
next yield.

Note how the output of gen_AB() interleaves with the output of the print in the
for loop.

We can use a generator expression to further reduce the code in the Sentence class.
See Example 17-10.

612 | Chapter 17: Iterators, Generators, and Classic Coroutines

Example 17-10. sentence_genexp.py: Sentence implemented using a generator
expression

import re
import reprlib

RE_WORD = re.compile(r'\w+')

class Sentence:

 def __init__(self, text):
 self.text = text

 def __repr__(self):
 return f'Sentence({reprlib.repr(self.text)})'

 def __iter__(self):
 return (match.group() for match in RE_WORD.finditer(self.text))

The only difference from Example 17-8 is the __iter__ method, which here is not a
generator function (it has no yield) but uses a generator expression to build a gener‐
ator and then returns it. The end result is the same: the caller of __iter__ gets a gen‐
erator object.

Generator expressions are syntactic sugar: they can always be replaced by generator
functions, but sometimes are more convenient. The next section is about generator
expression usage.

When to Use Generator Expressions
I used several generator expressions when implementing the Vector class in
Example 12-16. Each of these methods has a generator expression: __eq__, __hash__,
__abs__, angle, angles, format, __add__, and __mul__. In all those methods, a list
comprehension would also work, at the cost of using more memory to store the inter‐
mediate list values.

In Example 17-10, we saw that a generator expression is a syntactic shortcut to create
a generator without defining and calling a function. On the other hand, generator
functions are more flexible: we can code complex logic with multiple statements, and
we can even use them as coroutines, as we’ll see in “Classic Coroutines” on page 641.

For the simpler cases, a generator expression is easier to read at a glance, as the
Vector example shows.

My rule of thumb in choosing the syntax to use is simple: if the generator expression
spans more than a couple of lines, I prefer to code a generator function for the sake of
readability.

When to Use Generator Expressions | 613

Syntax Tip

When a generator expression is passed as the single argument to a
function or constructor, you don’t need to write a set of parenthe‐
ses for the function call and another to enclose the generator
expression. A single pair will do, like in the Vector call from the
__mul__ method in Example 12-16, reproduced here:

def __mul__(self, scalar):
 if isinstance(scalar, numbers.Real):
 return Vector(n * scalar for n in self)
 else:
 return NotImplemented

However, if there are more function arguments after the generator
expression, you need to enclose it in parentheses to avoid a Syntax
Error.

The Sentence examples we’ve seen demonstrate generators playing the role of the
classic Iterator pattern: retrieving items from a collection. But we can also use genera‐
tors to yield values independent of a data source. The next section shows an example.

But first, a short discussion on the overlapping concepts of iterator and generator.

Contrasting Iterators and Generators
In the official Python documentation and codebase, the terminology around iterators
and generators is inconsistent and evolving. I’ve adopted the following definitions:

iterator
General term for any object that implements a __next__ method. Iterators are
designed to produce data that is consumed by the client code, i.e., the code that
drives the iterator via a for loop or other iterative feature, or by explicitly calling
next(it) on the iterator—although this explicit usage is much less common. In
practice, most iterators we use in Python are generators.

generator
An iterator built by the Python compiler. To create a generator, we don’t imple‐
ment __next__. Instead, we use the yield keyword to make a generator function,
which is a factory of generator objects. A generator expression is another way to
build a generator object. Generator objects provide __next__, so they are itera‐
tors. Since Python 3.5, we also have asynchronous generators declared with async
def. We’ll study them in Chapter 21, “Asynchronous Programming”.

The Python Glossary recently introduced the term generator iterator to refer to gener‐
ator objects built by generator functions, while the entry for generator expression says
it returns an “iterator.”

614 | Chapter 17: Iterators, Generators, and Classic Coroutines

https://fpy.li/17-8
https://fpy.li/17-9
https://fpy.li/17-10

But the objects returned in both cases are generator objects, according to Python:

>>> def g():
... yield 0
...
>>> g()
<generator object g at 0x10e6fb290>
>>> ge = (c for c in 'XYZ')
>>> ge
<generator object <genexpr> at 0x10e936ce0>
>>> type(g()), type(ge)
(<class 'generator'>, <class 'generator'>)

An Arithmetic Progression Generator
The classic Iterator pattern is all about traversal: navigating some data structure. But
a standard interface based on a method to fetch the next item in a series is also useful
when the items are produced on the fly, instead of retrieved from a collection. For
example, the range built-in generates a bounded arithmetic progression (AP) of inte‐
gers. What if you need to generate an AP of numbers of any type, not only integers?

Example 17-11 shows a few console tests of an ArithmeticProgression class we will
see in a moment. The signature of the constructor in Example 17-11 is Arithmetic
Progression(begin, step[, end]). The complete signature of the range built-in is
range(start, stop[, step]). I chose to implement a different signature because
the step is mandatory but end is optional in an arithmetic progression. I also
changed the argument names from start/stop to begin/end to make it clear that I
opted for a different signature. In each test in Example 17-11, I call list() on the
result to inspect the generated values.

Example 17-11. Demonstration of an ArithmeticProgression class

 >>> ap = ArithmeticProgression(0, 1, 3)
 >>> list(ap)
 [0, 1, 2]
 >>> ap = ArithmeticProgression(1, .5, 3)
 >>> list(ap)
 [1.0, 1.5, 2.0, 2.5]
 >>> ap = ArithmeticProgression(0, 1/3, 1)
 >>> list(ap)
 [0.0, 0.3333333333333333, 0.6666666666666666]
 >>> from fractions import Fraction
 >>> ap = ArithmeticProgression(0, Fraction(1, 3), 1)
 >>> list(ap)
 [Fraction(0, 1), Fraction(1, 3), Fraction(2, 3)]
 >>> from decimal import Decimal
 >>> ap = ArithmeticProgression(0, Decimal('.1'), .3)

An Arithmetic Progression Generator | 615

7 In Python 2, there was a coerce() built-in function, but it’s gone in Python 3. It was deemed unnecessary
because the numeric coercion rules are implicit in the arithmetic operator methods. So the best way I could
think of to coerce the initial value to be of the same type as the rest of the series was to perform the addition
and use its type to convert the result. I asked about this in the Python-list and got an excellent response from
Steven D’Aprano.

 >>> list(ap)
 [Decimal('0'), Decimal('0.1'), Decimal('0.2')]

Note that the type of the numbers in the resulting arithmetic progression follows the
type of begin + step, according to the numeric coercion rules of Python arithmetic.
In Example 17-11, you see lists of int, float, Fraction, and Decimal numbers.
Example 17-12 lists the implementation of the ArithmeticProgression class.

Example 17-12. The ArithmeticProgression class

class ArithmeticProgression:

 def __init__(self, begin, step, end=None):
 self.begin = begin
 self.step = step
 self.end = end # None -> "infinite" series

 def __iter__(self):
 result_type = type(self.begin + self.step)
 result = result_type(self.begin)
 forever = self.end is None
 index = 0
 while forever or result < self.end:
 yield result
 index += 1
 result = self.begin + self.step * index

__init__ requires two arguments: begin and step; end is optional, if it’s None,
the series will be unbounded.

Get the type of adding self.begin and self.step. For example, if one is int and
the other is float, result_type will be float.

This line makes a result with the same numeric value of self.begin, but
coerced to the type of the subsequent additions.7

For readability, the forever flag will be True if the self.end attribute is None,
resulting in an unbounded series.

616 | Chapter 17: Iterators, Generators, and Classic Coroutines

https://fpy.li/17-11
https://fpy.li/17-11

8 The 17-it-generator/ directory in the Fluent Python code repository includes doctests and a script, arit‐
prog_runner.py, which runs the tests against all variations of the aritprog*.py scripts.

This loop runs forever or until the result matches or exceeds self.end. When
this loop exits, so does the function.

The current result is produced.

The next potential result is calculated. It may never be yielded, because the while
loop may terminate.

In the last line of Example 17-12, instead of adding self.step to the previous result
each time around the loop, I opted to ignore the previous result and each new
result by adding self.begin to self.step multiplied by index. This avoids the
cumulative effect of floating-point errors after successive additions. These simple
experiments make the difference clear:

>>> 100 * 1.1
110.00000000000001
>>> sum(1.1 for _ in range(100))
109.99999999999982
>>> 1000 * 1.1
1100.0
>>> sum(1.1 for _ in range(1000))
1100.0000000000086

The ArithmeticProgression class from Example 17-12 works as intended, and is a
another example of using a generator function to implement the __iter__ special
method. However, if the whole point of a class is to build a generator by implement‐
ing __iter__, we can replace the class with a generator function. A generator
function is, after all, a generator factory.

Example 17-13 shows a generator function called aritprog_gen that does the same
job as ArithmeticProgression but with less code. The tests in Example 17-11 all pass
if you just call aritprog_gen instead of ArithmeticProgression.8

Example 17-13. The aritprog_gen generator function

def aritprog_gen(begin, step, end=None):
 result = type(begin + step)(begin)
 forever = end is None
 index = 0
 while forever or result < end:
 yield result
 index += 1
 result = begin + step * index

An Arithmetic Progression Generator | 617

https://fpy.li/code

Example 17-13 is elegant, but always remember: there are plenty of ready-to-use gen‐
erators in the standard library, and the next section will show a shorter implementa‐
tion using the itertools module.

Arithmetic Progression with itertools
The itertools module in Python 3.10 has 20 generator functions that can be com‐
bined in a variety of interesting ways.

For example, the itertools.count function returns a generator that yields numbers.
Without arguments, it yields a series of integers starting with 0. But you can provide
optional start and step values to achieve a result similar to our aritprog_gen
functions:

>>> import itertools
>>> gen = itertools.count(1, .5)
>>> next(gen)
1
>>> next(gen)
1.5
>>> next(gen)
2.0
>>> next(gen)
2.5

itertools.count never stops, so if you call list(count()),
Python will try to build a list that would fill all the memory chips
ever made. In practice, your machine will become very grumpy
long before the call fails.

On the other hand, there is the itertools.takewhile function: it returns a generator
that consumes another generator and stops when a given predicate evaluates to
False. So we can combine the two and write this:

>>> gen = itertools.takewhile(lambda n: n < 3, itertools.count(1, .5))
>>> list(gen)
[1, 1.5, 2.0, 2.5]

Leveraging takewhile and count, Example 17-14 is even more concise.

Example 17-14. aritprog_v3.py: this works like the previous aritprog_gen functions

import itertools

def aritprog_gen(begin, step, end=None):
 first = type(begin + step)(begin)
 ap_gen = itertools.count(first, step)

618 | Chapter 17: Iterators, Generators, and Classic Coroutines

 if end is None:
 return ap_gen
 return itertools.takewhile(lambda n: n < end, ap_gen)

Note that aritprog_gen in Example 17-14 is not a generator function: it has no
yield in its body. But it returns a generator, just as a generator function does.

However, recall that itertools.count adds the step repeatedly, so the floating-point
series it produces are not as precise as Example 17-13.

The point of Example 17-14 is: when implementing generators, know what is avail‐
able in the standard library, otherwise there’s a good chance you’ll reinvent the wheel.
That’s why the next section covers several ready-to-use generator functions.

Generator Functions in the Standard Library
The standard library provides many generators, from plain-text file objects providing
line-by-line iteration, to the awesome os.walk function, which yields filenames while
traversing a directory tree, making recursive filesystem searches as simple as a for
loop.

The os.walk generator function is impressive, but in this section I want to focus on
general-purpose functions that take arbitrary iterables as arguments and return gen‐
erators that yield selected, computed, or rearranged items. In the following tables, I
summarize two dozen of them, from the built-in, itertools, and functools mod‐
ules. For convenience, I grouped them by high-level functionality, regardless of
where they are defined.

The first group contains the filtering generator functions: they yield a subset of items
produced by the input iterable, without changing the items themselves. Like take
while, most functions listed in Table 17-1 take a predicate, which is a one-argument
Boolean function that will be applied to each item in the input to determine whether
the item is included in the output.

Table 17-1. Filtering generator functions

Module Function Description

itertools compress(it, selector_it) Consumes two iterables in parallel; yields items from it
whenever the corresponding item in selector_it is
truthy

itertools dropwhile(predicate, it) Consumes it, skipping items while predicate computes
truthy, then yields every remaining item (no further checks
are made)

(built-in) filter(predicate, it) Applies predicate to each item of iterable, yielding
the item if predicate(item) is truthy; if predicate is
None, only truthy items are yielded

Generator Functions in the Standard Library | 619

https://fpy.li/17-12

9 Here, the term “mapping” is unrelated to dictionaries, but has to do with the map built-in.

Module Function Description

itertools filterfalse(predicate, it) Same as filter, with the predicate logic negated:
yields items whenever predicate computes falsy

itertools islice(it, stop) or
islice(it, start, stop,
step=1)

Yields items from a slice of it, similar to s[:stop] or
s[start:stop:step] except it can be any iterable,
and the operation is lazy

itertools takewhile(predicate, it) Yields items while predicate computes truthy, then stops
and no further checks are made

The console listing in Example 17-15 shows the use of all the functions in Table 17-1.

Example 17-15. Filtering generator functions examples

>>> def vowel(c):
... return c.lower() in 'aeiou'
...
>>> list(filter(vowel, 'Aardvark'))
['A', 'a', 'a']
>>> import itertools
>>> list(itertools.filterfalse(vowel, 'Aardvark'))
['r', 'd', 'v', 'r', 'k']
>>> list(itertools.dropwhile(vowel, 'Aardvark'))
['r', 'd', 'v', 'a', 'r', 'k']
>>> list(itertools.takewhile(vowel, 'Aardvark'))
['A', 'a']
>>> list(itertools.compress('Aardvark', (1, 0, 1, 1, 0, 1)))
['A', 'r', 'd', 'a']
>>> list(itertools.islice('Aardvark', 4))
['A', 'a', 'r', 'd']
>>> list(itertools.islice('Aardvark', 4, 7))
['v', 'a', 'r']
>>> list(itertools.islice('Aardvark', 1, 7, 2))
['a', 'd', 'a']

The next group contains the mapping generators: they yield items computed from
each individual item in the input iterable—or iterables, in the case of map and star
map.9 The generators in Table 17-2 yield one result per item in the input iterables. If
the input comes from more than one iterable, the output stops as soon as the first
input iterable is exhausted.

620 | Chapter 17: Iterators, Generators, and Classic Coroutines

Table 17-2. Mapping generator functions

Module Function Description

itertools accumulate(it,
[func])

Yields accumulated sums; if func is provided, yields the result of applying
it to the first pair of items, then to the first result and next item, etc.

(built-in) enumerate(iterable,
start=0)

Yields 2-tuples of the form (index, item), where index is counted
from start, and item is taken from the iterable

(built-in) map(func, it1,
[it2, …, itN])

Applies func to each item of it, yielding the result; if N iterables are
given, func must take N arguments and the iterables will be consumed in
parallel

itertools starmap(func, it) Applies func to each item of it, yielding the result; the input iterable
should yield iterable items iit, and func is applied as func(*iit)

Example 17-16 demonstrates some uses of itertools.accumulate.

Example 17-16. itertools.accumulate generator function examples

>>> sample = [5, 4, 2, 8, 7, 6, 3, 0, 9, 1]
>>> import itertools
>>> list(itertools.accumulate(sample))
[5, 9, 11, 19, 26, 32, 35, 35, 44, 45]
>>> list(itertools.accumulate(sample, min))
[5, 4, 2, 2, 2, 2, 2, 0, 0, 0]
>>> list(itertools.accumulate(sample, max))
[5, 5, 5, 8, 8, 8, 8, 8, 9, 9]
>>> import operator
>>> list(itertools.accumulate(sample, operator.mul))
[5, 20, 40, 320, 2240, 13440, 40320, 0, 0, 0]
>>> list(itertools.accumulate(range(1, 11), operator.mul))
[1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]

Running sum.

Running minimum.

Running maximum.

Running product.

Factorials from 1! to 10!.

The remaining functions of Table 17-2 are shown in Example 17-17.

Example 17-17. Mapping generator function examples

>>> list(enumerate('albatroz', 1))
[(1, 'a'), (2, 'l'), (3, 'b'), (4, 'a'), (5, 't'), (6, 'r'), (7, 'o'), (8, 'z')]

Generator Functions in the Standard Library | 621

>>> import operator
>>> list(map(operator.mul, range(11), range(11)))
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
>>> list(map(operator.mul, range(11), [2, 4, 8]))
[0, 4, 16]
>>> list(map(lambda a, b: (a, b), range(11), [2, 4, 8]))
[(0, 2), (1, 4), (2, 8)]
>>> import itertools
>>> list(itertools.starmap(operator.mul, enumerate('albatroz', 1)))
['a', 'll', 'bbb', 'aaaa', 'ttttt', 'rrrrrr', 'ooooooo', 'zzzzzzzz']
>>> sample = [5, 4, 2, 8, 7, 6, 3, 0, 9, 1]
>>> list(itertools.starmap(lambda a, b: b / a,
... enumerate(itertools.accumulate(sample), 1)))
[5.0, 4.5, 3.6666666666666665, 4.75, 5.2, 5.333333333333333,
5.0, 4.375, 4.888888888888889, 4.5]

Number the letters in the word, starting from 1.

Squares of integers from 0 to 10.

Multiplying numbers from two iterables in parallel: results stop when the short‐
est iterable ends.

This is what the zip built-in function does.

Repeat each letter in the word according to its place in it, starting from 1.

Running average.

Next, we have the group of merging generators—all of these yield items from multi‐
ple input iterables. chain and chain.from_iterable consume the input iterables
sequentially (one after the other), while product, zip, and zip_longest consume the
input iterables in parallel. See Table 17-3.

Table 17-3. Generator functions that merge multiple input iterables

Module Function Description

itertools chain(it1, …, itN) Yields all items from it1, then from it2, etc., seamlessly

itertools chain.from_iterable(it) Yields all items from each iterable produced by it, one after the
other, seamlessly; it will be an iterable where the items are
also iterables, for example, a list of tuples

itertools product(it1, …, itN,
repeat=1)

Cartesian product: yields N-tuples made by combining items
from each input iterable, like nested for loops could produce;
repeat allows the input iterables to be consumed more than
once

622 | Chapter 17: Iterators, Generators, and Classic Coroutines

Module Function Description
(built-in) zip(it1, …, itN,

strict=False)

Yields N-tuples built from items taken from the iterables in
parallel, silently stopping when the first iterable is exhausted,
unless strict=True is givena

itertools zip_longest(it1, …, itN,
fillvalue=None)

Yields N-tuples built from items taken from the iterables in
parallel, stopping only when the last iterable is exhausted, filling
the blanks with the fillvalue

a The strict keyword-only argument is new in Python 3.10. When strict=True, ValueError is raised if any iterable
has a different length. The default is False, for backward compatibility.

Example 17-18 shows the use of the itertools.chain and zip generator functions
and their siblings. Recall that the zip function is named after the zip fastener or zip‐
per (no relation to compression). Both zip and itertools.zip_longest were intro‐
duced in “The Awesome zip” on page 416.

Example 17-18. Merging generator function examples

>>> list(itertools.chain('ABC', range(2)))
['A', 'B', 'C', 0, 1]
>>> list(itertools.chain(enumerate('ABC')))
[(0, 'A'), (1, 'B'), (2, 'C')]
>>> list(itertools.chain.from_iterable(enumerate('ABC')))
[0, 'A', 1, 'B', 2, 'C']
>>> list(zip('ABC', range(5), [10, 20, 30, 40]))
[('A', 0, 10), ('B', 1, 20), ('C', 2, 30)]
>>> list(itertools.zip_longest('ABC', range(5)))
[('A', 0), ('B', 1), ('C', 2), (None, 3), (None, 4)]
>>> list(itertools.zip_longest('ABC', range(5), fillvalue='?'))
[('A', 0), ('B', 1), ('C', 2), ('?', 3), ('?', 4)]

Generator Functions in the Standard Library | 623

chain is usually called with two or more iterables.

chain does nothing useful when called with a single iterable.

But chain.from_iterable takes each item from the iterable, and chains them in
sequence, as long as each item is itself iterable.

Any number of iterables can be consumed by zip in parallel, but the generator
always stops as soon as the first iterable ends. In Python ≥ 3.10, if the
strict=True argument is given and an iterable ends before the others, ValueEr
ror is raised.

itertools.zip_longest works like zip, except it consumes all input iterables to
the end, padding output tuples with None, as needed.

The fillvalue keyword argument specifies a custom padding value.

The itertools.product generator is a lazy way of computing Cartesian products,
which we built using list comprehensions with more than one for clause in
“Cartesian Products” on page 27. Generator expressions with multiple for clauses
can also be used to produce Cartesian products lazily. Example 17-19 demonstrates
itertools.product.

Example 17-19. itertools.product generator function examples

>>> list(itertools.product('ABC', range(2)))
[('A', 0), ('A', 1), ('B', 0), ('B', 1), ('C', 0), ('C', 1)]
>>> suits = 'spades hearts diamonds clubs'.split()
>>> list(itertools.product('AK', suits))
[('A', 'spades'), ('A', 'hearts'), ('A', 'diamonds'), ('A', 'clubs'),
('K', 'spades'), ('K', 'hearts'), ('K', 'diamonds'), ('K', 'clubs')]
>>> list(itertools.product('ABC'))
[('A',), ('B',), ('C',)]
>>> list(itertools.product('ABC', repeat=2))
[('A', 'A'), ('A', 'B'), ('A', 'C'), ('B', 'A'), ('B', 'B'),
('B', 'C'), ('C', 'A'), ('C', 'B'), ('C', 'C')]
>>> list(itertools.product(range(2), repeat=3))
[(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0),
(1, 0, 1), (1, 1, 0), (1, 1, 1)]
>>> rows = itertools.product('AB', range(2), repeat=2)
>>> for row in rows: print(row)
...
('A', 0, 'A', 0)
('A', 0, 'A', 1)
('A', 0, 'B', 0)
('A', 0, 'B', 1)
('A', 1, 'A', 0)

624 | Chapter 17: Iterators, Generators, and Classic Coroutines

('A', 1, 'A', 1)
('A', 1, 'B', 0)
('A', 1, 'B', 1)
('B', 0, 'A', 0)
('B', 0, 'A', 1)
('B', 0, 'B', 0)
('B', 0, 'B', 1)
('B', 1, 'A', 0)
('B', 1, 'A', 1)
('B', 1, 'B', 0)
('B', 1, 'B', 1)

The Cartesian product of a str with three characters and a range with two inte‐
gers yields six tuples (because 3 * 2 is 6).

The product of two card ranks ('AK') and four suits is a series of eight tuples.

Given a single iterable, product yields a series of one-tuples—not very useful.

The repeat=N keyword argument tells the product to consume each input itera‐
ble N times.

Some generator functions expand the input by yielding more than one value per
input item. They are listed in Table 17-4.

Table 17-4. Generator functions that expand each input item into multiple output items

Module Function Description

itertools combinations(it, out_len) Yields combinations of out_len items from the items
yielded by it

itertools combinations_with_replacement(it,
out_len)

Yields combinations of out_len items from the items
yielded by it, including combinations with repeated
items

itertools count(start=0, step=1) Yields numbers starting at start, incremented by
step, indefinitely

itertools cycle(it) Yields items from it, storing a copy of each, then
yields the entire sequence repeatedly, indefinitely

itertools pairwise(it) Yields successive overlapping pairs taken from the
input iterablea

itertools permutations(it, out_len=None) Yields permutations of out_len items from the items
yielded by it; by default, out_len is
len(list(it))

itertools repeat(item, [times]) Yields the given item repeatedly, indefinitely unless a
number of times is given

a itertools.pairwise was added in Python 3.10.

Generator Functions in the Standard Library | 625

The count and repeat functions from itertools return generators that conjure
items out of nothing: neither of them takes an iterable as input. We saw iter
tools.count in “Arithmetic Progression with itertools” on page 618. The cycle
generator makes a backup of the input iterable and yields its items repeatedly.
Example 17-20 illustrates the use of count, cycle, pairwise, and repeat.

Example 17-20. count, cycle, pairwise, and repeat

>>> ct = itertools.count()
>>> next(ct)
0
>>> next(ct), next(ct), next(ct)
(1, 2, 3)
>>> list(itertools.islice(itertools.count(1, .3), 3))
[1, 1.3, 1.6]
>>> cy = itertools.cycle('ABC')
>>> next(cy)
'A'
>>> list(itertools.islice(cy, 7))
['B', 'C', 'A', 'B', 'C', 'A', 'B']
>>> list(itertools.pairwise(range(7)))
[(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]
>>> rp = itertools.repeat(7)
>>> next(rp), next(rp)
(7, 7)
>>> list(itertools.repeat(8, 4))
[8, 8, 8, 8]
>>> list(map(operator.mul, range(11), itertools.repeat(5)))
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]

Build a count generator ct.

Retrieve the first item from ct.

I can’t build a list from ct, because ct never stops, so I fetch the next three
items.

I can build a list from a count generator if it is limited by islice or takewhile.

Build a cycle generator from 'ABC' and fetch its first item, 'A'.

A list can only be built if limited by islice; the next seven items are retrieved
here.

For each item in the input, pairwise yields a 2-tuple with that item and the next
—if there is a next item. Available in Python ≥ 3.10.

626 | Chapter 17: Iterators, Generators, and Classic Coroutines

Build a repeat generator that will yield the number 7 forever.

A repeat generator can be limited by passing the times argument: here the num‐
ber 8 will be produced 4 times.

A common use of repeat: providing a fixed argument in map; here it provides the
5 multiplier.

The combinations, combinations_with_replacement, and permutations generator
functions—together with product—are called the combinatorics generators in the
itertools documentation page. There is a close relationship between iter

tools.product and the remaining combinatoric functions as well, as Example 17-21
shows.

Example 17-21. Combinatoric generator functions yield multiple values per input item

>>> list(itertools.combinations('ABC', 2))
[('A', 'B'), ('A', 'C'), ('B', 'C')]
>>> list(itertools.combinations_with_replacement('ABC', 2))
[('A', 'A'), ('A', 'B'), ('A', 'C'), ('B', 'B'), ('B', 'C'), ('C', 'C')]
>>> list(itertools.permutations('ABC', 2))
[('A', 'B'), ('A', 'C'), ('B', 'A'), ('B', 'C'), ('C', 'A'), ('C', 'B')]
>>> list(itertools.product('ABC', repeat=2))
[('A', 'A'), ('A', 'B'), ('A', 'C'), ('B', 'A'), ('B', 'B'), ('B', 'C'),
('C', 'A'), ('C', 'B'), ('C', 'C')]

All combinations of len()==2 from the items in 'ABC'; item ordering in the gen‐
erated tuples is irrelevant (they could be sets).

All combinations of len()==2 from the items in 'ABC', including combinations
with repeated items.

All permutations of len()==2 from the items in 'ABC'; item ordering in the gen‐
erated tuples is relevant.

Cartesian product from 'ABC' and 'ABC' (that’s the effect of repeat=2).

The last group of generator functions we’ll cover in this section are designed to yield
all items in the input iterables, but rearranged in some way. Here are two functions
that return multiple generators: itertools.groupby and itertools.tee. The other
generator function in this group, the reversed built-in, is the only one covered in
this section that does not accept any iterable as input, but only sequences. This makes
sense: because reversed will yield the items from last to first, it only works with a
sequence with a known length. But it avoids the cost of making a reversed copy of the

Generator Functions in the Standard Library | 627

https://fpy.li/17-13

sequence by yielding each item as needed. I put the itertools.product function
together with the merging generators in Table 17-3 because they all consume more
than one iterable, while the generators in Table 17-5 all accept at most one input
iterable.

Table 17-5. Rearranging generator functions

Module Function Description

itertools groupby(it,
key=None)

Yields 2-tuples of the form (key, group), where key is the grouping
criterion and group is a generator yielding the items in the group

(built-in) reversed(seq) Yields items from seq in reverse order, from last to first; seq must be a
sequence or implement the __reversed__ special method

itertools tee(it, n=2) Yields a tuple of n generators, each yielding the items of the input iterable
independently

Example 17-22 demonstrates the use of itertools.groupby and the reversed built-
in. Note that itertools.groupby assumes that the input iterable is sorted by the
grouping criterion, or at least that the items are clustered by that criterion—even if
not completely sorted. Tech reviewer Miroslav Šedivý suggested this use case: you
can sort the datetime objects chronologically, then groupby weekday to get a group
of Monday data, followed by Tuesday data, etc., and then by Monday (of the next
week) again, and so on.

Example 17-22. itertools.groupby

>>> list(itertools.groupby('LLLLAAGGG'))
[('L', <itertools._grouper object at 0x102227cc0>),
('A', <itertools._grouper object at 0x102227b38>),
('G', <itertools._grouper object at 0x102227b70>)]
>>> for char, group in itertools.groupby('LLLLAAAGG'):
... print(char, '->', list(group))
...
L -> ['L', 'L', 'L', 'L']
A -> ['A', 'A',]
G -> ['G', 'G', 'G']
>>> animals = ['duck', 'eagle', 'rat', 'giraffe', 'bear',
... 'bat', 'dolphin', 'shark', 'lion']
>>> animals.sort(key=len)
>>> animals
['rat', 'bat', 'duck', 'bear', 'lion', 'eagle', 'shark',
'giraffe', 'dolphin']
>>> for length, group in itertools.groupby(animals, len):
... print(length, '->', list(group))
...
3 -> ['rat', 'bat']
4 -> ['duck', 'bear', 'lion']
5 -> ['eagle', 'shark']

628 | Chapter 17: Iterators, Generators, and Classic Coroutines

7 -> ['giraffe', 'dolphin']
>>> for length, group in itertools.groupby(reversed(animals), len):
... print(length, '->', list(group))
...
7 -> ['dolphin', 'giraffe']
5 -> ['shark', 'eagle']
4 -> ['lion', 'bear', 'duck']
3 -> ['bat', 'rat']
>>>

groupby yields tuples of (key, group_generator).

Handling groupby generators involves nested iteration: in this case, the outer for
loop and the inner list constructor.

Sort animals by length.

Again, loop over the key and group pair, to display the key and expand the group
into a list.

Here the reverse generator iterates over animals from right to left.

The last of the generator functions in this group is iterator.tee, which has a unique
behavior: it yields multiple generators from a single input iterable, each yielding
every item from the input. Those generators can be consumed independently, as
shown in Example 17-23.

Example 17-23. itertools.tee yields multiple generators, each yielding every item of
the input generator

>>> list(itertools.tee('ABC'))
[<itertools._tee object at 0x10222abc8>, <itertools._tee object at 0x10222ac08>]
>>> g1, g2 = itertools.tee('ABC')
>>> next(g1)
'A'
>>> next(g2)
'A'
>>> next(g2)
'B'
>>> list(g1)
['B', 'C']
>>> list(g2)
['C']
>>> list(zip(*itertools.tee('ABC')))
[('A', 'A'), ('B', 'B'), ('C', 'C')]

Generator Functions in the Standard Library | 629

Note that several examples in this section used combinations of generator functions.
This is a great feature of these functions: because they take generators as arguments
and return generators, they can be combined in many different ways.

Now we’ll review another group of iterable-savvy functions in the standard library.

Iterable Reducing Functions
The functions in Table 17-6 all take an iterable and return a single result. They are
known as “reducing,” “folding,” or “accumulating” functions. We can implement
every one of the built-ins listed here with functools.reduce, but they exist as built-
ins because they address some common use cases more easily. A longer explanation
about functools.reduce appeared in “Vector Take #4: Hashing and a Faster ==” on
page 411.

In the case of all and any, there is an important optimization functools.reduce
does not support: all and any short-circuit—i.e., they stop consuming the iterator as
soon as the result is determined. See the last test with any in Example 17-24.

Table 17-6. Built-in functions that read iterables and return single values

Module Function Description
(built-in) all(it) Returns True if all items in it are truthy, otherwise False;

all([]) returns True

(built-in) any(it) Returns True if any item in it is truthy, otherwise False;
any([]) returns False

(built-in) max(it, [key=,]
[default=])

Returns the maximum value of the items in it;a key is an ordering
function, as in sorted; default is returned if the iterable is
empty

(built-in) min(it, [key=,]
[default=])

Returns the minimum value of the items in it.b key is an ordering
function, as in sorted; default is returned if the iterable is
empty

functools reduce(func, it, [ini
tial])

Returns the result of applying func to the first pair of items, then to
that result and the third item, and so on; if given, initial forms
the initial pair with the first item

(built-in) sum(it, start=0) The sum of all items in it, with the optional start value added
(use math.fsum for better precision when adding floats)

a May also be called as max(arg1, arg2, …, [key=?]), in which case the maximum among the arguments is
returned.
b May also be called as min(arg1, arg2, …, [key=?]), in which case the minimum among the arguments is
returned.

The operation of all and any is exemplified in Example 17-24.

630 | Chapter 17: Iterators, Generators, and Classic Coroutines

Example 17-24. Results of all and any for some sequences

>>> all([1, 2, 3])
True
>>> all([1, 0, 3])
False
>>> all([])
True
>>> any([1, 2, 3])
True
>>> any([1, 0, 3])
True
>>> any([0, 0.0])
False
>>> any([])
False
>>> g = (n for n in [0, 0.0, 7, 8])
>>> any(g)
True
>>> next(g)
8

any iterated over g until g yielded 7; then any stopped and returned True.

That’s why 8 was still remaining.

Another built-in that takes an iterable and returns something else is sorted. Unlike
reversed, which is a generator function, sorted builds and returns a new list. After
all, every single item of the input iterable must be read so they can be sorted, and the
sorting happens in a list, therefore sorted just returns that list after it’s done. I
mention sorted here because it does consume an arbitrary iterable.

Of course, sorted and the reducing functions only work with iterables that eventually
stop. Otherwise, they will keep on collecting items and never return a result.

If you’ve gotten this far, you’ve seen the most important and useful
content of this chapter. The remaining sections cover advanced
generator features that most of us don’t see or need very often,
such as the yield from construct and classic coroutines.
There are also sections about type hinting iterables, iterators, and
classic coroutines.

The yield from syntax provides a new way of combining generators. That’s next.

Iterable Reducing Functions | 631

Subgenerators with yield from
The yield from expression syntax was introduced in Python 3.3 to allow a generator
to delegate work to a subgenerator.

Before yield from was introduced, we used a for loop when a generator needed to
yield values produced from another generator:

>>> def sub_gen():
... yield 1.1
... yield 1.2
...
>>> def gen():
... yield 1
... for i in sub_gen():
... yield i
... yield 2
...
>>> for x in gen():
... print(x)
...
1
1.1
1.2
2

We can get the same result using yield from, as you can see in Example 17-25.

Example 17-25. Test-driving yield from

>>> def sub_gen():
... yield 1.1
... yield 1.2
...
>>> def gen():
... yield 1
... yield from sub_gen()
... yield 2
...
>>> for x in gen():
... print(x)
...
1
1.1
1.2
2

In Example 17-25, the for loop is the client code, gen is the delegating generator, and
sub_gen is the subgenerator. Note that yield from pauses gen, and sub_gen takes
over until it is exhausted. The values yielded by sub_gen pass through gen directly to

632 | Chapter 17: Iterators, Generators, and Classic Coroutines

10 chain and most itertools functions are written in C.

the client for loop. Meanwhile, gen is suspended and cannot see the values passing
through it. Only when sub_gen is done, gen resumes.

When the subgenerator contains a return statement with a value, that value can be
captured in the delegating generator by using yield from as part of an expression.
Example 17-26 demonstrates.

Example 17-26. yield from gets the return value of the subgenerator

>>> def sub_gen():
... yield 1.1
... yield 1.2
... return 'Done!'
...
>>> def gen():
... yield 1
... result = yield from sub_gen()
... print('<--', result)
... yield 2
...
>>> for x in gen():
... print(x)
...
1
1.1
1.2
<-- Done!
2

Now that we’ve seen the basics of yield from, let’s study a couple of simple but prac‐
tical examples of its use.

Reinventing chain
We saw in Table 17-3 that itertools provides a chain generator that yields items
from several iterables, iterating over the first, then the second, and so on up to the
last. This is a homemade implementation of chain with nested for loops in Python:10

>>> def chain(*iterables):
... for it in iterables:
... for i in it:
... yield i
...
>>> s = 'ABC'
>>> r = range(3)

Subgenerators with yield from | 633

>>> list(chain(s, r))
['A', 'B', 'C', 0, 1, 2]

The chain generator in the preceding code is delegating to each iterable it in turn, by
driving each it in the inner for loop. That inner loop can be replaced with a yield
from expression, as shown in the next console listing:

>>> def chain(*iterables):
... for i in iterables:
... yield from i
...
>>> list(chain(s, t))
['A', 'B', 'C', 0, 1, 2]

The use of yield from in this example is correct, and the code reads better, but it
seems like syntactic sugar with little real gain. Now let’s develop a more interesting
example.

Traversing a Tree
In this section, we’ll see yield from in a script to traverse a tree structure. I will build
it in baby steps.

The tree structure for this example is Python’s exception hierarchy. But the pattern
can be adapted to show a directory tree or any other tree structure.

Starting from BaseException at level zero, the exception hierarchy is five levels deep
as of Python 3.10. Our first baby step is to show level zero.

Given a root class, the tree generator in Example 17-27 yields its name and stops.

Example 17-27. tree/step0/tree.py: yield the name of the root class and stop

def tree(cls):
 yield cls.__name__

def display(cls):
 for cls_name in tree(cls):
 print(cls_name)

if __name__ == '__main__':
 display(BaseException)

The output of Example 17-27 is just one line:

BaseException

634 | Chapter 17: Iterators, Generators, and Classic Coroutines

https://fpy.li/17-14

The next baby step takes us to level 1. The tree generator will yield the name of the
root class and the names of each direct subclass. The names of the subclasses are
indented to reveal the hierarchy. This is the output we want:

$ python3 tree.py
BaseException
 Exception
 GeneratorExit
 SystemExit
 KeyboardInterrupt

Example 17-28 produces that output.

Example 17-28. tree/step1/tree.py: yield the name of root class and direct subclasses

def tree(cls):
 yield cls.__name__, 0
 for sub_cls in cls.__subclasses__():
 yield sub_cls.__name__, 1

def display(cls):
 for cls_name, level in tree(cls):
 indent = ' ' * 4 * level
 print(f'{indent}{cls_name}')

if __name__ == '__main__':
 display(BaseException)

To support the indented output, yield the name of the class and its level in the
hierarchy.

Use the __subclasses__ special method to get a list of subclasses.

Yield name of subclass and level 1.

Build indentation string of 4 spaces times level. At level zero, this will be an
empty string.

In Example 17-29, I refactor tree to separate the special case of the root class from
the subclasses, which are now handled in the sub_tree generator. At yield from, the
tree generator is suspended, and sub_tree takes over yielding values.

Subgenerators with yield from | 635

Example 17-29. tree/step2/tree.py: tree yields the root class name, then delegates to
sub_tree

def tree(cls):
 yield cls.__name__, 0
 yield from sub_tree(cls)

def sub_tree(cls):
 for sub_cls in cls.__subclasses__():
 yield sub_cls.__name__, 1

def display(cls):
 for cls_name, level in tree(cls):
 indent = ' ' * 4 * level
 print(f'{indent}{cls_name}')

if __name__ == '__main__':
 display(BaseException)

Delegate to sub_tree to yield the names of the subclasses.

Yield the name of each subclass and level 1. Because of the yield from

sub_tree(cls) inside tree, these values bypass the tree generator function
completely…

… and are received directly here.

In keeping with the baby steps method, I’ll write the simplest code I can imagine to
reach level 2. For depth-first tree traversal, after yielding each node in level 1, I want
to yield the children of that node in level 2, before resuming level 1. A nested for
loop takes care of that, as in Example 17-30.

Example 17-30. tree/step3/tree.py: sub_tree traverses levels 1 and 2 depth-first

def tree(cls):
 yield cls.__name__, 0
 yield from sub_tree(cls)

def sub_tree(cls):
 for sub_cls in cls.__subclasses__():
 yield sub_cls.__name__, 1
 for sub_sub_cls in sub_cls.__subclasses__():
 yield sub_sub_cls.__name__, 2

636 | Chapter 17: Iterators, Generators, and Classic Coroutines

https://fpy.li/17-15

def display(cls):
 for cls_name, level in tree(cls):
 indent = ' ' * 4 * level
 print(f'{indent}{cls_name}')

if __name__ == '__main__':
 display(BaseException)

This is the result of running step3/tree.py from Example 17-30:

$ python3 tree.py
BaseException
 Exception
 TypeError
 StopAsyncIteration
 StopIteration
 ImportError
 OSError
 EOFError
 RuntimeError
 NameError
 AttributeError
 SyntaxError
 LookupError
 ValueError
 AssertionError
 ArithmeticError
 SystemError
 ReferenceError
 MemoryError
 BufferError
 Warning
 GeneratorExit
 SystemExit
 KeyboardInterrupt

You may already know where this is going, but I will stick to baby steps one more
time: let’s reach level 3 by adding yet another nested for loop. The rest of the pro‐
gram is unchanged, so Example 17-31 shows only the sub_tree generator.

Example 17-31. sub_tree generator from tree/step4/tree.py

def sub_tree(cls):
 for sub_cls in cls.__subclasses__():
 yield sub_cls.__name__, 1
 for sub_sub_cls in sub_cls.__subclasses__():
 yield sub_sub_cls.__name__, 2
 for sub_sub_sub_cls in sub_sub_cls.__subclasses__():
 yield sub_sub_sub_cls.__name__, 3

Subgenerators with yield from | 637

There is a clear pattern in Example 17-31. We do a for loop to get the subclasses of
level N. Each time around the loop, we yield a subclass of level N, then start another
for loop to visit level N+1.

In “Reinventing chain” on page 633, we saw how we can replace a nested for loop
driving a generator with yield from on the same generator. We can apply that idea
here, if we make sub_tree accept a level parameter, and yield from it recursively,
passing the current subclass as the new root class with the next level number. See
Example 17-32.

Example 17-32. tree/step5/tree.py: recursive sub_tree goes as far as memory allows

def tree(cls):
 yield cls.__name__, 0
 yield from sub_tree(cls, 1)

def sub_tree(cls, level):
 for sub_cls in cls.__subclasses__():
 yield sub_cls.__name__, level
 yield from sub_tree(sub_cls, level+1)

def display(cls):
 for cls_name, level in tree(cls):
 indent = ' ' * 4 * level
 print(f'{indent}{cls_name}')

if __name__ == '__main__':
 display(BaseException)

Example 17-32 can traverse trees of any depth, limited only by Python’s recursion
limit. The default limit allows 1,000 pending functions.

Any good tutorial about recursion will stress the importance of having a base case to
avoid infinite recursion. A base case is a conditional branch that returns without
making a recursive call. The base case is often implemented with an if statement. In
Example 17-32, sub_tree has no if, but there is an implicit conditional in the for
loop: if cls.__subclasses__() returns an empty list, the body of the loop is not exe‐
cuted, therefore no recursive call happens. The base case is when the cls class has no
subclasses. In that case, sub_tree yields nothing. It just returns.

Example 17-32 works as intended, but we can make it more concise by recalling the
pattern we observed when we reached level 3 (Example 17-31): we yield a subclass
with level N, then start a nested for loop to visit level N+1. In Example 17-32 we

638 | Chapter 17: Iterators, Generators, and Classic Coroutines

replaced that nested loop with yield from. Now we can merge tree and sub_tree
into a single generator. Example 17-33 is the last step for this example.

Example 17-33. tree/step6/tree.py: recursive calls of tree pass an incremented level
argument

def tree(cls, level=0):
 yield cls.__name__, level
 for sub_cls in cls.__subclasses__():
 yield from tree(sub_cls, level+1)

def display(cls):
 for cls_name, level in tree(cls):
 indent = ' ' * 4 * level
 print(f'{indent}{cls_name}')

if __name__ == '__main__':
 display(BaseException)

At the start of “Subgenerators with yield from” on page 632, we saw how yield from
connects the subgenerator directly to the client code, bypassing the delegating gener‐
ator. That connection becomes really important when generators are used as corou‐
tines and not only produce but also consume values from the client code, as we’ll see
in “Classic Coroutines” on page 641.

After this first encounter with yield from, let’s turn to type hinting iterables and
iterators.

Generic Iterable Types
Python’s standard library has many functions that accept iterable arguments. In your
code, such functions can be annotated like the zip_replace function we saw in
Example 8-15, using collections.abc.Iterable (or typing.Iterable if you must
support Python 3.8 or earlier, as explained in “Legacy Support and Deprecated Col‐
lection Types” on page 272). See Example 17-34.

Example 17-34. replacer.py returns an iterator of tuples of strings

from collections.abc import Iterable

FromTo = tuple[str, str]

def zip_replace(text: str, changes: Iterable[FromTo]) -> str:
 for from_, to in changes:

Generic Iterable Types | 639

 text = text.replace(from_, to)
 return text

Define type alias; not required, but makes the next type hint more readable.
Starting with Python 3.10, FromTo should have a type hint of typing.TypeAlias
to clarify the reason for this line: FromTo: TypeAlias = tuple[str, str].

Annotate changes to accept an Iterable of FromTo tuples.

Iterator types don’t appear as often as Iterable types, but they are also simple to
write. Example 17-35 shows the familiar Fibonacci generator, annotated.

Example 17-35. fibo_gen.py: fibonacci returns a generator of integers

from collections.abc import Iterator

def fibonacci() -> Iterator[int]:
 a, b = 0, 1
 while True:
 yield a
 a, b = b, a + b

Note that the type Iterator is used for generators coded as functions with yield, as
well as iterators written “by hand” as classes with __next__. There is also a collec
tions.abc.Generator type (and the corresponding deprecated typing.Generator)
that we can use to annotate generator objects, but it is needlessly verbose for genera‐
tors used as iterators.

Example 17-36, when checked with Mypy, reveals that the Iterator type is really a
simplified special case of the Generator type.

Example 17-36. itergentype.py: two ways to annotate iterators

from collections.abc import Iterator
from keyword import kwlist
from typing import TYPE_CHECKING

short_kw = (k for k in kwlist if len(k) < 5)

if TYPE_CHECKING:
 reveal_type(short_kw)

long_kw: Iterator[str] = (k for k in kwlist if len(k) >= 4)

if TYPE_CHECKING:
 reveal_type(long_kw)

640 | Chapter 17: Iterators, Generators, and Classic Coroutines

11 As of version 0.910, Mypy still uses the deprecated typing types.

Generator expression that yields Python keywords with less than 5 characters.

Mypy infers: typing.Generator[builtins.str*, None, None].11

This also yields strings, but I added an explicit type hint.

Revealed type: typing.Iterator[builtins.str].

abc.Iterator[str] is consistent-with abc.Generator[str, None, None], therefore
Mypy issues no errors for type checking in Example 17-36.

Iterator[T] is a shortcut for Generator[T, None, None]. Both annotations mean “a
generator that yields items of type T, but that does not consume or return values.”
Generators able to consume and return values are coroutines, our next topic.

Classic Coroutines
PEP 342—Coroutines via Enhanced Generators introduced
the .send() and other features that made it possible to use genera‐
tors as coroutines. PEP 342 uses the word “coroutine” with the
same meaning I am using here.
It is unfortunate that Python’s official documentation and standard
library now use inconsistent terminology to refer to generators
used as coroutines, forcing me to adopt the “classic coroutine”
qualifier to contrast with the newer “native coroutine” objects.
After Python 3.5 came out, the trend is to use “coroutine” as a syn‐
onym for “native coroutine.” But PEP 342 is not deprecated, and
classic coroutines still work as originally designed, although they
are no longer supported by asyncio.

Understanding classic coroutines in Python is confusing because they are actually
generators used in a different way. So let’s step back and consider another feature of
Python that can be used in two ways.

We saw in “Tuples Are Not Just Immutable Lists” on page 30 that we can use tuple
instances as records or as immutable sequences. When used as a record, a tuple is
expected to have a specific number of items, and each item may have a different type.
When used as immutable lists, a tuple can have any length, and all items are expected
to have the same type. That’s why there are two different ways to annotate tuples with
type hints:

Classic Coroutines | 641

https://fpy.li/pep342

A city record with name, country, and population:
city: tuple[str, str, int]

An immutable sequence of domain names:
domains: tuple[str, ...]

Something similar happens with generators. They are commonly used as iterators,
but they can also be used as coroutines. A coroutine is really a generator function,
created with the yield keyword in its body. And a coroutine object is physically a
generator object. Despite sharing the same underlying implementation in C, the use
cases of generators and coroutines in Python are so different that there are two ways
to type hint them:

The `readings` variable can be bound to an iterator
or generator object that yields `float` items:
readings: Iterator[float]

The `sim_taxi` variable can be bound to a coroutine
representing a taxi cab in a discrete event simulation.
It yields events, receives `float` timestamps, and returns
the number of trips made during the simulation:
sim_taxi: Generator[Event, float, int]

Adding to the confusion, the typing module authors decided to name that type Gen
erator, when in fact it describes the API of a generator object intended to be used as
a coroutine, while generators are more often used as simple iterators.

The typing documentation describes the formal type parameters of Generator like
this:

Generator[YieldType, SendType, ReturnType]

The SendType is only relevant when the generator is used as a coroutine. That type
parameter is the type of x in the call gen.send(x). It is an error to call .send() on a
generator that was coded to behave as an iterator instead of a coroutine. Likewise,
ReturnType is only meaningful to annotate a coroutine, because iterators don’t return
values like regular functions. The only sensible operation on a generator used as an
iterator is to call next(it) directly or indirectly via for loops and other forms of iter‐
ation. The YieldType is the type of the value returned by a call to next(it).

The Generator type has the same type parameters as typing.Coroutine:

Coroutine[YieldType, SendType, ReturnType]

The typing.Coroutine documentation actually says: “The variance and order of type
variables correspond to those of Generator.” But typing.Coroutine (deprecated)
and collections.abc.Coroutine (generic since Python 3.9) are intended to anno‐
tate only native coroutines, not classic coroutines. If you want to use type hints with

642 | Chapter 17: Iterators, Generators, and Classic Coroutines

https://fpy.li/17-17
https://fpy.li/typecoro
https://fpy.li/typecoro

12 Slide 33, “Keeping It Straight,” in “A Curious Course on Coroutines and Concurrency”.

13 This example is inspired by a snippet from Jacob Holm in the Python-ideas list, message titled “Yield-From:
Finalization guarantees”. Some variations appear later in the thread, and Holm further explains his thinking
in message 003912.

classic coroutines, you’ll suffer through the confusion of annotating them as Genera
tor[YieldType, SendType, ReturnType].

David Beazley created some of the best talks and most comprehensive workshops
about classic coroutines. In his PyCon 2009 course handout, he has a slide titled
“Keeping It Straight,” which reads:

• Generators produce data for iteration

• Coroutines are consumers of data

• To keep your brain from exploding, don’t mix the two concepts together

• Coroutines are not related to iteration

• Note: There is a use of having `yield` produce a value in a coroutine, but it’s not
tied to iteration.12

Now let’s see how classic coroutines work.

Example: Coroutine to Compute a Running Average
While discussing closures in Chapter 9, we studied objects to compute a running
average. Example 9-7 shows a class and Example 9-13 presents a higher-order func‐
tion returning a function that keeps the total and count variables across invocations
in a closure. Example 17-37 shows how to do the same with a coroutine.13

Example 17-37. coroaverager.py: coroutine to compute a running average

from collections.abc import Generator

def averager() -> Generator[float, float, None]:
 total = 0.0
 count = 0
 average = 0.0
 while True:
 term = yield average
 total += term
 count += 1
 average = total/count

Classic Coroutines | 643

https://fpy.li/17-18
https://fpy.li/17-20
https://fpy.li/17-20
https://fpy.li/17-21
https://fpy.li/17-18

14 In fact, it never returns unless some exception breaks the loop. Mypy 0.910 accepts both None and typing
.NoReturn as the generator return type parameter—but it also accepts str in that position, so apparently it
can’t fully analyze the coroutine code at this time.

This function returns a generator that yields float values, accepts float values
via .send(), and does not return a useful value.14

This infinite loop means the coroutine will keep on yielding averages as long as
the client code sends values.

The yield statement here suspends the coroutine, yields a result to the client,
and—later—gets a value sent by the caller to the coroutine, starting another iter‐
ation of the infinite loop.

In a coroutine, total and count can be local variables: no instance attributes or clo‐
sures are needed to keep the context while the coroutine is suspended waiting for the
next .send(). That’s why coroutines are attractive replacements for callbacks in asyn‐
chronous programming—they keep local state between activations.

Example 17-38 runs doctests to show the averager coroutine in operation.

Example 17-38. coroaverager.py: doctest for the running average coroutine in
Example 17-37

 >>> coro_avg = averager()
 >>> next(coro_avg)
 0.0
 >>> coro_avg.send(10)
 10.0
 >>> coro_avg.send(30)
 20.0
 >>> coro_avg.send(5)
 15.0

Create the coroutine object.

Start the coroutine. This yields the initial value of average: 0.0.

Now we are in business: each call to .send() yields the current average.

In Example 17-38, the call next(coro_avg) makes the coroutine advance to the
yield, yielding the initial value for average. You can also start the coroutine by call‐
ing coro_avg.send(None)—this is actually what the next() built-in does. But you
can’t send any value other than None, because the coroutine can only accept a sent

644 | Chapter 17: Iterators, Generators, and Classic Coroutines

value when it is suspended at a yield line. Calling next() or .send(None) to advance
to the first yield is known as “priming the coroutine.”

After each activation, the coroutine is suspended precisely at the yield keyword,
waiting for a value to be sent. The line coro_avg.send(10) provides that value, caus‐
ing the coroutine to activate. The yield expression resolves to the value 10, assigning
it to the term variable. The rest of the loop updates the total, count, and average
variables. The next iteration in the while loop yields the average, and the coroutine
is again suspended at the yield keyword.

The attentive reader may be anxious to know how the execution of an averager
instance (e.g., coro_avg) may be terminated, because its body is an infinite loop. We
don’t usually need to terminate a generator, because it is garbage collected as soon as
there are no more valid references to it. If you need to explicitly terminate it, use
the .close() method, as shown in Example 17-39.

Example 17-39. coroaverager.py: continuing from Example 17-38

 >>> coro_avg.send(20)
 16.25
 >>> coro_avg.close()
 >>> coro_avg.close()
 >>> coro_avg.send(5)
 Traceback (most recent call last):
 ...
 StopIteration

coro_avg is the instance created in Example 17-38.

The .close() method raises GeneratorExit at the suspended yield expression.
If not handled in the coroutine function, the exception terminates it. Generator
Exit is caught by the generator object that wraps the coroutine—that’s why we
don’t see it.

Calling .close() on a previously closed coroutine has no effect.

Trying .send() on a closed coroutine raises StopIteration.

Besides the .send() method, PEP 342—Coroutines via Enhanced Generators also
introduced a way for a coroutine to return a value. The next section shows how.

Classic Coroutines | 645

https://fpy.li/pep342

15 I considered renaming the field, but count is the best name for the local variable in the coroutine, and is the
name I used for this variable in similar examples in the book, so it makes sense to use the same name in the
Result field. I don’t hesitate to use # type: ignore to avoid the limitations and annoyances of static type
checkers when submission to the tool would make the code worse or needlessly complicated.

Returning a Value from a Coroutine
We’ll now study another coroutine to compute an average. This version will not yield
partial results. Instead, it returns a tuple with the number of terms and the average.
I’ve split the listing in two parts: Example 17-40 and Example 17-41.

Example 17-40. coroaverager2.py: top of the file

from collections.abc import Generator
from typing import Union, NamedTuple

class Result(NamedTuple):
 count: int # type: ignore
 average: float

class Sentinel:
 def __repr__(self):
 return f'<Sentinel>'

STOP = Sentinel()

SendType = Union[float, Sentinel]

The averager2 coroutine in Example 17-41 will return an instance of Result.

The Result is actually a subclass of tuple, which has a .count() method that I
don’t need. The # type: ignore comment prevents Mypy from complaining
about having a count field.15

A class to make a sentinel value with a readable __repr__.

The sentinel value that I’ll use to make the coroutine stop collecting data and
return a result.

I’ll use this type alias for the second type parameter of the coroutine Generator
return type, the SendType parameter.

The SendType definition also works in Python 3.10, but if you don’t need to support
earlier versions, it is better to write it like this, after importing TypeAlias from
typing:

646 | Chapter 17: Iterators, Generators, and Classic Coroutines

SendType: TypeAlias = float | Sentinel

Using | instead of typing.Union is so concise and readable that I’d probably not cre‐
ate that type alias, but instead I’d write the signature of averager2 like this:

def averager2(verbose: bool=False) -> Generator[None, float | Sentinel, Result]:

Now, let’s study the coroutine code itself (Example 17-41).

Example 17-41. coroaverager2.py: a coroutine that returns a result value

def averager2(verbose: bool = False) -> Generator[None, SendType, Result]:
 total = 0.0
 count = 0
 average = 0.0
 while True:
 term = yield
 if verbose:
 print('received:', term)
 if isinstance(term, Sentinel):
 break
 total += term
 count += 1
 average = total / count
 return Result(count, average)

For this coroutine, the yield type is None because it does not yield data. It receives
data of the SendType and returns a Result tuple when done.

Using yield like this only makes sense in coroutines, which are designed to con‐
sume data. This yields None, but receives a term from .send(term).

If the term is a Sentinel, break from the loop. Thanks to this isinstance
check…

…Mypy allows me to add term to the total without flagging an error that I can’t
add a float to an object that may be a float or a Sentinel.

This line will be reached only if a Sentinel is sent to the coroutine.

Now let’s see how we can use this coroutine, starting with a simple example that
doesn’t actually produce a result (Example 17-42).

Example 17-42. coroaverager2.py: doctest showing .cancel()

 >>> coro_avg = averager2()
 >>> next(coro_avg)
 >>> coro_avg.send(10)

Classic Coroutines | 647

 >>> coro_avg.send(30)
 >>> coro_avg.send(6.5)
 >>> coro_avg.close()

Recall that averager2 does not yield partial results. It yields None, which
Python’s console omits.

Calling .close() in this coroutine makes it stop but does not return a result,
because the GeneratorExit exception is raised at the yield line in the coroutine,
so the return statement is never reached.

Now let’s make it work in Example 17-43.

Example 17-43. coroaverager2.py: doctest showing StopIteration with a Result

 >>> coro_avg = averager2()
 >>> next(coro_avg)
 >>> coro_avg.send(10)
 >>> coro_avg.send(30)
 >>> coro_avg.send(6.5)
 >>> try:
 ... coro_avg.send(STOP)
 ... except StopIteration as exc:
 ... result = exc.value
 ...
 >>> result
 Result(count=3, average=15.5)

Sending the STOP sentinel makes the coroutine break from the loop and return a
Result. The generator object that wraps the coroutine then raises StopItera
tion.

The StopIteration instance has a value attribute bound to the value of the
return statement that terminated the coroutine.

Believe it or not!

This idea of “smuggling” the return value out of the coroutine wrapped in a StopIter
ation exception is a bizarre hack. Nevertheless, this bizarre hack is part of PEP 342—
Coroutines via Enhanced Generators, and is documented with the StopIteration
exception, and in the “Yield expressions” section of Chapter 6 of The Python Lan‐
guage Reference.

A delegating generator can get the return value of a coroutine directly using the
yield from syntax, as shown in Example 17-44.

648 | Chapter 17: Iterators, Generators, and Classic Coroutines

https://fpy.li/pep342
https://fpy.li/pep342
https://fpy.li/17-22
https://fpy.li/17-22
https://fpy.li/17-23
https://fpy.li/17-24
https://fpy.li/17-24

Example 17-44. coroaverager2.py: doctest showing StopIteration with a Result

 >>> def compute():
 ... res = yield from averager2(True)
 ... print('computed:', res)
 ... return res
 ...
 >>> comp = compute()
 >>> for v in [None, 10, 20, 30, STOP]:
 ... try:
 ... comp.send(v)
 ... except StopIteration as exc:
 ... result = exc.value
 received: 10
 received: 20
 received: 30
 received: <Sentinel>
 computed: Result(count=3, average=20.0)
 >>> result
 Result(count=3, average=20.0)

res will collect the return value of averager2; the yield from machinery
retrieves the return value when it handles the StopIteration exception that
marks the termination of the coroutine. When True, the verbose parameter
makes the coroutine print the value received, to make its operation visible.

Keep an eye out for the output of this line when this generator runs.

Return the result. This will also be wrapped in StopIteration.

Create the delegating coroutine object.

This loop will drive the delegating coroutine.

First value sent is None, to prime the coroutine; last is the sentinel to stop it.

Catch StopIteration to fetch the return value of compute.

After the lines output by averager2 and compute, we get the Result instance.

Even though the examples here don’t do much, the code is hard to follow. Driving
the coroutine with .send() calls and retrieving results is complicated, except with
yield from—but we can only use that syntax inside a delegating generator/corou‐
tine, which must ultimately be driven by some nontrivial code, as shown in
Example 17-44.

Classic Coroutines | 649

16 Since Python 3.7, typing.Generator and other types that correspond to ABCs in collections.abc were
refactored with a wrapper around the corresponding ABC, so their generic parameters aren’t visible in the
typing.py source file. That’s why I refer to Python 3.6 source code here.

The previous examples show that using coroutines directly is cumbersome and con‐
fusing. Add exception handling and the coroutine .throw() method, and examples
become even more convoluted. I won’t cover .throw() in this book because—
like .send()—it is only useful to drive coroutines “by hand,” but I don’t recommend
doing that, unless you are creating a new coroutine-based framework from scratch.

If you are interested in deeper coverage of classic coroutines—
including the .throw() method—please check out “Classic Corou‐
tines” at the fluentpython.com companion website. That post
includes Python-like pseudocode detailing how yield from drives
generators and coroutines, as well as a a small discrete event simu‐
lation demonstrating a form of concurrency using coroutines
without an asynchronous programming framework.

In practice, productive work with coroutines requires the support of a specialized
framework. That is what asyncio provided for classic coroutines way back in Python
3.3. With the advent of native coroutines in Python 3.5, the Python core developers
are gradually phasing out support for classic coroutines in asyncio. But the underly‐
ing mechanisms are very similar. The async def syntax makes native coroutines eas‐
ier to spot in code, which is a great benefit. Inside, native coroutines use await
instead of yield from to delegate to other coroutines. Chapter 21 is all about that.

Now let’s wrap up the chapter with a mind-bending section about covariance and
contravariance in type hints for coroutines.

Generic Type Hints for Classic Coroutines
Back in “Contravariant types” on page 550, I mentioned typing.Generator as one of
the few standard library types with a contravariant type parameter. Now that we’ve
studied classic coroutines, we are ready to make sense of this generic type.

Here is how typing.Generator was declared in the typing.py module of Python 3.6:16

T_co = TypeVar('T_co', covariant=True)
V_co = TypeVar('V_co', covariant=True)
T_contra = TypeVar('T_contra', contravariant=True)

many lines omitted

class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co],
 extra=_G_base):

650 | Chapter 17: Iterators, Generators, and Classic Coroutines

https://fpy.li/oldcoro
https://fpy.li/oldcoro
http://fluentpython.com
https://fpy.li/17-25

That generic type declaration means that a Generator type hint requires those three
type parameters we’ve seen before:

my_coro : Generator[YieldType, SendType, ReturnType]

From the type variables in the formal parameters, we see that YieldType and Return
Type are covariant, but SendType is contravariant. To understand why, consider that
YieldType and ReturnType are “output” types. Both describe data that comes out of
the coroutine object—i.e., the generator object when used as a coroutine object.

It makes sense that these are covariant, because any code expecting a coroutine that
yields floats can use a coroutine that yields integers. That’s why Generator is cova‐
riant on its YieldType parameter. The same reasoning applies to the ReturnType
parameter—also covariant.

Using the notation introduced in “Covariant types” on page 550, the covariance of
the first and third parameters is expressed by the :> symbols pointing in the same
direction:

 float :> int
Generator[float, Any, float] :> Generator[int, Any, int]

YieldType and ReturnType are examples of the first rule of “Variance rules of
thumb” on page 551:

1. If a formal type parameter defines a type for data that comes out of the object, it
can be covariant.

On the other hand, SendType is an “input” parameter: it is the type of the value argu‐
ment for the .send(value) method of the coroutine object. Client code that needs to
send floats to a coroutine cannot use a coroutine with int as the SendType because
float is not a subtype of int. In other words, float is not consistent-with int. But
the client can use a coroutine with complex as the SendType, because float is a sub‐
type of complex, therefore float is consistent-with complex.

The :> notation makes the contravariance of the second parameter visible:

 float :> int
Generator[Any, float, Any] <: Generator[Any, int, Any]

This is an example of the second Variance Rule of Thumb:

2. If a formal type parameter defines a type for data that goes into the object after its
initial construction, it can be contravariant.

This merry discussion of variance completes the longest chapter in the book.

Classic Coroutines | 651

17 According to the Jargon file, to grok is not merely to learn something, but to absorb it so “it becomes part of
you, part of your identity.”

Chapter Summary
Iteration is so deeply embedded in the language that I like to say that Python groks
iterators.17 The integration of the Iterator pattern in the semantics of Python is a
prime example of how design patterns are not equally applicable in all programming
languages. In Python, a classic Iterator implemented “by hand” as in Example 17-4
has no practical use, except as a didactic example.

In this chapter, we built a few versions of a class to iterate over individual words in
text files that may be very long. We saw how Python uses the iter() built-in to create
iterators from sequence-like objects. We build a classic iterator as a class with
__next__(), and then we used generators to make each successive refactoring of the
Sentence class more concise and readable.

We then coded a generator of arithmetic progressions and showed how to leverage
the itertools module to make it simpler. An overview of most general-purpose gen‐
erator functions in the standard library followed.

We then studied yield from expressions in the context of simple generators with the
chain and tree examples.

The last major section was about classic coroutines, a topic of waning importance
after native coroutines were added in Python 3.5. Although difficult to use in prac‐
tice, classic coroutines are the foundation of native coroutines, and the yield from
expression is the direct precursor of await.

Also covered were type hints for Iterable, Iterator, and Generator types—with the
latter providing a concrete and rare example of a contravariant type parameter.

Further Reading
A detailed technical explanation of generators appears in The Python Language Refer‐
ence in “6.2.9. Yield expressions”. The PEP where generator functions were defined is
PEP 255—Simple Generators.

The itertools module documentation is excellent because of all the examples
included. Although the functions in that module are implemented in C, the docu‐
mentation shows how some of them would be written in Python, often by leveraging
other functions in the module. The usage examples are also great; for instance, there
is a snippet showing how to use the accumulate function to amortize a loan with
interest, given a list of payments over time. There is also an “Itertools Recipes”

652 | Chapter 17: Iterators, Generators, and Classic Coroutines

https://fpy.li/17-26
https://fpy.li/17-27
https://fpy.li/pep255
https://fpy.li/17-28
https://fpy.li/17-29

section with additional high-performance functions that use the itertools functions
as building blocks.

Beyond Python’s standard library, I recommend the More Itertools package, which
follows the fine itertools tradition in providing powerful generators with plenty of
examples and some useful recipes.

Chapter 4, “Iterators and Generators,” of Python Cookbook, 3rd ed., by David Beazley
and Brian K. Jones (O’Reilly), has 16 recipes covering this subject from many differ‐
ent angles, focusing on practical applications. It includes some illuminating recipes
with yield from.

Sebastian Rittau—currently a top contributor of typeshed—explains why iterators
should be iterable, as he noted in 2006 that, “Java: Iterators are not Iterable”.

The yield from syntax is explained with examples in the “What’s New in Python
3.3” section of PEP 380—Syntax for Delegating to a Subgenerator. My post “Classic
Coroutines” at fluentpython.com explains yield from in depth, including Python
pseudocode of its implementation in C.

David Beazley is the ultimate authority on Python generators and coroutines. The
Python Cookbook, 3rd ed., (O’Reilly) he coauthored with Brian Jones has numerous
recipes with coroutines. Beazley’s PyCon tutorials on the subject are famous for their
depth and breadth. The first was at PyCon US 2008: “Generator Tricks for Systems
Programmers”. PyCon US 2009 saw the legendary “A Curious Course on Coroutines
and Concurrency” (hard-to-find video links for all three parts: part 1, part 2, and part
3). His tutorial from PyCon 2014 in Montréal was “Generators: The Final Frontier”,
in which he tackles more concurrency examples—so it’s really more about topics in
Chapter 21. Dave can’t resist making brains explode in his classes, so in the last part
of “The Final Frontier,” coroutines replace the classic Visitor pattern in an arithmetic
expression evaluator.

Coroutines allow new ways of organizing code, and just as recursion or polymor‐
phism (dynamic dispatch), it takes some time getting used to their possibilities. An
interesting example of classic algorithm rewritten with coroutines is in the post
“Greedy algorithm with coroutines”, by James Powell.

Brett Slatkin’s Effective Python, 1st ed. (Addison-Wesley) has an excellent short chap‐
ter titled “Consider Coroutines to Run Many Functions Concurrently.” That chapter
is not in the second edition of Effective Python, but it is still available online as a sam‐
ple chapter. Slatkin presents the best example of driving coroutines with yield from
that I’ve seen: an implementation of John Conway’s Game of Life in which corou‐
tines manage the state of each cell as the game runs. I refactored the code for the
Game of Life example—separating the functions and classes that implement the game
from the testing snippets used in Slatkin’s original code. I also rewrote the tests as

Further Reading | 653

https://fpy.li/17-30
https://fpy.li/17-31
https://fpy.li/17-32
https://fpy.li/oldcoro
https://fpy.li/oldcoro
http://fluentpython.com
https://fpy.li/pycook3
https://fpy.li/17-33
https://fpy.li/17-33
https://fpy.li/17-34
https://fpy.li/17-34
https://fpy.li/17-35
https://fpy.li/17-36
https://fpy.li/17-37
https://fpy.li/17-37
https://fpy.li/17-38
https://fpy.li/17-39
https://fpy.li/17-40
https://fpy.li/17-41
https://fpy.li/17-41
https://fpy.li/17-42

18 Gamma et. al., Design Patterns: Elements of Reusable Object-Oriented Software, p. 261.

doctests, so you can see the output of the various coroutines and classes without run‐
ning the script. The refactored example is posted as a GitHub gist.

Soapbox

The Minimalistic Iterator Interface in Python

In the “Implementation” section of the Iterator pattern,18 the Gang of Four wrote:

The minimal interface to Iterator consists of the operations First, Next, IsDone, and
CurrentItem.

However, that very sentence has a footnote that reads:

We can make this interface even smaller by merging Next, IsDone, and CurrentItem
into a single operation that advances to the next object and returns it. If the traversal
is finished, then this operation returns a special value (0, for instance) that marks the
end of the iteration.

This is close to what we have in Python: the single method __next__ does the job. But
instead of using a sentinel, which could be overlooked by mistake, the StopIteration
exception signals the end of the iteration. Simple and correct: that’s the Python way.

Pluggable Generators

Anyone who manages large datasets finds many uses for generators. This is the story
of the first time I built a practical solution around generators.

Years ago I worked at BIREME, a digital library run by PAHO/WHO (Pan-American
Health Organization/World Health Organization) in São Paulo, Brazil. Among the
bibliographic datasets created by BIREME are LILACS (Latin American and Carib‐
bean Health Sciences index) and SciELO (Scientific Electronic Library Online), two
comprehensive databases indexing the research literature about health sciences pro‐
duced in the region.

Since the late 1980s, the database system used to manage LILACS is CDS/ISIS, a non-
relational document database created by UNESCO. One of my jobs was to research
alternatives for a possible migration of LILACS—and eventually the much larger
SciELO—to a modern, open source, document database such as CouchDB or Mon‐
goDB. At the time, I wrote a paper explaining the semistructured data model and
different ways to represent CDS/ISIS data with JSON-like records: “From ISIS to
CouchDB: Databases and Data Models for Bibliographic Records”.

As part of that research, I wrote a Python script to read a CDS/ISIS file and write a
JSON file suitable for importing to CouchDB or MongoDB. Initially, the script read

654 | Chapter 17: Iterators, Generators, and Classic Coroutines

https://fpy.li/17-43
https://fpy.li/17-44
https://fpy.li/17-45
https://fpy.li/17-45

19 The code is in Python 2 because one of its optional dependencies is a Java library named Bruma, which we
can import when we run the script with Jython—which does not yet support Python 3.

20 The library used to read the complex .mst binary is actually written in Java, so this functionality is only avail‐
able when isis2json.py is executed with the Jython interpreter, version 2.5 or newer. For further details, see the
README.rst file in the repository. The dependencies are imported inside the generator functions that need
them, so the script can run even if only one of the external libraries is available.

files in the ISO-2709 format exported by CDS/ISIS. The reading and writing had to be
done incrementally because the full datasets were much bigger than main memory.
That was easy enough: each iteration of the main for loop read one record from
the .iso file, massaged it, and wrote it to the .json output.

However, for operational reasons, it was deemed necessary that isis2json.py supported
another CDS/ISIS data format: the binary .mst files used in production at BIREME—
to avoid the costly export to ISO-2709. Now I had a problem: the libraries used to
read ISO-2709 and .mst files had very different APIs. And the JSON writing loop was
already complicated because the script accepted a variety of command-line options to
restructure each output record. Reading data using two different APIs in the same
for loop where the JSON was produced would be unwieldy.

The solution was to isolate the reading logic into a pair of generator functions: one
for each supported input format. In the end, I split the isis2json.py script into four
functions. You can see the Python 2 source code with dependencies in the fluentpy‐
thon/isis2json repository on GitHub.19

Here is a high-level overview of how the script is structured:

main

The main function uses argparse to read command-line options that configure
the structure of the output records. Based on the input filename extension, a suit‐
able generator function is selected to read the data and yield the records, one by
one.

iter_iso_records

This generator function reads .iso files (assumed to be in the ISO-2709 format). It
takes two arguments: the filename and isis_json_type, one of the options
related to the record structure. Each iteration of its for loop reads one record,
creates an empty dict, populates it with field data, and yields the dict.

iter_mst_records

This other generator functions reads .mst files.20 If you look at the source code
for isis2json.py, you’ll see that it’s not as simple as iter_iso_records, but its
interface and overall structure is the same: it takes a filename and an
isis_json_type argument and enters a for loop, which builds and yields one
dict per iteration, representing a single record.

Further Reading | 655

https://fpy.li/17-47
https://fpy.li/17-46
https://fpy.li/17-46

write_json

This function performs the actual writing of the JSON records, one at a time. It
takes numerous arguments, but the first one—input_gen—is a reference to a
generator function: either iter_iso_records or iter_mst_records. The main
for loop in write_json iterates over the dictionaries yielded by the selected
input_gen generator, restructures it in different ways as determined by the
command-line options, and appends the JSON record to the output file.

By leveraging generator functions, I was able to decouple the reading from the writ‐
ing. Of course, the simplest way to decouple them would be to read all records to
memory, then write them to disk. But that was not a viable option because of the size
of the datasets. Using generators, the reading and writing is interleaved, so the script
can process files of any size. Also, the special logic for reading a record in the differ‐
ent input formats is separated from the logic of restructuring each record for writing.

Now, if we need isis2json.py to support an additional input format—say, MARCXML,
a DTD used by the US Library of Congress to represent ISO-2709 data—it will be
easy to add a third generator function to implement the reading logic, without chang‐
ing anything in the complicated write_json function.

This is not rocket science, but it’s a real example where generators enabled an effi‐
cient and flexible solution to process databases as a stream of records, keeping mem‐
ory usage low regardless of the size of the dataset.

656 | Chapter 17: Iterators, Generators, and Classic Coroutines

1 PyCon US 2013 keynote: “What Makes Python Awesome”; the part about with starts at 23:00 and ends at
26:15.

CHAPTER 18

with, match, and else Blocks

Context managers may end up being almost as important as the subroutine itself.
We’ve only scratched the surface with them. […] Basic has a with statement, there are
with statements in lots of languages. But they don’t do the same thing, they all do
something very shallow, they save you from repeated dotted [attribute] lookups, they
don’t do setup and tear down. Just because it’s the same name don’t think it’s the same
thing. The with statement is a very big deal.1

—Raymond Hettinger, eloquent Python evangelist

This chapter is about control flow features that are not so common in other lan‐
guages, and for this reason tend to be overlooked or underused in Python. They are:

• The with statement and context manager protocol
• Pattern matching with match/case
• The else clause in for, while, and try statements

The with statement sets up a temporary context and reliably tears it down, under the
control of a context manager object. This prevents errors and reduces boilerplate
code, making APIs at the same time safer and easier to use. Python programmers are
finding lots of uses for with blocks beyond automatic file closing.

We’ve seen pattern matching in previous chapters, but here we’ll see how the gram‐
mar of a language can be expressed as sequence patterns. That observation explains
why match/case is an effective tool to create language processors that are easy to
understand and extend. We’ll study a complete interpreter for a small but functional

657

https://fpy.li/18-1

subset of the Scheme language. The same ideas could be applied to develop a tem‐
plate language or a DSL (Domain-Specific Language) to encode business rules in a
larger system.

The else clause is not a big deal, but it does help convey intention when properly
used together with for, while, and try.

What’s New in This Chapter
“Pattern Matching in lis.py: A Case Study” on page 669 is a new section.

I updated “The contextlib Utilities” on page 663 to cover a few features of the context
lib module added since Python 3.6, and the new parenthesized context managers
syntax introduced in Python 3.10.

Let’s start with the powerful with statement.

Context Managers and with Blocks
Context manager objects exist to control a with statement, just like iterators exist to
control a for statement.

The with statement was designed to simplify some common uses of try/finally,
which guarantees that some operation is performed after a block of code, even if the
block is terminated by return, an exception, or a sys.exit() call. The code in the
finally clause usually releases a critical resource or restores some previous state that
was temporarily changed.

The Python community is finding new, creative uses for context managers. Some
examples from the standard library are:

• Managing transactions in the sqlite3 module—see “Using the connection as a
context manager”.

• Safely handling locks, conditions, and semaphores—as described in the thread
ing module documentation.

• Setting up custom environments for arithmetic operations with Decimal objects
—see the decimal.localcontext documentation.

• Patching objects for testing—see the unittest.mock.patch function.

The context manager interface consists of the __enter__ and __exit__ methods. At
the top of the with, Python calls the __enter__ method of the context manager
object. When the with block completes or terminates for any reason, Python calls
__exit__ on the context manager object.

658 | Chapter 18: with, match, and else Blocks

https://fpy.li/18-2
https://fpy.li/18-2
https://fpy.li/18-3
https://fpy.li/18-3
https://fpy.li/18-4
https://fpy.li/18-5

The most common example is making sure a file object is closed. Example 18-1 is a
detailed demonstration of using with to close a file.

Example 18-1. Demonstration of a file object as a context manager

>>> with open('mirror.py') as fp:
... src = fp.read(60)
...
>>> len(src)
60
>>> fp
<_io.TextIOWrapper name='mirror.py' mode='r' encoding='UTF-8'>
>>> fp.closed, fp.encoding
(True, 'UTF-8')
>>> fp.read(60)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: I/O operation on closed file.

fp is bound to the opened text file because the file’s __enter__ method returns
self.

Read 60 Unicode characters from fp.

The fp variable is still available—with blocks don’t define a new scope, as func‐
tions do.

We can read the attributes of the fp object.

But we can’t read more text from fp because at the end of the with block, the
TextIOWrapper.__exit__ method was called, and it closed the file.

The first callout in Example 18-1 makes a subtle but crucial point: the context man‐
ager object is the result of evaluating the expression after with, but the value bound
to the target variable (in the as clause) is the result returned by the __enter__
method of the context manager object.

It just happens that the open() function returns an instance of TextIOWrapper, and
its __enter__ method returns self. But in a different class, the __enter__ method
may also return some other object instead of the context manager instance.

When control flow exits the with block in any way, the __exit__ method is invoked
on the context manager object, not on whatever was returned by __enter__.

Context Managers and with Blocks | 659

The as clause of the with statement is optional. In the case of open, we always need it
to get a reference to the file, so that we can call methods on it. But some context man‐
agers return None because they have no useful object to give back to the user.

Example 18-2 shows the operation of a perfectly frivolous context manager designed
to highlight the distinction between the context manager and the object returned by
its __enter__ method.

Example 18-2. Test-driving the LookingGlass context manager class

 >>> from mirror import LookingGlass
 >>> with LookingGlass() as what:
 ... print('Alice, Kitty and Snowdrop')
 ... print(what)
 ...
 pordwonS dna yttiK ,ecilA
 YKCOWREBBAJ
 >>> what
 'JABBERWOCKY'
 >>> print('Back to normal.')
 Back to normal.

The context manager is an instance of LookingGlass; Python calls __enter__ on
the context manager and the result is bound to what.

Print a str, then the value of the target variable what. The output of each print
will come out reversed.

Now the with block is over. We can see that the value returned by __enter__,
held in what, is the string 'JABBERWOCKY'.

Program output is no longer reversed.

Example 18-3 shows the implementation of LookingGlass.

Example 18-3. mirror.py: code for the LookingGlass context manager class

import sys

class LookingGlass:

 def __enter__(self):
 self.original_write = sys.stdout.write
 sys.stdout.write = self.reverse_write
 return 'JABBERWOCKY'

 def reverse_write(self, text):

660 | Chapter 18: with, match, and else Blocks

 self.original_write(text[::-1])

 def __exit__(self, exc_type, exc_value, traceback):
 sys.stdout.write = self.original_write
 if exc_type is ZeroDivisionError:
 print('Please DO NOT divide by zero!')
 return True

Python invokes __enter__ with no arguments besides self.

Hold the original sys.stdout.write method, so we can restore it later.

Monkey-patch sys.stdout.write, replacing it with our own method.

Return the 'JABBERWOCKY' string just so we have something to put in the target
variable what.

Our replacement to sys.stdout.write reverses the text argument and calls the
original implementation.

Python calls __exit__ with None, None, None if all went well; if an exception is
raised, the three arguments get the exception data, as described after this
example.

Restore the original method to sys.stdout.write.

If the exception is not None and its type is ZeroDivisionError, print a message…

…and return True to tell the interpreter that the exception was handled.

If __exit__ returns None or any falsy value, any exception raised in the with
block will be propagated.

When real applications take over standard output, they often want
to replace sys.stdout with another file-like object for a while, then
switch back to the original. The contextlib.redirect_stdout
context manager does exactly that: just pass it the file-like object
that will stand in for sys.stdout.

The interpreter calls the __enter__ method with no arguments—beyond the implicit
self. The three arguments passed to __exit__ are:

Context Managers and with Blocks | 661

https://fpy.li/18-6

2 The three arguments received by self are exactly what you get if you call sys.exc_info() in the finally
block of a try/finally statement. This makes sense, considering that the with statement is meant to replace
most uses of try/finally, and calling sys.exc_info() was often necessary to determine what clean-up
action would be required.

exc_type

The exception class (e.g., ZeroDivisionError).

exc_value

The exception instance. Sometimes, parameters passed to the exception con‐
structor—such as the error message—can be found in exc_value.args.

traceback

A traceback object.2

For a detailed look at how a context manager works, see Example 18-4, where
LookingGlass is used outside of a with block, so we can manually call its __enter__
and __exit__ methods.

Example 18-4. Exercising LookingGlass without a with block

 >>> from mirror import LookingGlass
 >>> manager = LookingGlass()
 >>> manager # doctest: +ELLIPSIS
 <mirror.LookingGlass object at 0x...>
 >>> monster = manager.__enter__()
 >>> monster == 'JABBERWOCKY'
 eurT
 >>> monster
 'YKCOWREBBAJ'
 >>> manager # doctest: +ELLIPSIS
 >... ta tcejbo ssalGgnikooL.rorrim<
 >>> manager.__exit__(None, None, None)
 >>> monster
 'JABBERWOCKY'

Instantiate and inspect the manager instance.

Call the manager’s __enter__ method and store result in monster.

monster is the string 'JABBERWOCKY'. The True identifier appears reversed
because all output via stdout goes through the write method we patched in
__enter__.

Call manager.__exit__ to restore the previous stdout.write.

662 | Chapter 18: with, match, and else Blocks

https://fpy.li/18-7

Parenthesized Context Managers in Python 3.10

Python 3.10 adopted a new, more powerful parser, allowing new
syntax beyond what was possible with the older LL(1) parser. One
syntax enhancement was to allow parenthesized context managers,
like this:

with (
 CtxManager1() as example1,
 CtxManager2() as example2,
 CtxManager3() as example3,
):
 ...

Prior to 3.10, we’d have to write that as nested with blocks.

The standard library includes the contextlib package with handy functions, classes,
and decorators for building, combining, and using context managers.

The contextlib Utilities
Before rolling your own context manager classes, take a look at contextlib—“Utilit‐
ies for with-statement contexts” in the Python documentation. Maybe what you are
about to build already exists, or there is a class or some callable that will make your
job easier.

Besides the redirect_stdout context manager mentioned right after Example 18-3,
redirect_stderr was added in Python 3.5—it does the same as the former, but for
output directed to stderr.

The contextlib package also includes:

closing

A function to build context managers out of objects that provide a close()
method but don’t implement the __enter__/__exit__ interface.

suppress

A context manager to temporarily ignore exceptions given as arguments.

nullcontext

A context manager that does nothing, to simplify conditional logic around
objects that may not implement a suitable context manager. It serves as a stand-
in when conditional code before the with block may or may not provide a con‐
text manager for the with statement—added in Python 3.7.

The contextlib module provides classes and a decorator that are more widely appli‐
cable than the decorators just mentioned:

Context Managers and with Blocks | 663

https://fpy.li/pep617
https://fpy.li/18-8
https://fpy.li/18-9
https://fpy.li/18-9

@contextmanager

A decorator that lets you build a context manager from a simple generator func‐
tion, instead of creating a class and implementing the interface. See “Using
@contextmanager” on page 664.

AbstractContextManager

An ABC that formalizes the context manager interface, and makes it a bit easier
to create context manager classes by subclassing—added in Python 3.6.

ContextDecorator

A base class for defining class-based context managers that can also be used as
function decorators, running the entire function within a managed context.

ExitStack

A context manager that lets you enter a variable number of context managers.
When the with block ends, ExitStack calls the stacked context managers’
__exit__ methods in LIFO order (last entered, first exited). Use this class when
you don’t know beforehand how many context managers you need to enter in
your with block; for example, when opening all files from an arbitrary list of files
at the same time.

With Python 3.7, contextlib added AbstractAsyncContextManager, @asynccontext
manager, and AsyncExitStack. They are similar to the equivalent utilities without the
async part of the name, but designed for use with the new async with statement,
covered in Chapter 21.

The most widely used of these utilities is the @contextmanager decorator, so it
deserves more attention. That decorator is also interesting because it shows a use for
the yield statement unrelated to iteration.

Using @contextmanager
The @contextmanager decorator is an elegant and practical tool that brings together
three distinctive Python features: a function decorator, a generator, and the with
statement.

Using @contextmanager reduces the boilerplate of creating a context manager:
instead of writing a whole class with __enter__/__exit__ methods, you just imple‐
ment a generator with a single yield that should produce whatever you want the
__enter__ method to return.

In a generator decorated with @contextmanager, yield splits the body of the function
in two parts: everything before the yield will be executed at the beginning of the
with block when the interpreter calls __enter__; the code after yield will run when
__exit__ is called at the end of the block.

664 | Chapter 18: with, match, and else Blocks

Example 18-5 replaces the LookingGlass class from Example 18-3 with a generator
function.

Example 18-5. mirror_gen.py: a context manager implemented with a generator

import contextlib
import sys

@contextlib.contextmanager
def looking_glass():
 original_write = sys.stdout.write

 def reverse_write(text):
 original_write(text[::-1])

 sys.stdout.write = reverse_write
 yield 'JABBERWOCKY'
 sys.stdout.write = original_write

Apply the contextmanager decorator.

Preserve the original sys.stdout.write method.

reverse_write can call original_write later because it is available in its closure.

Replace sys.stdout.write with reverse_write.

Yield the value that will be bound to the target variable in the as clause of the
with statement. The generator pauses at this point while the body of the with
executes.

When control exits the with block, execution continues after the yield; here the
original sys.stdout.write is restored.

Example 18-6 shows the looking_glass function in operation.

Example 18-6. Test-driving the looking_glass context manager function

 >>> from mirror_gen import looking_glass
 >>> with looking_glass() as what:
 ... print('Alice, Kitty and Snowdrop')
 ... print(what)
 ...
 pordwonS dna yttiK ,ecilA
 YKCOWREBBAJ
 >>> what
 'JABBERWOCKY'

Context Managers and with Blocks | 665

3 The actual class is named _GeneratorContextManager. If you want to see exactly how it works, read its source
code in Lib/contextlib.py in Python 3.10.

 >>> print('back to normal')
 back to normal

The only difference from Example 18-2 is the name of the context manager: look
ing_glass instead of LookingGlass.

The contextlib.contextmanager decorator wraps the function in a class that imple‐
ments the __enter__ and __exit__ methods.3

The __enter__ method of that class:

1. Calls the generator function to get a generator object—let’s call it gen.
2. Calls next(gen) to drive it to the yield keyword.
3. Returns the value yielded by next(gen), to allow the user to bind it to a variable

in the with/as form.

When the with block terminates, the __exit__ method:

1. Checks whether an exception was passed as exc_type; if so, gen.throw(excep
tion) is invoked, causing the exception to be raised in the yield line inside the
generator function body.

2. Otherwise, next(gen) is called, resuming the execution of the generator function
body after the yield.

Example 18-5 has a flaw: if an exception is raised in the body of the with block, the
Python interpreter will catch it and raise it again in the yield expression inside look
ing_glass. But there is no error handling there, so the looking_glass generator will
terminate without ever restoring the original sys.stdout.write method, leaving the
system in an invalid state.

Example 18-7 adds special handling of the ZeroDivisionError exception, making it
functionally equivalent to the class-based Example 18-3.

Example 18-7. mirror_gen_exc.py: generator-based context manager implementing
exception handling—same external behavior as Example 18-3

import contextlib
import sys

@contextlib.contextmanager

666 | Chapter 18: with, match, and else Blocks

https://fpy.li/18-10
https://fpy.li/18-10

4 This tip is quoted literally from a comment by Leonardo Rochael, one of the tech reviewers for this book.
Nicely said, Leo!

def looking_glass():
 original_write = sys.stdout.write

 def reverse_write(text):
 original_write(text[::-1])

 sys.stdout.write = reverse_write
 msg = ''
 try:
 yield 'JABBERWOCKY'
 except ZeroDivisionError:
 msg = 'Please DO NOT divide by zero!'
 finally:
 sys.stdout.write = original_write
 if msg:
 print(msg)

Create a variable for a possible error message; this is the first change in relation
to Example 18-5.

Handle ZeroDivisionError by setting an error message.

Undo monkey-patching of sys.stdout.write.

Display error message, if it was set.

Recall that the __exit__ method tells the interpreter that it has handled the exception
by returning a truthy value; in that case, the interpreter suppresses the exception. On
the other hand, if __exit__ does not explicitly return a value, the interpreter gets the
usual None, and propagates the exception. With @contextmanager, the default behav‐
ior is inverted: the __exit__ method provided by the decorator assumes any excep‐
tion sent into the generator is handled and should be suppressed.

Having a try/finally (or a with block) around the yield is an
unavoidable price of using @contextmanager, because you never
know what the users of your context manager are going to do
inside the with block.4

Context Managers and with Blocks | 667

5 At least I and the other technical reviewers didn’t know it until Caleb Hattingh told us. Thanks, Caleb!

A little-known feature of @contextmanager is that the generators decorated with it
can also be used as decorators themselves.5 That happens because @contextmanager
is implemented with the contextlib.ContextDecorator class.

Example 18-8 shows the looking_glass context manager from Example 18-5 used as
decorator.

Example 18-8. The looking_glass context manager also works as a decorator

 >>> @looking_glass()
 ... def verse():
 ... print('The time has come')
 ...
 >>> verse()
 emoc sah emit ehT
 >>> print('back to normal')
 back to normal

looking_glass does its job before and after the body of verse runs.

This confirms that the original sys.write was restored.

Contrast Example 18-8 with Example 18-6, where looking_glass is used as a context
manager.

An interesting real-life example of @contextmanager outside of the standard library is
Martijn Pieters’ in-place file rewriting using a context manager. Example 18-9 shows
how it’s used.

Example 18-9. A context manager for rewriting files in place

import csv

with inplace(csvfilename, 'r', newline='') as (infh, outfh):
 reader = csv.reader(infh)
 writer = csv.writer(outfh)

 for row in reader:
 row += ['new', 'columns']
 writer.writerow(row)

The inplace function is a context manager that gives you two handles—infh and
outfh in the example—to the same file, allowing your code to read and write to it at

668 | Chapter 18: with, match, and else Blocks

https://fpy.li/18-11

6 People complain about too many parentheses in Lisp, but thoughtful indentation and a good editor mostly
take care of that issue. The main readability problem is using the same (f …) notation for function calls and
special forms like (define …), (if …), and (quote …) that don’t behave at all like function calls.

the same time. It’s easier to use than the standard library’s fileinput.input function
(which also provides a context manager, by the way).

If you want to study Martijn’s inplace source code (listed in the post), find the yield
keyword: everything before it deals with setting up the context, which entails creating
a backup file, then opening and yielding references to the readable and writable file
handles that will be returned by the __enter__ call. The __exit__ processing after
the yield closes the file handles and restores the file from the backup if something
went wrong.

This concludes our overview of the with statement and context managers. Let’s turn
to match/case in the context of a complete example.

Pattern Matching in lis.py: A Case Study
In “Pattern Matching Sequences in an Interpreter” on page 43 we saw examples of
sequence patterns extracted from the evaluate function of Peter Norvig’s lis.py inter‐
preter, ported to Python 3.10. In this section I want to give a broader overview of how
lis.py works, and also explore all the case clauses of evaluate, explaining not only the
patterns but also what the interpreter does in each case.

Besides showing more pattern matching, I wrote this section for three reasons:

1. Norvig’s lis.py is a beautiful example of idiomatic Python code.
2. The simplicity of Scheme is a master class of language design.
3. Learning how an interpreter works gave me a deeper understanding of Python

and programming languages in general—interpreted or compiled.

Before looking at the Python code, let’s get a little taste of Scheme so you can make
sense of this case study—in case you haven’t seen Scheme or Lisp before.

Scheme Syntax
In Scheme there is no distinction between expressions and statements, like we have in
Python. Also, there are no infix operators. All expressions use prefix notation like (+
x 13) instead of x + 13. The same prefix notation is used for function calls—e.g.,
(gcd x 13)—and special forms—e.g., (define x 13), which we’d write as the
assignment statement x = 13 in Python. The notation used by Scheme and most Lisp
dialects is known as S-expression.6

Pattern Matching in lis.py: A Case Study | 669

https://fpy.li/18-12
https://fpy.li/18-11

7 To make iteration through recursion practical and efficient, Scheme and other functional languages imple‐
ment proper tail calls. For more about this, see “Soapbox” on page 691.

Example 18-10 shows a simple example in Scheme.

Example 18-10. Greatest common divisor in Scheme

(define (mod m n)
 (- m (* n (quotient m n))))

(define (gcd m n)
 (if (= n 0)
 m
 (gcd n (mod m n))))

(display (gcd 18 45))

Example 18-10 shows three Scheme expressions: two function definitions—mod and
gcd—and a call to display, which will output 9, the result of (gcd 18 45).
Example 18-11 is the same code in Python (shorter than an English explanation of
the recursive Euclidean algorithm).

Example 18-11. Same as Example 18-10, written in Python

def mod(m, n):
 return m - (m // n * n)

def gcd(m, n):
 if n == 0:
 return m
 else:
 return gcd(n, mod(m, n))

print(gcd(18, 45))

In idiomatic Python, I’d use the % operator instead of reinventing mod, and it would
be more efficient to use a while loop instead of recursion. But I wanted to show two
function definitions, and make the examples as similar as possible, to help you read
the Scheme code.

Scheme has no iterative control flow commands like while or for. Iteration is done
with recursion. Note how there are no assignments in the Scheme and Python exam‐
ples. Extensive use of recursion and minimal use of assignment are hallmarks of pro‐
gramming in a functional style.7

670 | Chapter 18: with, match, and else Blocks

https://fpy.li/18-14

8 But Norvig’s second interpreter, lispy.py, supports strings as a data type, as well as advanced features like syn‐
tactic macros, continuations, and proper tail calls. However, lispy.py is almost three times longer than lis.py—
and much harder to understand.

Now let’s review the code of the Python 3.10 version of lis.py. The complete source
code with tests is in the 18-with-match/lispy/py3.10/ directory of the GitHub reposi‐
tory fluentpython/example-code-2e.

Imports and Types
Example 18-12 shows the first lines of lis.py. The use of TypeAlias and the | type
union operator require Python 3.10.

Example 18-12. lis.py: top of the file

import math
import operator as op
from collections import ChainMap
from itertools import chain
from typing import Any, TypeAlias, NoReturn

Symbol: TypeAlias = str
Atom: TypeAlias = float | int | Symbol
Expression: TypeAlias = Atom | list

The types defined are:

Symbol

Just an alias for str. In lis.py, Symbol is used for identifiers; there is no string data
type with operations such as slicing, splitting, etc.8

Atom

A simple syntactic element, such as a number or a Symbol—as opposed to a com‐
posite structure made of distinct parts, like a list.

Expression

The building blocks of Scheme programs are expressions made of atoms and
lists, possibly nested.

The Parser
Norvig’s parser is 36 lines of code showcasing the power of Python applied to han‐
dling the simple recursive syntax of S-expression—without string data, comments,
macros, and other features of standard Scheme that make parsing more complicated
(Example 18-13).

Pattern Matching in lis.py: A Case Study | 671

https://fpy.li/18-16
https://fpy.li/18-15
https://fpy.li/code

Example 18-13. lis.py: the main parsing functions

def parse(program: str) -> Expression:
 "Read a Scheme expression from a string."
 return read_from_tokens(tokenize(program))

def tokenize(s: str) -> list[str]:
 "Convert a string into a list of tokens."
 return s.replace('(', ' (').replace(')', ') ').split()

def read_from_tokens(tokens: list[str]) -> Expression:
 "Read an expression from a sequence of tokens."
 # more parsing code omitted in book listing

The main function of that group is parse, which takes an S-expression as a str and
returns an Expression object, as defined in Example 18-12: an Atom or a list that
may contain more atoms and nested lists.

Norvig uses a smart trick in tokenize: he adds spaces before and after each parenthe‐
sis in the input and then splits it, resulting in a list of syntactic tokens with '(' and
')' as separate tokens. This shortcut works because there is no string type in the little
Scheme of lis.py, so every '(' or ')' is an expression delimiter. The recursive parsing
code is in read_from_tokens, a 14-line function that you can read in the fluentpy‐
thon/example-code-2e repository. I will skip it because I want to focus on the other
parts of the interpreter.

Here are some doctests extracted from lispy/py3.10/examples_test.py:

>>> from lis import parse
>>> parse('1.5')
1.5
>>> parse('ni!')
'ni!'
>>> parse('(gcd 18 45)')
['gcd', 18, 45]
>>> parse('''
... (define double
... (lambda (n)
... (* n 2)))
... ''')
['define', 'double', ['lambda', ['n'], ['*', 'n', 2]]]

The parsing rules for this subset of Scheme are simple:

1. A token that looks like a number is parsed as a float or int.
2. Anything else that is not '(' or ')' is parsed as a Symbol—a str to be used as an

identifier. This includes source text like +, set!, and make-counter that are valid
identifiers in Scheme but not in Python.

672 | Chapter 18: with, match, and else Blocks

https://fpy.li/18-17
https://fpy.li/18-17
https://fpy.li/18-18

3. Expressions inside '(' and ')' are recursively parsed as lists containing atoms or
as nested lists that may contain atoms and more nested lists.

Using the terminology of the Python interpreter, the output of parse is an AST
(Abstract Syntax Tree): a convenient representation of the Scheme program as nested
lists forming a tree-like structure, where the outermost list is the trunk, inner lists are
the branches, and atoms are the leaves (Figure 18-1).

Figure 18-1. A Scheme lambda expression represented as source code (concrete syntax),
as a tree, and as a sequence of Python objects (abstract syntax).

The Environment
The Environment class extends collections.ChainMap, adding a change method to
update a value inside one of the chained dicts, which ChainMap instances hold in a list
of mappings: the self.maps attribute. The change method is needed to support the
Scheme (set! …) form, described later; see Example 18-14.

Example 18-14. lis.py: the Environment class

class Environment(ChainMap[Symbol, Any]):
 "A ChainMap that allows changing an item in-place."

 def change(self, key: Symbol, value: Any) -> None:
 "Find where key is defined and change the value there."
 for map in self.maps:
 if key in map:

Pattern Matching in lis.py: A Case Study | 673

9 The # type: ignore[index] comment is there because of typeshed issue #6042, which is unresolved as I
review this chapter. ChainMap is annotated as MutableMapping, but the type hint in the maps attribute says it’s
a list of Mapping, indirectly making the whole ChainMap immutable as far as Mypy is concerned.

 map[key] = value # type: ignore[index]
 return
 raise KeyError(key)

Note that the change method only updates existing keys.9 Trying to change a key that
is not found raises KeyError.

This doctest shows how Environment works:

>>> from lis import Environment
>>> inner_env = {'a': 2}
>>> outer_env = {'a': 0, 'b': 1}
>>> env = Environment(inner_env, outer_env)
>>> env['a']
2
>>> env['a'] = 111
>>> env['c'] = 222
>>> env
Environment({'a': 111, 'c': 222}, {'a': 0, 'b': 1})
>>> env.change('b', 333)
>>> env
Environment({'a': 111, 'c': 222}, {'a': 0, 'b': 333})

When reading values, Environment works as ChainMap: keys are searched in the
nested mappings from left to right. That’s why the value of a in the outer_env is
shadowed by the value in inner_env.

Assigning with [] overwrites or inserts new items, but always in the first map‐
ping, inner_env in this example.

env.change('b', 333) seeks the 'b' key and assigns a new value to it in-place,
in the outer_env.

Next is the standard_env() function, which builds and returns an Environment
loaded with predefined functions, similar to Python’s __builtins__ module that is
always available (Example 18-15).

Example 18-15. lis.py: standard_env() builds and returns the global environment

def standard_env() -> Environment:
 "An environment with some Scheme standard procedures."
 env = Environment()
 env.update(vars(math)) # sin, cos, sqrt, pi, ...

674 | Chapter 18: with, match, and else Blocks

https://fpy.li/18-19

10 As I studied Norvig’s lis.py and lispy.py, I started a fork named mylis that adds some features, including a
REPL that accepts partial S-expressions and prompts for the continuation, similar to how Python’s REPL
knows we are not finished and presents the secondary prompt (...) until we enter a complete expression or
statement that can be evaluated. mylis also handles a few errors gracefully, but it’s still easy to crash. It’s not
nearly as robust as Python’s REPL.

 env.update({
 '+': op.add,
 '-': op.sub,
 '*': op.mul,
 '/': op.truediv,
 # omitted here: more operator definitions
 'abs': abs,
 'append': lambda *args: list(chain(*args)),
 'apply': lambda proc, args: proc(*args),
 'begin': lambda *x: x[-1],
 'car': lambda x: x[0],
 'cdr': lambda x: x[1:],
 # omitted here: more function definitions
 'number?': lambda x: isinstance(x, (int, float)),
 'procedure?': callable,
 'round': round,
 'symbol?': lambda x: isinstance(x, Symbol),
 })
 return env

To summarize, the env mapping is loaded with:

• All functions from Python’s math module
• Selected operators from Python’s op module
• Simple but powerful functions built with Python’s lambda
• Python built-ins renamed, like callable as procedure?, or directly mapped, like
round

The REPL
Norvig’s REPL (read-eval-print-loop) is easy to understand but not user-friendly (see
Example 18-16). If no command-line arguments are given to lis.py, the repl() func‐
tion is invoked by main()—defined at the end of the module. At the lis.py> prompt,
we must enter correct and complete expressions; if we forget to close one parenthesis,
lis.py crashes.10

Pattern Matching in lis.py: A Case Study | 675

https://fpy.li/18-20

Example 18-16. The REPL functions

def repl(prompt: str = 'lis.py> ') -> NoReturn:
 "A prompt-read-eval-print loop."
 global_env = Environment({}, standard_env())
 while True:
 ast = parse(input(prompt))
 val = evaluate(ast, global_env)
 if val is not None:
 print(lispstr(val))

def lispstr(exp: object) -> str:
 "Convert a Python object back into a Lisp-readable string."
 if isinstance(exp, list):
 return '(' + ' '.join(map(lispstr, exp)) + ')'
 else:
 return str(exp)

Here is a quick explanation about these two functions:

repl(prompt: str = 'lis.py> ') -> NoReturn

Calls standard_env() to provide built-in functions for the global environment,
then enters an infinite loop, reading and parsing each input line, evaluating it in
the global environment, and displaying the result—unless it’s None. The
global_env may be modified by evaluate. For example, when a user defines a
new global variable or named function, it is stored in the first mapping of the
environment—the empty dict in the Environment constructor call in the first
line of repl.

lispstr(exp: object) -> str

The inverse function of parse: given a Python object representing an expression,
parse returns the Scheme source code for it. For example, given ['+', 2, 3],
the result is '(+ 2 3)'.

The Evaluator
Now we can appreciate the beauty of Norvig’s expression evaluator—made a little
prettier with match/case. The evaluate function in Example 18-17 takes an Expres
sion built by parse and an Environment.

The body of evaluate is a single match statement with an expression exp as the sub‐
ject. The case patterns express the syntax and semantics of Scheme with amazing
clarity.

676 | Chapter 18: with, match, and else Blocks

Example 18-17. evaluate takes an expression and computes its value

KEYWORDS = ['quote', 'if', 'lambda', 'define', 'set!']

def evaluate(exp: Expression, env: Environment) -> Any:
 "Evaluate an expression in an environment."
 match exp:
 case int(x) | float(x):
 return x
 case Symbol(var):
 return env[var]
 case ['quote', x]:
 return x
 case ['if', test, consequence, alternative]:
 if evaluate(test, env):
 return evaluate(consequence, env)
 else:
 return evaluate(alternative, env)
 case ['lambda', [*parms], *body] if body:
 return Procedure(parms, body, env)
 case ['define', Symbol(name), value_exp]:
 env[name] = evaluate(value_exp, env)
 case ['define', [Symbol(name), *parms], *body] if body:
 env[name] = Procedure(parms, body, env)
 case ['set!', Symbol(name), value_exp]:
 env.change(name, evaluate(value_exp, env))
 case [func_exp, *args] if func_exp not in KEYWORDS:
 proc = evaluate(func_exp, env)
 values = [evaluate(arg, env) for arg in args]
 return proc(*values)
 case _:
 raise SyntaxError(lispstr(exp))

Let’s study each case clause and what it does. In some cases I added comments show‐
ing an S-expression that would match the pattern when parsed into a Python list.
Doctests extracted from examples_test.py demonstrate each case.

Evaluating numbers
 case int(x) | float(x):
 return x

Subject:
Instance of int or float.

Action:
Return value as is.

Pattern Matching in lis.py: A Case Study | 677

https://fpy.li/18-21

Example:
>>> from lis import parse, evaluate, standard_env
>>> evaluate(parse('1.5'), {})
1.5

Evaluating symbols
 case Symbol(var):
 return env[var]

Subject:
Instance of Symbol, i.e., a str used as an identifier.

Action:
Look up var in env and return its value.

Examples:
>>> evaluate(parse('+'), standard_env())
<built-in function add>
>>> evaluate(parse('ni!'), standard_env())
Traceback (most recent call last):
 ...
KeyError: 'ni!'

(quote …)

The quote special form treats atoms and lists as data instead of expressions to be
evaluated.

 # (quote (99 bottles of beer))
 case ['quote', x]:
 return x

Subject:
List starting with the symbol 'quote', followed by one expression x.

Action:
Return x without evaluating it.

Examples:
>>> evaluate(parse('(quote no-such-name)'), standard_env())
'no-such-name'
>>> evaluate(parse('(quote (99 bottles of beer))'), standard_env())
[99, 'bottles', 'of', 'beer']
>>> evaluate(parse('(quote (/ 10 0))'), standard_env())
['/', 10, 0]

Without quote, each expression in the test would raise an error:

678 | Chapter 18: with, match, and else Blocks

• no-such-name would be looked up in the environment, raising KeyError
• (99 bottles of beer) cannot be evaluated because the number 99 is not a
Symbol naming a special form, operator, or function

• (/ 10 0) would raise ZeroDivisionError

Why Languages Have Reserved Keywords
Although simple, quote cannot be implemented as a function in Scheme. Its special
power is to prevent the interpreter from evaluating (f 10) in the expression (quote
(f 10)): the result is simply a list with a Symbol and an int. In contrast, in a function
call like (abs (f 10)), the interpreter evaluates (f 10) before invoking abs. That’s
why quote is a reserved keyword: it must be handled as a special form.

In general, reserved keywords are needed:

• To introduce specialized evaluation rules, as in quote and lambda—which don’t
evaluate any of their subexpressions

• To change the control flow, as in if and function calls—which also have special
evaluation rules

• To manage the environment, as in define and set

This is also why Python, and programming languages in general, need reserved key‐
words. Think about Python’s def, if, yield, import, del, and what they do.

(if …)
 # (if (< x 0) 0 x)
 case ['if', test, consequence, alternative]:
 if evaluate(test, env):
 return evaluate(consequence, env)
 else:
 return evaluate(alternative, env)

Subject:
List starting with 'if' followed by three expressions: test, consequence, and
alternative.

Action:
Evaluate test:

• If true, evaluate consequence and return its value.
• Otherwise, evaluate alternative and return its value.

Pattern Matching in lis.py: A Case Study | 679

Examples:
>>> evaluate(parse('(if (= 3 3) 1 0))'), standard_env())
1
>>> evaluate(parse('(if (= 3 4) 1 0))'), standard_env())
0

The consequence and alternative branches must be single expressions. If more
than one expression is needed in a branch, you can combine them with (begin exp1
exp2…), provided as a function in lis.py—see Example 18-15.

(lambda …)

Scheme’s lambda form defines anonymous functions. It doesn’t suffer from the limi‐
tations of Python’s lambda: any function that can be written in Scheme can be written
using the (lambda …) syntax.

 # (lambda (a b) (/ (+ a b) 2))
 case ['lambda' [*parms], *body] if body:
 return Procedure(parms, body, env)

Subject:
List starting with 'lambda', followed by:

• List of zero or more parameter names.
• One or more expressions collected in body (the guard ensures that body is

not empty).

Action:
Create and return a new Procedure instance with the parameter names, the list
of expressions as the body, and the current environment.

Example:
>>> expr = '(lambda (a b) (* (/ a b) 100))'
>>> f = evaluate(parse(expr), standard_env())
>>> f # doctest: +ELLIPSIS
<lis.Procedure object at 0x...>
>>> f(15, 20)
75.0

The Procedure class implements the concept of a closure: a callable object holding
parameter names, a function body, and a reference to the environment in which the
function is defined. We’ll study the code for Procedure in a moment.

680 | Chapter 18: with, match, and else Blocks

(define …)

The define keyword is used in two different syntactic forms. The simplest is:

 # (define half (/ 1 2))
 case ['define', Symbol(name), value_exp]:
 env[name] = evaluate(value_exp, env)

Subject:
List starting with 'define', followed by a Symbol and an expression.

Action:
Evaluate the expression and put its value into env, using name as key.

Example:
>>> global_env = standard_env()
>>> evaluate(parse('(define answer (* 7 6))'), global_env)
>>> global_env['answer']
42

The doctest for this case creates a global_env so that we can verify that evaluate
puts answer into that Environment.

We can use that simple define form to create variables or to bind names to anony‐
mous functions, using (lambda …) as the value_exp.

Standard Scheme provides a shortcut for defining named functions. That’s the sec‐
ond define form:

 # (define (average a b) (/ (+ a b) 2))
 case ['define', [Symbol(name), *parms], *body] if body:
 env[name] = Procedure(parms, body, env)

Subject:
List starting with 'define', followed by:

• A list starting with a Symbol(name), followed by zero or more items collected
into a list named parms.

• One or more expressions collected in body (the guard ensures that body is
not empty).

Action:
• Create a new Procedure instance with the parameter names, the list of expres‐

sions as the body, and the current environment.
• Put the Procedure into env, using name as key.

The doctest in Example 18-18 defines a function named % that computes a percentage
and adds it to the global_env.

Pattern Matching in lis.py: A Case Study | 681

11 Assignment is one of the first features taught in many programming tutorials, but set! only appears on page
220 of the best known Scheme book, Structure and Interpretation of Computer Programs, 2nd ed., by Abelson
et al. (MIT Press), a.k.a. SICP or the “Wizard Book.” Coding in a functional style can take us very far without
the state changes that are typical of imperative and object-oriented programming.

Example 18-18. Defining a function named % that computes a percentage

>>> global_env = standard_env()
>>> percent = '(define (% a b) (* (/ a b) 100))'
>>> evaluate(parse(percent), global_env)
>>> global_env['%'] # doctest: +ELLIPSIS
<lis.Procedure object at 0x...>
>>> global_env['%'](170, 200)
85.0

After calling evaluate, we check that % is bound to a Procedure that takes two
numeric arguments and returns a percentage.

The pattern for the second define case does not enforce that the items in parms are
all Symbol instances. I’d have to check that before building the Procedure, but I
didn’t—to keep the code as easy to follow as Norvig’s.

(set! …)

The set! form changes the value of a previously defined variable.11

 # (set! n (+ n 1))
 case ['set!', Symbol(name), value_exp]:
 env.change(name, evaluate(value_exp, env))

Subject:
List starting with 'set!', followed by a Symbol and an expression.

Action:
Update the value of name in env with the result of evaluating the expression.

The Environment.change method traverses the chained environments from local to
global, and updates the first occurrence of name with the new value. If we were not
implementing the 'set!' keyword, we could use Python’s ChainMap as the Environ
ment type everywhere in this interpreter.

682 | Chapter 18: with, match, and else Blocks

https://fpy.li/18-22

Python’s nonlocal and Scheme’s set! Address the Same Issue
The use of the set! form is related to the use of the nonlocal keyword in Python:
declaring nonlocal x allows x = 10 to update a previously defined x variable outside
of the local scope. Without a nonlocal x declaration, x = 10 will always create a
local variable in Python, as we saw in “The nonlocal Declaration” on page 315.

Similarly, (set! x 10) updates a previously defined x that may be outside of the local
environment of the function. In contrast, the variable x in (define x 10) is always a
local variable, created or updated in the local environment.

Both nonlocal and (set! …) are needed to update program state held in variables
within a closure. Example 9-13 demonstrated the use of nonlocal to implement a
function to compute a running average, holding an item count and total in a clo‐
sure. Here is that same idea, written in the Scheme subset of lis.py:

(define (make-averager)
 (define count 0)
 (define total 0)
 (lambda (new-value)
 (set! count (+ count 1))
 (set! total (+ total new-value))
 (/ total count)
)
)

(define avg (make-averager))

(avg 10)

(avg 11)

(avg 15)

Creates a new closure with the inner function defined by lambda, and the vari‐
ables count and total initialized to 0; binds the closure to avg.

Returns 10.0.

Returns 10.5.

Returns 12.0.

The preceding code is one of the tests in lispy/py3.10/examples_test.py.

Now we get to a function call.

Pattern Matching in lis.py: A Case Study | 683

https://fpy.li/18-18

Function call
 # (gcd (* 2 105) 84)
 case [func_exp, *args] if func_exp not in KEYWORDS:
 proc = evaluate(func_exp, env)
 values = [evaluate(arg, env) for arg in args]
 return proc(*values)

Subject:
List with one or more items.

The guard ensures that func_exp is not one of ['quote', 'if', 'define',
'lambda', 'set!']—listed right before evaluate in Example 18-17.

The pattern matches any list with one or more expressions, binding the first
expression to func_exp and the rest to args as a list, which may be empty.

Action:
• Evaluate func_exp to obtain a function proc.
• Evaluate each item in args to build a list of argument values.
• Call proc with the values as separate arguments, returning the result.

Example:
>>> evaluate(parse('(% (* 12 14) (- 500 100))'), global_env)
42.0

This doctest continues from Example 18-18: it assumes global_env has a function
named %. The arguments given to % are arithmetic expressions, to emphasize that the
arguments are evaluated before the function is called.

The guard in this case is needed because [func_exp, *args] matches any sequence
subject with one or more items. However, if func_exp is a keyword, and the subject
did not match any previous case, then it is really a syntax error.

Catch syntax errors

If the subject exp does not match any of the previous cases, the catch-all case raises a
SyntaxError:

 case _:
 raise SyntaxError(lispstr(exp))

Here is an example of a malformed (lambda …) reported as a SyntaxError:

>>> evaluate(parse('(lambda is not like this)'), standard_env())
Traceback (most recent call last):
 ...
SyntaxError: (lambda is not like this)

684 | Chapter 18: with, match, and else Blocks

If the case for function call did not have that guard rejecting keywords, the (lambda
is not like this) expression would be handled as a function call, which would
raise KeyError because 'lambda' is not part of the environment—just like lambda is
not a Python built-in function.

Procedure: A Class Implementing a Closure
The Procedure class could very well be named Closure, because that’s what it repre‐
sents: a function definition together with an environment. The function definition
includes the name of the parameters and the expressions that make up the body of
the function. The environment is used when the function is called to provide the val‐
ues of the free variables: variables that appear in the body of the function but are not
parameters, local variables, or global variables. We saw the concepts of closure and
free variable in “Closures” on page 311.

We learned how to use closures in Python, but now we can dive deeper and see how a
closure is implemented in lis.py:

class Procedure:
 "A user-defined Scheme procedure."

 def __init__(
 self, parms: list[Symbol], body: list[Expression], env: Environment
):
 self.parms = parms
 self.body = body
 self.env = env

 def __call__(self, *args: Expression) -> Any:
 local_env = dict(zip(self.parms, args))
 env = Environment(local_env, self.env)
 for exp in self.body:
 result = evaluate(exp, env)
 return result

Called when a function is defined by the lambda or define forms.

Save the parameter names, body expressions, and environment for later use.

Called by proc(*values) in the last line of the case [func_exp, *args] clause.

Build local_env mapping self.parms as local variable names, and the given
args as values.

Build a new combined env, putting local_env first, and then self.env—the
environment that was saved when the function was defined.

Pattern Matching in lis.py: A Case Study | 685

12 The official Unicode name for λ (U+03BB) is GREEK SMALL LETTER LAMDA. This is not a typo: the char‐
acter is named “lamda” without the “b” in the Unicode database. According to the English Wikipedia article
“Lambda”, the Unicode Consortium adopted that spelling because of “preferences expressed by the Greek
National Body.”

Iterate over each expression in self.body, evaluating it in the combined env.

Return the result of the last expression evaluated.

There are a couple of simple functions after evaluate in lis.py: run reads a complete
Scheme program and executes it, and main calls run or repl, depending on the com‐
mand line—similar to what Python does. I will not describe those functions because
there’s nothing new in them. My goals were to share with you the beauty of Norvig’s
little interpreter, to give more insight into how closures work, and to show how
match/case is a great addition to Python.

To wrap up this extended section on pattern matching, let’s formalize the concept of
an OR-pattern.

Using OR-patterns
A series of patterns separated by | is an OR-pattern: it succeeds if any of the subpat‐
terns succeed. The pattern in “Evaluating numbers” on page 677 is an OR-pattern:

 case int(x) | float(x):
 return x

All subpatterns in an OR-pattern must use the same variables. This restriction is nec‐
essary to ensure that the variables are available to the guard expression and the case
body, regardless of the subpattern that matched.

In the context of a case clause, the | operator has a special mean‐
ing. It does not trigger the __or__ special method, which handles
expressions like a | b in other contexts, where it is overloaded to
perform operations such as set union or integer bitwise-or,
depending on the operands.

An OR-pattern is not restricted to appear at the top level of a pattern. You can also
use | in subpatterns. For example, if we wanted lis.py to accept the Greek letter λ
(lambda)12 as well as the lambda keyword, we can rewrite the pattern like this:

 # (λ (a b) (/ (+ a b) 2))
 case ['lambda' | 'λ', [*parms], *body] if body:
 return Procedure(parms, body, env)

686 | Chapter 18: with, match, and else Blocks

https://fpy.li/18-26
https://fpy.li/18-24
https://fpy.li/18-25

Now we can move to the third and last subject of this chapter: the unusual places
where an else clause may appear in Python.

Do This, Then That: else Blocks Beyond if
This is no secret, but it is an underappreciated language feature: the else clause can
be used not only in if statements but also in for, while, and try statements.

The semantics of for/else, while/else, and try/else are closely related, but very
different from if/else. Initially, the word else actually hindered my understanding
of these features, but eventually I got used to it.

Here are the rules:

for

The else block will run only if and when the for loop runs to completion (i.e.,
not if the for is aborted with a break).

while

The else block will run only if and when the while loop exits because the condi‐
tion became falsy (i.e., not if the while is aborted with a break).

try

The else block will run only if no exception is raised in the try block. The offi‐
cial docs also state: “Exceptions in the else clause are not handled by the preced‐
ing except clauses.”

In all cases, the else clause is also skipped if an exception or a return, break, or
continue statement causes control to jump out of the main block of the compound
statement.

I think else is a very poor choice for the keyword in all cases
except if. It implies an excluding alternative, like, “Run this loop,
otherwise do that,” but the semantics for else in loops is the oppo‐
site: “Run this loop, then do that.” This suggests then as a better
keyword—which would also make sense in the try context: “Try
this, then do that.” However, adding a new keyword is a breaking
change to the language—not an easy decision to make.

Using else with these statements often makes the code easier to read and saves the
trouble of setting up control flags or coding extra if statements.

The use of else in loops generally follows the pattern of this snippet:

for item in my_list:
 if item.flavor == 'banana':

Do This, Then That: else Blocks Beyond if | 687

https://fpy.li/18-27
https://fpy.li/18-27

 break
else:
 raise ValueError('No banana flavor found!')

In the case of try/except blocks, else may seem redundant at first. After all, the
after_call() in the following snippet will run only if the dangerous_call() does
not raise an exception, correct?

try:
 dangerous_call()
 after_call()
except OSError:
 log('OSError...')

However, doing so puts the after_call() inside the try block for no good reason.
For clarity and correctness, the body of a try block should only have the statements
that may generate the expected exceptions. This is better:

try:
 dangerous_call()
except OSError:
 log('OSError...')
else:
 after_call()

Now it’s clear that the try block is guarding against possible errors in
dangerous_call() and not in after_call(). It’s also explicit that after_call() will
only execute if no exceptions are raised in the try block.

In Python, try/except is commonly used for control flow, and not just for error
handling. There’s even an acronym/slogan for that documented in the official Python
glossary:

EAFP
Easier to ask for forgiveness than permission. This common Python coding style
assumes the existence of valid keys or attributes and catches exceptions if the
assumption proves false. This clean and fast style is characterized by the presence
of many try and except statements. The technique contrasts with the LBYL style
common to many other languages such as C.

The glossary then defines LBYL:

LBYL
Look before you leap. This coding style explicitly tests for pre-conditions before
making calls or lookups. This style contrasts with the EAFP approach and is char‐
acterized by the presence of many if statements. In a multi-threaded environment,
the LBYL approach can risk introducing a race condition between “the looking”
and “the leaping.” For example, the code, if key in mapping: return mapping[key]
can fail if another thread removes key from mapping after the test, but before the
lookup. This issue can be solved with locks or by using the EAFP approach.

688 | Chapter 18: with, match, and else Blocks

https://fpy.li/18-28
https://fpy.li/18-28

13 Watching the discussion in the python-dev mailing list I thought one reason why else was rejected was the
lack of consensus on how to indent it within match: should else be indented at the same level as match, or at
the same level as case?

14 See slide 21 in “Python is Awesome”.

Given the EAFP style, it makes even more sense to know and use else blocks well in
try/except statements.

When the match statement was discussed, some people (including
me) thought it should also have an else clause. In the end it was
decided that it wasn’t needed because case _: does the same job.13

Now let’s summarize the chapter.

Chapter Summary
This chapter started with context managers and the meaning of the with statement,
quickly moving beyond its common use to automatically close opened files. We
implemented a custom context manager: the LookingGlass class with the
__enter__/__exit__ methods, and saw how to handle exceptions in the __exit__
method. A key point that Raymond Hettinger made in his PyCon US 2013 keynote is
that with is not just for resource management; it’s a tool for factoring out common
setup and teardown code, or any pair of operations that need to be done before and
after another procedure.14

We reviewed functions in the contextlib standard library module. One of them, the
@contextmanager decorator, makes it possible to implement a context manager using
a simple generator with one yield—a leaner solution than coding a class with at least
two methods. We reimplemented the LookingGlass as a looking_glass generator
function, and discussed how to do exception handling when using @contextmanager.

Then we studied Peter Norvig’s elegant lis.py, a Scheme interpreter written in
idiomatic Python, refactored to use match/case in evaluate—the function at the
core of any interpreter. Understanding how evaluate works required reviewing a lit‐
tle bit of Scheme, a parser for S-expressions, a simple REPL, and the construction of
nested scopes through an Environment subclass of collection.ChainMap. In the end,
lis.py became a vehicle to explore much more than pattern matching. It shows how
the different parts of an interpreter work together, illuminating core features of
Python itself: why reserved keywords are necessary, how scoping rules work, and how
closures are built and used.

Chapter Summary | 689

https://fpy.li/18-29

Further Reading
Chapter 8, “Compound Statements,” in The Python Language Reference says pretty
much everything there is to say about else clauses in if, for, while, and try state‐
ments. Regarding Pythonic usage of try/except, with or without else, Raymond
Hettinger has a brilliant answer to the question “Is it a good practice to use try-
except-else in Python?” in StackOverflow. Python in a Nutshell, 3rd ed., by Martelli et
al., has a chapter about exceptions with an excellent discussion of the EAFP style,
crediting computing pioneer Grace Hopper for coining the phrase, “It’s easier to ask
forgiveness than permission.”

The Python Standard Library, Chapter 4, “Built-in Types,” has a section devoted to
“Context Manager Types”. The __enter__/__exit__ special methods are also docu‐
mented in The Python Language Reference in “With Statement Context Managers”.
Context managers were introduced in PEP 343—The “with” Statement.

Raymond Hettinger highlighted the with statement as a “winning language feature”
in his PyCon US 2013 keynote. He also showed some interesting applications of con‐
text managers in his talk, “Transforming Code into Beautiful, Idiomatic Python”, at
the same conference.

Jeff Preshing’s blog post “The Python with Statement by Example” is interesting for
the examples using context managers with the pycairo graphics library.

The contextlib.ExitStack class is based on an original idea by Nikolaus Rath, who
wrote a short post explaining why its useful: “On the Beauty of Python’s ExitStack”.
In that text, Rath submits that ExitStack is similar but more flexible than the defer
statement in Go—which I think is one of the best ideas in that language.

Beazley and Jones devised context managers for very different purposes in their
Python Cookbook, 3rd ed. “Recipe 8.3. Making Objects Support the Context-
Management Protocol” implements a LazyConnection class whose instances are con‐
text managers that open and close network connections automatically in with blocks.
“Recipe 9.22. Defining Context Managers the Easy Way” introduces a context man‐
ager for timing code, and another for making transactional changes to a list object:
within the with block, a working copy of the list instance is made, and all changes
are applied to that working copy. Only when the with block completes without an
exception, the working copy replaces the original list. Simple and ingenious.

Peter Norvig describes his small Scheme interpreters in the posts “(How to Write a
(Lisp) Interpreter (in Python))” and “(An ((Even Better) Lisp) Interpreter (in
Python))”. The code for lis.py and lispy.py is the norvig/pytudes repository. My repos‐
itory fluentpython/lispy includes the mylis forks of lis.py, updated to Python 3.10, with
a nicer REPL, command-line integration, examples, more tests, and references for

690 | Chapter 18: with, match, and else Blocks

https://fpy.li/18-27
https://fpy.li/18-31
https://fpy.li/18-31
https://fpy.li/pynut3
https://fpy.li/18-32
https://fpy.li/18-33
https://fpy.li/pep343
https://fpy.li/18-29
https://fpy.li/18-35
https://fpy.li/18-36
https://fpy.li/18-37
https://fpy.li/pycook3
https://fpy.li/18-38
https://fpy.li/18-38
https://fpy.li/18-39
https://fpy.li/18-39
https://fpy.li/18-40
https://fpy.li/18-41

learning more about Scheme. The best Scheme dialect and environment to learn and
experiment is Racket.

Soapbox

Factoring Out the Bread

In his PyCon US 2013 keynote, “What Makes Python Awesome”, Raymond Het‐
tinger says when he first saw the with statement proposal he thought it was “a little
bit arcane.” Initially, I had a similar reaction. PEPs are often hard to read, and PEP
343 is typical in that regard.

Then—Hettinger told us—he had an insight: subroutines are the most important
invention in the history of computer languages. If you have sequences of operations
like A;B;C and P;B;Q, you can factor out B in a subroutine. It’s like factoring out the
filling in a sandwich: using tuna with different breads. But what if you want to factor
out the bread, to make sandwiches with wheat bread, using a different filling each
time? That’s what the with statement offers. It’s the complement of the subroutine.
Hettinger went on to say:

The with statement is a very big deal. I encourage you to go out and take this tip of
the iceberg and drill deeper. You can probably do profound things with the with
statement. The best uses of it have not been discovered yet. I expect that if you make
good use of it, it will be copied into other languages and all future languages will have
it. You can be part of discovering something almost as profound as the invention of
the subroutine itself.

Hettinger admits he is overselling the with statement. Nevertheless, it is a very useful
feature. When he used the sandwich analogy to explain how with is the complement
to the subroutine, many possibilities opened up in my mind.

If you need to convince anyone that Python is awesome, you should watch Het‐
tinger’s keynote. The bit about context managers is from 23:00 to 26:15. But the
entire keynote is excellent.

Efficient Recursion with Proper Tail Calls

Standard Scheme implementations are required to provide proper tail calls (PTC), to
make iteration through recursion a practical alternative to while loops in imperative
languages. Some writers refer to PTC as tail call optimization (TCO); for others, TCO
is something different. For more details, see “Tail call” on Wikipedia and “Tail call
optimization in ECMAScript 6”.

A tail call is when a function returns the result of a function call, which may be the
same function or not. The gcd examples in Example 18-10 and Example 18-11 make
(recursive) tail calls in the falsy branch of the if.

On the other hand, this factorial does not make a tail call:

Further Reading | 691

https://fpy.li/18-42
https://fpy.li/18-1
https://fpy.li/18-44
https://fpy.li/18-45
https://fpy.li/18-45

def factorial(n):
 if n < 2:
 return 1
 return n * factorial(n - 1)

The call to factorial in the last line is not a tail call because the return value is not
the result of the recursive call: the result is multiplied by n before it is returned.

Here is an alternative that uses a tail call, and is therefore tail recursive:

def factorial_tc(n, product=1):
 if n < 1:
 return product
 return factorial_tc(n - 1, product * n)

Python does not have PTC, so there’s no advantage in writing tail recursive functions.
In this case, the first version is shorter and more readable in my opinion. For real-life
uses, don’t forget that Python has math.factorial, written in C without recursion.
The point is that, even in languages that implement PTC, it does not benefit every
recursive function, only those that are carefully written to make tail calls.

If PTC is supported by the language, when the interpreter sees a tail call, it jumps into
the body of the called function without creating a new stack frame, saving memory.
There are also compiled languages that implement PTC, sometimes as an optimiza‐
tion that can be toggled.

There is no universal consensus about the definition of TCO or the value of PTC in
languages that were not designed as functional languages from the ground up, like
Python or JavaScript. In functional languages, PTC is an expected feature, not merely
an optimization that is nice to have. If a language has no iteration mechanism other
than recursion, then PTC is necessary for practical usage. Norvig’s lis.py does not
implement PTC, but his more elaborate lispy.py interpreter does.

The Case Against Proper Tail Calls in Python and JavaScript

CPython does not implement PTC, and probably never will. Guido van Rossum
wrote “Final Words on Tail Calls” to explain why. To summarize, here is a key pas‐
sage from his post:

Personally, I think it is a fine feature for some languages, but I don’t think it fits
Python: the elimination of stack traces for some calls but not others would certainly
confuse many users, who have not been raised with tail call religion but might have
learned about call semantics by tracing through a few calls in a debugger.

In 2015, PTC was included in the ECMAScript 6 standard for JavaScript. As of Octo‐
ber 2021, the interpreter in WebKit implements it. WebKit is used by Safari. The JS
interpreters in every other major browser don’t have PTC, and neither does Node.js,
as it relies on the V8 engine that Google maintains for Chrome. Transpilers and poly‐
fills targeting JS, like TypeScript, ClojureScript, and Babel, don’t support PTC either,
according to this “ECMAScript 6 compatibility table”.

692 | Chapter 18: with, match, and else Blocks

https://fpy.li/18-46
https://fpy.li/18-16
https://fpy.li/18-48
https://fpy.li/18-49
https://fpy.li/18-50

I’ve seen several explanations for the rejection of PTC by the implementers, but the
most common is the same that Guido van Rossum mentioned: PTC makes debugging
harder for everyone, while benefiting only a minority of people who’d rather use
recursion for iteration. For details, see “What happened to proper tail calls in Java‐
Script?” by Graham Marlow.

There are cases when recursion is the best solution, even in Python without PTC. In a
previous post on the subject, Guido wrote:

[…] a typical Python implementation allows 1000 recursions, which is plenty for
non-recursively written code and for code that recourses to traverse, for example, a
typical parse tree, but not enough for a recursively written loop over a large list.

I agree with Guido and the majority of JS implementers: PTC is not a good fit for
Python or JavaScript. The lack of PTC is the main restriction for writing Python pro‐
grams in a functional style—more than the limited lambda syntax.

If you are curious to see how PTC works in an interpreter with less features (and less
code) than Norvig’s lispy.py, check out mylis_2. The trick starts with the infinite loop
in evaluate and the code in the case for function calls: that combination makes the
intepreter jump into the body of the next Procedure without calling evaluate recur‐
sively during a tail call. Those little interpreters demonstrate the power of abstraction:
even though Python does not implement PTC, it’s possible and not very hard to write
an interpreter, in Python, that does implement PTC. I learned how to do it reading
Peter Norvig’s code. Thanks for sharing it, professor!

Norvig’s Take on evaluate() with Pattern Matching

I shared the code for the Python 3.10 version of lis.py with Peter Norvig. He liked the
example using pattern matching, but suggested a different solution: instead of the
guards I wrote, he would have exactly one case per keyword, and have tests within
each case, to provide more specific SyntaxError messages—for example, when a
body is empty. This would also make the guard in case [func_exp, *args] if
func_exp not in KEYWORDS: unnecessary, as every keyword would be handled
before the case for function calls.

I’ll probably follow Norvig’s advice when I add more functionality to mylis. But the
way I structured evaluate in Example 18-17 has some didactic advantages for this
book: the example parallels the implementation with if/elif/… (Example 2-11), the
case clauses demonstrate more features of pattern matching, and the code is more
concise.

Further Reading | 693

https://fpy.li/18-51
https://fpy.li/18-51
https://fpy.li/18-52
https://fpy.li/18-53
https://fpy.li/18-54

1 Slide 8 of the talk “Concurrency Is Not Parallelism”.

2 I studied and worked with Prof. Imre Simon, who liked to say there are two major sins in science: using dif‐
ferent words to mean the same thing and using one word to mean different things. Imre Simon (1943–2009)
was a pioneer of computer science in Brazil who made seminal contributions to Automata Theory and started
the field of Tropical Mathematics. He was also an advocate of free software and free culture.

CHAPTER 19

Concurrency Models in Python

Concurrency is about dealing with lots of things at once.
Parallelism is about doing lots of things at once.
Not the same, but related.
One is about structure, one is about execution.
Concurrency provides a way to structure a solution to solve a problem that may (but
not necessarily) be parallelizable.

—Rob Pike, co-inventor of the Go language1

This chapter is about how to make Python deal with “lots of things at once.” This
may involve concurrent or parallel programming—even academics who are keen on
jargon disagree on how to use those terms. I will adopt Rob Pike’s informal defini‐
tions in this chapter’s epigraph, but note that I’ve found papers and books that claim
to be about parallel computing but are mostly about concurrency.2

Parallelism is a special case of concurrency, in Pike’s view. All parallel systems are
concurrent, but not all concurrent systems are parallel. In the early 2000s we used
single-core machines that handled 100 processes concurrently on GNU Linux. A
modern laptop with 4 CPU cores is routinely running more than 200 processes at any
given time under normal, casual use. To execute 200 tasks in parallel, you’d need
200 cores. So, in practice, most computing is concurrent and not parallel. The OS

695

https://fpy.li/19-1

3 This section was suggested by my friend Bruce Eckel—author of books about Kotlin, Scala, Java, and C++.

manages hundreds of processes, making sure each has an opportunity to make pro‐
gress, even if the CPU itself can’t do more than four things at once.

This chapter assumes no prior knowledge of concurrent or parallel programming.
After a brief conceptual introduction, we will study simple examples to introduce and
compare Python’s core packages for concurrent programming: threading, multi
processing, and asyncio.

The last 30% of the chapter is a high-level overview of third-party tools, libraries,
application servers, and distributed task queues—all of which can enhance the per‐
formance and scalability of Python applications. These are all important topics, but
beyond the scope of a book focused on core Python language features. Nevertheless, I
felt it was important to address these themes in this second edition of Fluent Python,
because Python’s fitness for concurrent and parallel computing is not limited to what
the standard library provides. That’s why YouTube, DropBox, Instagram, Reddit, and
others were able to achieve web scale when they started, using Python as their pri‐
mary language—despite persistent claims that “Python doesn’t scale.”

What’s New in This Chapter
This chapter is new in the second edition of Fluent Python. The spinner examples in
“A Concurrent Hello World” on page 701 previously were in the chapter about asyncio.
Here they are improved, and provide the first illustration of Python’s three
approaches to concurrency: threads, processes, and native coroutines.

The remaining content is new, except for a few paragraphs that originally appeared in
the chapters on concurrent.futures and asyncio.

“Python in the Multicore World” on page 725 is different from the rest of the book:
there are no code examples. The goal is to mention important tools that you may
want to study to achieve high-performance concurrency and parallelism beyond
what’s possible with Python’s standard library.

The Big Picture
There are many factors that make concurrent programming hard, but I want to touch
on the most basic factor: starting threads or processes is easy enough, but how do you
keep track of them?3

When you call a function, the calling code is blocked until the function returns. So
you know when the function is done, and you can easily get the value it returned. If

696 | Chapter 19: Concurrency Models in Python

the function raises an exception, the calling code can surround the call site with try/
except to catch the error.

Those familiar options are not available when you start a thread or process: you don’t
automatically know when it’s done, and getting back results or errors requires setting
up some communication channel, such as a message queue.

Additionally, starting a thread or a process is not cheap, so you don’t want to start
one of them just to perform a single computation and quit. Often you want to amor‐
tize the startup cost by making each thread or process into a “worker” that enters a
loop and stands by for inputs to work on. This further complicates communications
and introduces more questions. How do you make a worker quit when you don’t
need it anymore? And how do you make it quit without interrupting a job partway,
leaving half-baked data and unreleased resources—like open files? Again the usual
answers involve messages and queues.

A coroutine is cheap to start. If you start a coroutine using the await keyword, it’s
easy to get a value returned by it, it can be safely cancelled, and you have a clear site
to catch exceptions. But coroutines are often started by the asynchronous framework,
and that can make them as hard to monitor as threads or processes.

Finally, Python coroutines and threads are not suitable for CPU-intensive tasks, as
we’ll see.

That’s why concurrent programming requires learning new concepts and coding pat‐
terns. Let’s first make sure we are on the same page regarding some core concepts.

A Bit of Jargon
Here are some terms I will use for the rest of this chapter and the next two:

Concurrency
The ability to handle multiple pending tasks, making progress one at a time or in
parallel (if possible) so that each of them eventually succeeds or fails. A single-
core CPU is capable of concurrency if it runs an OS scheduler that interleaves the
execution of the pending tasks. Also known as multitasking.

Parallelism
The ability to execute multiple computations at the same time. This requires a
multicore CPU, multiple CPUs, a GPU, or multiple computers in a cluster.

Execution unit
General term for objects that execute code concurrently, each with independent
state and call stack. Python natively supports three kinds of execution units: pro‐
cesses, threads, and coroutines.

A Bit of Jargon | 697

https://fpy.li/19-2

Process
An instance of a computer program while it is running, using memory and a slice
of the CPU time. Modern desktop operating systems routinely manage hundreds
of processes concurrently, with each process isolated in its own private memory
space. Processes communicate via pipes, sockets, or memory mapped files—all of
which can only carry raw bytes. Python objects must be serialized (converted)
into raw bytes to pass from one process to another. This is costly, and not all
Python objects are serializable. A process can spawn subprocesses, each called a
child process. These are also isolated from each other and from the parent. Pro‐
cesses allow preemptive multitasking: the OS scheduler preempts—i.e., suspends
—each running process periodically to allow other processes to run. This means
that a frozen process can’t freeze the whole system—in theory.

Thread
An execution unit within a single process. When a process starts, it uses a single
thread: the main thread. A process can create more threads to operate concur‐
rently by calling operating system APIs. Threads within a process share the same
memory space, which holds live Python objects. This allows easy data sharing
between threads, but can also lead to corrupted data when more than one thread
updates the same object concurrently. Like processes, threads also enable pre‐
emptive multitasking under the supervision of the OS scheduler. A thread con‐
sumes less resources than a process doing the same job.

Coroutine
A function that can suspend itself and resume later. In Python, classic coroutines
are built from generator functions, and native coroutines are defined with async
def. “Classic Coroutines” on page 641 introduced the concept, and Chapter 21
covers the use of native coroutines. Python coroutines usually run within a single
thread under the supervision of an event loop, also in the same thread. Asynchro‐
nous programming frameworks such as asyncio, Curio, or Trio provide an event
loop and supporting libraries for nonblocking, coroutine-based I/O. Coroutines
support cooperative multitasking: each coroutine must explicitly cede control
with the yield or await keyword, so that another may proceed concurrently (but
not in parallel). This means that any blocking code in a coroutine blocks the exe‐
cution of the event loop and all other coroutines—in contrast with the preemp‐
tive multitasking supported by processes and threads. On the other hand, each
coroutine consumes less resources than a thread or process doing the same job.

Queue
A data structure that lets us put and get items, usually in FIFO order: first in, first
out. Queues allow separate execution units to exchange application data and con‐
trol messages, such as error codes and signals to terminate. The implementation
of a queue varies according to the underlying concurrency model: the queue

698 | Chapter 19: Concurrency Models in Python

4 Call sys.getswitchinterval() to get the interval; change it with sys.setswitchinterval(s).

package in Python’s standard library provides queue classes to support threads,
while the multiprocessing and asyncio packages implement their own queue
classes. The queue and asyncio packages also include queues that are not FIFO:
LifoQueue and PriorityQueue.

Lock
An object that execution units can use to synchronize their actions and avoid
corrupting data. While updating a shared data structure, the running code
should hold an associated lock. This signals other parts of the program to wait
until the lock is released before accessing the same data structure. The simplest
type of lock is also known as a mutex (for mutual exclusion). The implementa‐
tion of a lock depends on the underlying concurrency model.

Contention
Dispute over a limited asset. Resource contention happens when multiple execu‐
tion units try to access a shared resource—such as a lock or storage. There’s also
CPU contention, when compute-intensive processes or threads must wait for the
OS scheduler to give them a share of the CPU time.

Now let’s use some of that jargon to understand concurrency support in Python.

Processes, Threads, and Python’s Infamous GIL
Here is how the concepts we just saw apply to Python programming, in 10 points:

1. Each instance of the Python interpreter is a process. You can start additional
Python processes using the multiprocessing or concurrent.futures libraries.
Python’s subprocess library is designed to launch processes to run external pro‐
grams, regardless of the languages used to write them.

2. The Python interpreter uses a single thread to run the user’s program and the
memory garbage collector. You can start additional Python threads using the
threading or concurrent.futures libraries.

3. Access to object reference counts and other internal interpreter state is con‐
trolled by a lock, the Global Interpreter Lock (GIL). Only one Python thread can
hold the GIL at any time. This means that only one thread can execute Python
code at any time, regardless of the number of CPU cores.

4. To prevent a Python thread from holding the GIL indefinitely, Python’s bytecode
interpreter pauses the current Python thread every 5ms by default,4 releasing the
GIL. The thread can then try to reacquire the GIL, but if there are other threads
waiting for it, the OS scheduler may pick one of them to proceed.

A Bit of Jargon | 699

https://fpy.li/19-3
https://fpy.li/19-4

5 A syscall is a call from user code to a function of the operating system kernel. I/O, timers, and locks are some
of the kernel services available through syscalls. To learn more, read the Wikipedia “System call” article.

6 The zlib and bz2 modules are specifically mentioned in a python-dev message by Antoine Pitrou, who con‐
tributed the time-slicing GIL logic to Python 3.2.

7 Source: slide 106 of Beazley’s “Generators: The Final Frontier” tutorial.

8 Source: last paragraph of the “Thread objects” section.

5. When we write Python code, we have no control over the GIL. But a built-in
function or an extension written in C—or any language that interfaces at the
Python/C API level—can release the GIL while running time-consuming tasks.

6. Every Python standard library function that makes a syscall5 releases the GIL.
This includes all functions that perform disk I/O, network I/O, and
time.sleep(). Many CPU-intensive functions in the NumPy/SciPy libraries, as
well as the compressing/decompressing functions from the zlib and bz2 mod‐
ules, also release the GIL.6

7. Extensions that integrate at the Python/C API level can also launch other non-
Python threads that are not affected by the GIL. Such GIL-free threads generally
cannot change Python objects, but they can read from and write to the memory
underlying objects that support the buffer protocol, such as bytearray,
array.array, and NumPy arrays.

8. The effect of the GIL on network programming with Python threads is relatively
small, because the I/O functions release the GIL, and reading or writing to the
network always implies high latency—compared to reading and writing to mem‐
ory. Consequently, each individual thread spends a lot of time waiting anyway,
so their execution can be interleaved without major impact on the overall
throughput. That’s why David Beazley says: “Python threads are great at doing
nothing.”7

9. Contention over the GIL slows down compute-intensive Python threads.
Sequential, single-threaded code is simpler and faster for such tasks.

10. To run CPU-intensive Python code on multiple cores, you must use multiple
Python processes.

Here is a good summary from the threading module documentation:8

CPython implementation detail: In CPython, due to the Global Interpreter Lock,
only one thread can execute Python code at once (even though certain performance-
oriented libraries might overcome this limitation). If you want your application to
make better use of the computational resources of multicore machines, you are advised
to use multiprocessing or concurrent.futures.ProcessPoolExecutor. However,

700 | Chapter 19: Concurrency Models in Python

https://fpy.li/19-5
https://fpy.li/19-6
https://fpy.li/19-7
https://fpy.li/19-8
https://fpy.li/pep3118

9 Unicode has lots of characters useful for simple animations, like the Braille patterns for example. I used the
ASCII characters "\|/-" to keep the examples simple.

threading is still an appropriate model if you want to run multiple I/O-bound tasks
simultaneously.

The previous paragraph starts with “CPython implementation detail” because the
GIL is not part of the Python language definition. The Jython and IronPython imple‐
mentations don’t have a GIL. Unfortunately, both are lagging behind—still tracking
Python 2.7. The highly performant PyPy interpreter also has a GIL in its 2.7 and 3.7
versions—the latest as of June 2021.

This section did not mention coroutines, because by default they
share the same Python thread among themselves and with the
supervising event loop provided by an asynchronous framework,
therefore the GIL does not affect them. It is possible to use multiple
threads in an asynchronous program, but the best practice is that
one thread runs the event loop and all coroutines, while additional
threads carry out specific tasks. This will be explained in “Delegat‐
ing Tasks to Executors” on page 797.

Enough concepts for now. Let’s see some code.

A Concurrent Hello World
During a discussion about threads and how to avoid the GIL, Python contributor
Michele Simionato posted an example that is like a concurrent “Hello World”: the
simplest program to show how Python can “walk and chew gum.”

Simionato’s program uses multiprocessing, but I adapted it to introduce threading
and asyncio as well. Let’s start with the threading version, which may look familiar
if you’ve studied threads in Java or C.

Spinner with Threads
The idea of the next few examples is simple: start a function that blocks for 3 seconds
while animating characters in the terminal to let the user know that the program is
“thinking” and not stalled.

The script makes an animated spinner displaying each character in the string "\|/-"
in the same screen position.9 When the slow computation finishes, the line with the
spinner is cleared and the result is shown: Answer: 42.

A Concurrent Hello World | 701

https://fpy.li/19-11
https://fpy.li/19-9
https://fpy.li/19-10

Figure 19-1 shows the output of two versions of the spinning example: first with
threads, then with coroutines. If you’re away from the computer, imagine the \ in the
last line is spinning.

Figure 19-1. The scripts spinner_thread.py and spinner_async.py produce similar out‐
put: the repr of a spinner object and the text “Answer: 42”. In the screenshot, spin‐
ner_async.py is still running, and the animated message “/ thinking!” is shown; that
line will be replaced by “Answer: 42” after 3 seconds.

Let’s review the spinner_thread.py script first. Example 19-1 lists the first two func‐
tions in the script, and Example 19-2 shows the rest.

Example 19-1. spinner_thread.py: the spin and slow functions

import itertools
import time
from threading import Thread, Event

def spin(msg: str, done: Event) -> None:
 for char in itertools.cycle(r'\|/-'):
 status = f'\r{char} {msg}'
 print(status, end='', flush=True)
 if done.wait(.1):
 break
 blanks = ' ' * len(status)
 print(f'\r{blanks}\r', end='')

def slow() -> int:
 time.sleep(3)
 return 42

This function will run in a separate thread. The done argument is an instance of
threading.Event, a simple object to synchronize threads.

This is an infinite loop because itertools.cycle yields one character at a time,
cycling through the string forever.

The trick for text-mode animation: move the cursor back to the start of the line
with the carriage return ASCII control character ('\r').

702 | Chapter 19: Concurrency Models in Python

The Event.wait(timeout=None) method returns True when the event is set by
another thread; if the timeout elapses, it returns False. The .1s timeout sets the
“frame rate” of the animation to 10 FPS. If you want the spinner to go faster, use
a smaller timeout.

Exit the infinite loop.

Clear the status line by overwriting with spaces and moving the cursor back to
the beginning.

slow() will be called by the main thread. Imagine this is a slow API call over the
network. Calling sleep blocks the main thread, but the GIL is released so the
spinner thread can proceed.

The first important insight of this example is that time.sleep()
blocks the calling thread but releases the GIL, allowing other
Python threads to run.

The spin and slow functions will execute concurrently. The main thread—the only
thread when the program starts—will start a new thread to run spin and then call
slow. By design, there is no API for terminating a thread in Python. You must send it
a message to shut down.

The threading.Event class is Python’s simplest signalling mechanism to coordinate
threads. An Event instance has an internal boolean flag that starts as False. Calling
Event.set() sets the flag to True. While the flag is false, if a thread calls
Event.wait(), it is blocked until another thread calls Event.set(), at which time
Event.wait() returns True. If a timeout in seconds is given to Event.wait(s), this
call returns False when the timeout elapses, or returns True as soon as Event.set()
is called by another thread.

The supervisor function, listed in Example 19-2, uses an Event to signal the spin
function to exit.

Example 19-2. spinner_thread.py: the supervisor and main functions

def supervisor() -> int:
 done = Event()
 spinner = Thread(target=spin, args=('thinking!', done))
 print(f'spinner object: {spinner}')
 spinner.start()
 result = slow()
 done.set()

A Concurrent Hello World | 703

 spinner.join()
 return result

def main() -> None:
 result = supervisor()
 print(f'Answer: {result}')

if __name__ == '__main__':
 main()

supervisor will return the result of slow.

The threading.Event instance is the key to coordinate the activities of the main
thread and the spinner thread, as explained further down.

To create a new Thread, provide a function as the target keyword argument,
and positional arguments to the target as a tuple passed via args.

Display the spinner object. The output is <Thread(Thread-1, initial)>, where
initial is the state of the thread—meaning it has not started.

Start the spinner thread.

Call slow, which blocks the main thread. Meanwhile, the secondary thread is run‐
ning the spinner animation.

Set the Event flag to True; this will terminate the for loop inside the spin
function.

Wait until the spinner thread finishes.

Run the supervisor function. I wrote separate main and supervisor functions to
make this example look more like the asyncio version in Example 19-4.

When the main thread sets the done event, the spinner thread will eventually notice
and exit cleanly.

Now let’s take a look at a similar example using the multiprocessing package.

Spinner with Processes
The multiprocessing package supports running concurrent tasks in separate Python
processes instead of threads. When you create a multiprocessing.Process instance,
a whole new Python interpreter is started as a child process in the background. Since
each Python process has its own GIL, this allows your program to use all available

704 | Chapter 19: Concurrency Models in Python

CPU cores—but that ultimately depends on the operating system scheduler. We’ll see
practical effects in “A Homegrown Process Pool” on page 716, but for this simple pro‐
gram it makes no real difference.

The point of this section is to introduce multiprocessing and show that its API
emulates the threading API, making it easy to convert simple programs from
threads to processes, as shown in spinner_proc.py (Example 19-3).

Example 19-3. spinner_proc.py: only the changed parts are shown; everything else is the
same as spinner_thread.py

import itertools
import time
from multiprocessing import Process, Event
from multiprocessing import synchronize

def spin(msg: str, done: synchronize.Event) -> None:

[snip] the rest of spin and slow functions are unchanged from spinner_thread.py

def supervisor() -> int:
 done = Event()
 spinner = Process(target=spin,
 args=('thinking!', done))
 print(f'spinner object: {spinner}')
 spinner.start()
 result = slow()
 done.set()
 spinner.join()
 return result

[snip] main function is unchanged as well

The basic multiprocessing API imitates the threading API, but type hints and
Mypy expose this difference: multiprocessing.Event is a function (not a class
like threading.Event) which returns a synchronize.Event instance…

…forcing us to import multiprocessing.synchronize…

…to write this type hint.

Basic usage of the Process class is similar to Thread.

The spinner object is displayed as <Process name='Process-1' parent=14868
initial>, where 14868 is the process ID of the Python instance running
spinner_proc.py.

A Concurrent Hello World | 705

10 The semaphore is a fundamental building block that can be used to implement other synchronization mecha‐
nisms. Python provides different semaphore classes for use with threads, processes, and coroutines. We’ll see
asyncio.Semaphore in “Using asyncio.as_completed and a Thread” on page 788 (Chapter 21).

The basic API of threading and multiprocessing are similar, but their implementa‐
tion is very different, and multiprocessing has a much larger API to handle the
added complexity of multiprocess programming. For example, one challenge when
converting from threads to processes is how to communicate between processes that
are isolated by the operating system and can’t share Python objects. This means that
objects crossing process boundaries have to be serialized and deserialized, which cre‐
ates overhead. In Example 19-3, the only data that crosses the process boundary is the
Event state, which is implemented with a low-level OS semaphore in the C code
underlying the multiprocessing module.10

Since Python 3.8, there’s a multiprocessing.shared_memory pack‐
age in the standard library, but it does not support instances of
user-defined classes. Besides raw bytes, the package allows pro‐
cesses to share a ShareableList, a mutable sequence type that can
hold a fixed number of items of types int, float, bool, and None,
as well as str and bytes up to 10 MB per item. See the ShareableL
ist documentation for more.

Now let’s see how the same behavior can be achieved with coroutines instead of
threads or processes.

Spinner with Coroutines

Chapter 21 is entirely devoted to asynchronous programming with
coroutines. This is just a high-level introduction to contrast this
approach with the threads and processes concurrency models. As
such, we will overlook many details.

It is the job of OS schedulers to allocate CPU time to drive threads and processes. In
contrast, coroutines are driven by an application-level event loop that manages a
queue of pending coroutines, drives them one by one, monitors events triggered by
I/O operations initiated by coroutines, and passes control back to the corresponding
coroutine when each event happens. The event loop and the library coroutines and
the user coroutines all execute in a single thread. Therefore, any time spent in a
coroutine slows down the event loop—and all other coroutines.

706 | Chapter 19: Concurrency Models in Python

https://fpy.li/19-12
https://fpy.li/19-13
https://fpy.li/19-13

The coroutine version of the spinner program is easier to understand if we start from
the main function, then study the supervisor. That’s what Example 19-4 shows.

Example 19-4. spinner_async.py: the main function and supervisor coroutine

def main() -> None:
 result = asyncio.run(supervisor())
 print(f'Answer: {result}')

async def supervisor() -> int:
 spinner = asyncio.create_task(spin('thinking!'))
 print(f'spinner object: {spinner}')
 result = await slow()
 spinner.cancel()
 return result

if __name__ == '__main__':
 main()

main is the only regular function defined in this program—the others are
coroutines.

The asyncio.run function starts the event loop to drive the coroutine that will
eventually set the other coroutines in motion. The main function will stay
blocked until supervisor returns. The return value of supervisor will be the
return value of asyncio.run.

Native coroutines are defined with async def.

asyncio.create_task schedules the eventual execution of spin, immediately
returning an instance of asyncio.Task.

The repr of the spinner object looks like <Task pending name='Task-2'

coro=<spin() running at /path/to/spinner_async.py:11>>.

The await keyword calls slow, blocking supervisor until slow returns. The
return value of slow will be assigned to result.

The Task.cancel method raises a CancelledError exception inside the spin
coroutine, as we’ll see in Example 19-5.

Example 19-4 demonstrates the three main ways of running a coroutine:

A Concurrent Hello World | 707

asyncio.run(coro())

Called from a regular function to drive a coroutine object that usually is the entry
point for all the asynchronous code in the program, like the supervisor in this
example. This call blocks until the body of coro returns. The return value of the
run() call is whatever the body of coro returns.

asyncio.create_task(coro())

Called from a coroutine to schedule another coroutine to execute eventually.
This call does not suspend the current coroutine. It returns a Task instance, an
object that wraps the coroutine object and provides methods to control and
query its state.

await coro()

Called from a coroutine to transfer control to the coroutine object returned by
coro(). This suspends the current coroutine until the body of coro returns. The
value of the await expression is whatever the body of coro returns.

Remember: invoking a coroutine as coro() immediately returns a
coroutine object, but does not run the body of the coro function.
Driving the body of coroutines is the job of the event loop.

Now let’s study the spin and slow coroutines in Example 19-5.

Example 19-5. spinner_async.py: the spin and slow coroutines

import asyncio
import itertools

async def spin(msg: str) -> None:
 for char in itertools.cycle(r'\|/-'):
 status = f'\r{char} {msg}'
 print(status, flush=True, end='')
 try:
 await asyncio.sleep(.1)
 except asyncio.CancelledError:
 break
 blanks = ' ' * len(status)
 print(f'\r{blanks}\r', end='')

async def slow() -> int:
 await asyncio.sleep(3)
 return 42

708 | Chapter 19: Concurrency Models in Python

We don’t need the Event argument that was used to signal that slow had comple‐
ted its job in spinner_thread.py (Example 19-1).

Use await asyncio.sleep(.1) instead of time.sleep(.1), to pause without
blocking other coroutines. See the experiment after this example.

asyncio.CancelledError is raised when the cancel method is called on the
Task controlling this coroutine. Time to exit the loop.

The slow coroutine also uses await asyncio.sleep instead of time.sleep.

Experiment: Break the spinner for an insight
Here is an experiment I recommend to understand how spinner_async.py works.
Import the time module, then go to the slow coroutine and replace the line await
asyncio.sleep(3) with a call to time.sleep(3), like in Example 19-6.

Example 19-6. spinner_async.py: replacing await asyncio.sleep(3) with
time.sleep(3)

async def slow() -> int:
 time.sleep(3)
 return 42

Watching the behavior is more memorable than reading about it. Go ahead, I’ll wait.

When you run the experiment, this is what you see:

1. The spinner object is shown, similar to this: <Task pending name='Task-2'
coro=<spin() running at /path/to/spinner_async.py:12>>.

2. The spinner never appears. The program hangs for 3 seconds.
3. Answer: 42 is displayed and the program ends.

To understand what is happening, recall that Python code using asyncio has only
one flow of execution, unless you’ve explicitly started additional threads or processes.
That means only one coroutine executes at any point in time. Concurrency is
achieved by control passing from one coroutine to another. In Example 19-7, let’s
focus on what happens in the supervisor and slow coroutines during the proposed
experiment.

Example 19-7. spinner_async_experiment.py: the supervisor and slow coroutines

async def slow() -> int:
 time.sleep(3)

A Concurrent Hello World | 709

11 Thanks to tech reviewers Caleb Hattingh and Jürgen Gmach who did not let me overlook greenlet and gevent.

 return 42

async def supervisor() -> int:
 spinner = asyncio.create_task(spin('thinking!'))
 print(f'spinner object: {spinner}')
 result = await slow()
 spinner.cancel()
 return result

The spinner task is created, to eventually drive the execution of spin.

The display shows the Task is “pending.”

The await expression transfers control to the slow coroutine.

time.sleep(3) blocks for 3 seconds; nothing else can happen in the program,
because the main thread is blocked—and it is the only thread. The operating sys‐
tem will continue with other activities. After 3 seconds, sleep unblocks, and
slow returns.

Right after slow returns, the spinner task is cancelled. The flow of control never
reached the body of the spin coroutine.

The spinner_async_experiment.py teaches an important lesson, as explained in the
following warning.

Never use time.sleep(…) in asyncio coroutines unless you want
to pause your whole program. If a coroutine needs to spend some
time doing nothing, it should await asyncio.sleep(DELAY). This
yields control back to the asyncio event loop, which can drive
other pending coroutines.

Greenlet and gevent
As we discuss concurrency with coroutines, it’s important to mention the greenlet
package, which has been around for many years and is used at scale.11 The package
supports cooperative multitasking through lightweight coroutines—named greenlets
—that don’t require any special syntax such as yield or await, therefore are easier to
integrate into existing, sequential codebases. SQL Alchemy 1.4 ORM uses greenlets
internally to implement its new asynchronous API compatible with asyncio.

710 | Chapter 19: Concurrency Models in Python

https://fpy.li/19-14
https://fpy.li/19-15
https://fpy.li/19-16

The gevent networking library monkey patches Python’s standard socket module
making it nonblocking by replacing some of its code with greenlets. To a large extent,
gevent is transparent to the surrounding code, making it easier to adapt sequential
applications and libraries—such as database drivers—to perform concurrent network
I/O. Numerous open source projects use gevent, including the widely deployed Guni‐
corn—mentioned in “WSGI Application Servers” on page 730.

Supervisors Side-by-Side
The line count of spinner_thread.py and spinner_async.py is nearly the same. The
supervisor functions are the heart of these examples. Let’s compare them in detail.
Example 19-8 lists only the supervisor from Example 19-2.

Example 19-8. spinner_thread.py: the threaded supervisor function

def supervisor() -> int:
 done = Event()
 spinner = Thread(target=spin,
 args=('thinking!', done))
 print('spinner object:', spinner)
 spinner.start()
 result = slow()
 done.set()
 spinner.join()
 return result

For comparison, Example 19-9 shows the supervisor coroutine from Example 19-4.

Example 19-9. spinner_async.py: the asynchronous supervisor coroutine

async def supervisor() -> int:
 spinner = asyncio.create_task(spin('thinking!'))
 print('spinner object:', spinner)
 result = await slow()
 spinner.cancel()
 return result

Here is a summary of the differences and similarities to note between the two super
visor implementations:

• An asyncio.Task is roughly the equivalent of a threading.Thread.
• A Task drives a coroutine object, and a Thread invokes a callable.
• A coroutine yields control explicitly with the await keyword.

A Concurrent Hello World | 711

https://fpy.li/19-17
https://fpy.li/19-18
https://fpy.li/gunicorn
https://fpy.li/gunicorn

• You don’t instantiate Task objects yourself, you get them by passing a coroutine
to asyncio.create_task(…).

• When asyncio.create_task(…) returns a Task object, it is already scheduled to
run, but a Thread instance must be explicitly told to run by calling its start
method.

• In the threaded supervisor, slow is a plain function and is directly invoked by
the main thread. In the asynchronous supervisor, slow is a coroutine driven by
await.

• There’s no API to terminate a thread from the outside; instead, you must send a
signal—like setting the done Event object. For tasks, there is the Task.cancel()
instance method, which raises CancelledError at the await expression where
the coroutine body is currently suspended.

• The supervisor coroutine must be started with asyncio.run in the main
function.

This comparison should help you understand how concurrent jobs are orchestrated
with asyncio, in contrast to how it’s done with the Threading module, which may be
more familiar to you.

One final point related to threads versus coroutines: if you’ve done any nontrivial
programming with threads, you know how challenging it is to reason about the pro‐
gram because the scheduler can interrupt a thread at any time. You must remember
to hold locks to protect the critical sections of your program, to avoid getting inter‐
rupted in the middle of a multistep operation—which could leave data in an invalid
state.

With coroutines, your code is protected against interruption by default. You must
explicitly await to let the rest of the program run. Instead of holding locks to syn‐
chronize the operations of multiple threads, coroutines are “synchronized” by defini‐
tion: only one of them is running at any time. When you want to give up control, you
use await to yield control back to the scheduler. That’s why it is possible to safely
cancel a coroutine: by definition, a coroutine can only be cancelled when it’s sus‐
pended at an await expression, so you can perform cleanup by handling the Cancel
ledError exception.

The time.sleep() call blocks but does nothing. Now we’ll experiment with a CPU-
intensive call to get a better understanding of the GIL, as well as the effect of CPU-
intensive functions in asynchronous code.

712 | Chapter 19: Concurrency Models in Python

12 It’s a 15” MacBook Pro 2018 with a 6-core, 2.2 GHz Intel Core i7 CPU.

The Real Impact of the GIL
In the threading code (Example 19-1), you can replace the time.sleep(3) call in the
slow function with an HTTP client request from your favorite library, and the spin‐
ner will keep spinning. That’s because a well-designed network library will release the
GIL while waiting for the network.

You can also replace the asyncio.sleep(3) expression in the slow coroutine to
await for a response from a well-designed asynchronous network library, because
such libraries provide coroutines that yield control back to the event loop while wait‐
ing for the network. Meanwhile, the spinner will keep spinning.

With CPU-intensive code, the story is different. Consider the function is_prime in
Example 19-10, which returns True if the argument is a prime number, False if it’s
not.

Example 19-10. primes.py: an easy to read primality check, from Python’s ProcessPool
Executor example

def is_prime(n: int) -> bool:
 if n < 2:
 return False
 if n == 2:
 return True
 if n % 2 == 0:
 return False

 root = math.isqrt(n)
 for i in range(3, root + 1, 2):
 if n % i == 0:
 return False
 return True

The call is_prime(5_000_111_000_222_021) takes about 3.3s on the company laptop
I am using now.12

Quick Quiz
Given what we’ve seen so far, please take the time to consider the following three-
part question. One part of the answer is tricky (at least it was for me).

What would happen to the spinner animation if you made the following changes,
assuming that n = 5_000_111_000_222_021—that prime which my machine takes 3.3s
to verify:

The Real Impact of the GIL | 713

https://fpy.li/19-19
https://fpy.li/19-19

13 This is true today because you are probably using a modern OS with preemptive multitasking. Windows
before the NT era and macOS before the OSX era were not “preemptive,” therefore any process could take
over 100% of the CPU and freeze the whole system. We are not completely free of this kind of problem today
but trust this graybeard: this troubled every user in the 1990s, and a hard reset was the only cure.

1. In spinner_proc.py, replace time.sleep(3) with a call to is_prime(n)?

2. In spinner_thread.py, replace time.sleep(3) with a call to is_prime(n)?

3. In spinner_async.py, replace await asyncio.sleep(3) with a call to
is_prime(n)?

Before you run the code or read on, I recommend figuring out the answers on your
own. Then, you may want to copy and modify the spinner_*.py examples as
suggested.

Now the answers, from easier to hardest.

1. Answer for multiprocessing
The spinner is controlled by a child process, so it continues spinning while the pri‐
mality test is computed by the parent process.13

2. Answer for threading
The spinner is controlled by a secondary thread, so it continues spinning while the
primality test is computed by the main thread.

I did not get this answer right at first: I was expecting the spinner to freeze because I
overestimated the impact of the GIL.

In this particular example, the spinner keeps spinning because Python suspends the
running thread every 5ms (by default), making the GIL available to other pending
threads. Therefore, the main thread running is_prime is interrupted every 5ms,
allowing the secondary thread to wake up and iterate once through the for loop, until
it calls the wait method of the done event, at which time it will release the GIL. The
main thread will then grab the GIL, and the is_prime computation will proceed for
another 5ms.

This does not have a visible impact on the running time of this specific example,
because the spin function quickly iterates once and releases the GIL as it waits for the
done event, so there is not much contention for the GIL. The main thread running
is_prime will have the GIL most of the time.

We got away with a compute-intensive task using threading in this simple experi‐
ment because there are only two threads: one hogging the CPU, and the other waking
up only 10 times per second to update the spinner.

714 | Chapter 19: Concurrency Models in Python

But if you have two or more threads vying for a lot of CPU time, your program will
be slower than sequential code.

3. Answer for asyncio

If you call is_prime(5_000_111_000_222_021) in the slow coroutine of the spin‐
ner_async.py example, the spinner will never appear. The effect would be the same
we had in Example 19-6, when we replaced await asyncio.sleep(3) with
time.sleep(3): no spinning at all. The flow of control will pass from supervisor to
slow, and then to is_prime. When is_prime returns, slow returns as well, and super
visor resumes, cancelling the spinner task before it is executed even once. The pro‐
gram appears frozen for about 3s, then shows the answer.

Power Napping with sleep(0)
One way to keep the spinner alive is to rewrite is_prime as a coroutine, and periodi‐
cally call asyncio.sleep(0) in an await expression to yield control back to the event
loop, like in Example 19-11.

Example 19-11. spinner_async_nap.py: is_prime is now a coroutine

async def is_prime(n):
 if n < 2:
 return False
 if n == 2:
 return True
 if n % 2 == 0:
 return False

 root = math.isqrt(n)
 for i in range(3, root + 1, 2):
 if n % i == 0:
 return False
 if i % 100_000 == 1:

 await asyncio.sleep(0)
 return True

Sleep once every 50,000 iterations (because the step in the range is 2).

Issue #284 in the asyncio repository has an informative discussion about the use of
asyncio.sleep(0).

However, be aware this will slow down is_prime, and—more importantly—will still
slow down the event loop and your whole program with it. When I used await asyn
cio.sleep(0) every 100,000 iterations, the spinner was smooth but the program ran
in 4.9s on my machine, almost 50% longer than the original primes.is_prime func‐
tion by itself with the same argument (5_000_111_000_222_021).

The Real Impact of the GIL | 715

https://fpy.li/19-20

Using await asyncio.sleep(0) should be considered a stopgap measure before you
refactor your asynchronous code to delegate CPU-intensive computations to another
process. We’ll see one way of doing that with asyncio.loop.run_in_executor, cov‐
ered in Chapter 21. Another option would be a task queue, which we’ll briefly discuss
in “Distributed Task Queues” on page 732.

So far, we’ve only experimented with a single call to a CPU-intensive function. The
next section presents concurrent execution of multiple CPU-intensive calls.

A Homegrown Process Pool
I wrote this section to show the use of multiple processes for CPU-
intensive tasks, and the common pattern of using queues to distrib‐
ute tasks and collect results. Chapter 20 will show a simpler way of
distributing tasks to processes: a ProcessPoolExecutor from the
concurrent.futures package, which uses queues internally.

In this section we’ll write programs to compute the primality of a sample of 20 inte‐
gers, from 2 to 9,999,999,999,999,999—i.e., 1016 – 1, or more than 253. The sample
includes small and large primes, as well as composite numbers with small and large
prime factors.

The sequential.py program provides the performance baseline. Here is a sample run:

$ python3 sequential.py
 2 P 0.000001s
 142702110479723 P 0.568328s
 299593572317531 P 0.796773s
3333333333333301 P 2.648625s
3333333333333333 0.000007s
3333335652092209 2.672323s
4444444444444423 P 3.052667s
4444444444444444 0.000001s
4444444488888889 3.061083s
5555553133149889 3.451833s
5555555555555503 P 3.556867s
5555555555555555 0.000007s
6666666666666666 0.000001s
6666666666666719 P 3.781064s
6666667141414921 3.778166s
7777777536340681 4.120069s
7777777777777753 P 4.141530s
7777777777777777 0.000007s
9999999999999917 P 4.678164s
9999999999999999 0.000007s
Total time: 40.31

716 | Chapter 19: Concurrency Models in Python

https://fpy.li/19-21

The results are shown in three columns:

• The number to be checked.
• P if it’s a prime number, blank if not.
• Elapsed time for checking the primality for that specific number.

In this example, the total time is approximately the sum of the times for each check,
but it is computed separately, as you can see in Example 19-12.

Example 19-12. sequential.py: sequential primality check for a small dataset

#!/usr/bin/env python3

"""
sequential.py: baseline for comparing sequential, multiprocessing,
and threading code for CPU-intensive work.
"""

from time import perf_counter
from typing import NamedTuple

from primes import is_prime, NUMBERS

class Result(NamedTuple):
 prime: bool
 elapsed: float

def check(n: int) -> Result:
 t0 = perf_counter()
 prime = is_prime(n)
 return Result(prime, perf_counter() - t0)

def main() -> None:
 print(f'Checking {len(NUMBERS)} numbers sequentially:')
 t0 = perf_counter()
 for n in NUMBERS:
 prime, elapsed = check(n)
 label = 'P' if prime else ' '
 print(f'{n:16} {label} {elapsed:9.6f}s')

 elapsed = perf_counter() - t0
 print(f'Total time: {elapsed:.2f}s')

if __name__ == '__main__':
 main()

A Homegrown Process Pool | 717

The check function (in the next callout) returns a Result tuple with the boolean
value of the is_prime call and the elapsed time.

check(n) calls is_prime(n) and computes the elapsed time to return a Result.

For each number in the sample, we call check and display the result.

Compute and display the total elapsed time.

Process-Based Solution
The next example, procs.py, shows the use of multiple processes to distribute the pri‐
mality checks across multiple CPU cores. These are the times I get with procs.py:

$ python3 procs.py
Checking 20 numbers with 12 processes:
 2 P 0.000002s
3333333333333333 0.000021s
4444444444444444 0.000002s
5555555555555555 0.000018s
6666666666666666 0.000002s
 142702110479723 P 1.350982s
7777777777777777 0.000009s
 299593572317531 P 1.981411s
9999999999999999 0.000008s
3333333333333301 P 6.328173s
3333335652092209 6.419249s
4444444488888889 7.051267s
4444444444444423 P 7.122004s
5555553133149889 7.412735s
5555555555555503 P 7.603327s
6666666666666719 P 7.934670s
6666667141414921 8.017599s
7777777536340681 8.339623s
7777777777777753 P 8.388859s
9999999999999917 P 8.117313s
20 checks in 9.58s

The last line of the output shows that procs.py was 4.2 times faster than sequential.py.

Understanding the Elapsed Times
Note that the elapsed time in the first column is for checking that specific number.
For example, is_prime(7777777777777753) took almost 8.4s to return True. Mean‐
while, other processes were checking other numbers in parallel.

There were 20 numbers to check. I wrote procs.py to start a number of worker pro‐
cesses equal to the number of CPU cores, as determined by multiprocess
ing.cpu_count().

718 | Chapter 19: Concurrency Models in Python

The total time in this case is much less than the sum of the elapsed time for the indi‐
vidual checks. There is some overhead in spinning up processes and in inter-process
communication, so the end result is that the multiprocess version is only about 4.2
times faster than the sequential. That’s good, but a little disappointing considering
the code launches 12 processes to use all cores on this laptop.

The multiprocessing.cpu_count() function returns 12 on the
MacBook Pro I’m using to write this chapter. It’s actually a 6-CPU
Core-i7, but the OS reports 12 CPUs because of hyperthreading, an
Intel technology which executes 2 threads per core. However,
hyperthreading works better when one of the threads is not work‐
ing as hard as the other thread in the same core—perhaps the first
is stalled waiting for data after a cache miss, and the other is
crunching numbers. Anyway, there’s no free lunch: this laptop per‐
forms like a 6-CPU machine for compute-intensive work that
doesn’t use a lot of memory—like that simple primality test.

Code for the Multicore Prime Checker
When we delegate computing to threads or processes, our code does not call the
worker function directly, so we can’t simply get a return value. Instead, the worker is
driven by the thread or process library, and it eventually produces a result that needs
to be stored somewhere. Coordinating workers and collecting results are common
uses of queues in concurrent programming—and also in distributed systems.

Much of the new code in procs.py has to do with setting up and using queues. The top
of the file is in Example 19-13.

SimpleQueue was added to multiprocessing in Python 3.9. If
you’re using an earlier version of Python, you can replace Simple
Queue with Queue in Example 19-13.

Example 19-13. procs.py: multiprocess primality check; imports, types, and functions

import sys
from time import perf_counter
from typing import NamedTuple
from multiprocessing import Process, SimpleQueue, cpu_count
from multiprocessing import queues

from primes import is_prime, NUMBERS

class PrimeResult(NamedTuple):
 n: int

A Homegrown Process Pool | 719

 prime: bool
 elapsed: float

JobQueue = queues.SimpleQueue[int]
ResultQueue = queues.SimpleQueue[PrimeResult]

def check(n: int) -> PrimeResult:
 t0 = perf_counter()
 res = is_prime(n)
 return PrimeResult(n, res, perf_counter() - t0)

def worker(jobs: JobQueue, results: ResultQueue) -> None:
 while n := jobs.get():
 results.put(check(n))
 results.put(PrimeResult(0, False, 0.0))

def start_jobs(
 procs: int, jobs: JobQueue, results: ResultQueue
) -> None:
 for n in NUMBERS:
 jobs.put(n)
 for _ in range(procs):
 proc = Process(target=worker, args=(jobs, results))
 proc.start()
 jobs.put(0)

Trying to emulate threading, multiprocessing provides multiprocessing.Sim
pleQueue, but this is a method bound to a predefined instance of a lower-level
BaseContext class. We must call this SimpleQueue to build a queue, we can’t use
it in type hints.

multiprocessing.queues has the SimpleQueue class we need for type hints.

PrimeResult includes the number checked for primality. Keeping n together
with the other result fields simplifies displaying results later.

This is a type alias for a SimpleQueue that the main function (Example 19-14) will
use to send numbers to the processes that will do the work.

Type alias for a second SimpleQueue that will collect the results in main. The val‐
ues in the queue will be tuples made of the number to be tested for primality, and
a Result tuple.

This is similar to sequential.py.

worker gets a queue with the numbers to be checked, and another to put results.

720 | Chapter 19: Concurrency Models in Python

14 In this example, 0 is a convenient sentinel. None is also commonly used for that. Using 0 simplifies the type
hint for PrimeResult and the code for worker.

15 Surviving serialization without losing our identity is a pretty good life goal.

In this code, I use the number 0 as a poison pill: a signal for the worker to finish.
If n is not 0, proceed with the loop.14

Invoke the primality check and enqueue PrimeResult.

Send back a PrimeResult(0, False, 0.0) to let the main loop know that this
worker is done.

procs is the number of processes that will compute the prime checks in parallel.

Enqueue the numbers to be checked in jobs.

Fork a child process for each worker. Each child will run the loop inside its own
instance of the worker function, until it fetches a 0 from the jobs queue.

Start each child process.

Enqueue one 0 for each process, to terminate them.

Loops, Sentinels, and Poison Pills
The worker function in Example 19-13 follows a common pattern in concurrent pro‐
gramming: looping indefinitely while taking items from a queue and processing each
with a function that does the actual work. The loop ends when the queue produces a
sentinel value. In this pattern, the sentinel that shuts down the worker is often called a
“poison pill.”

None is often used as a sentinel value, but it may be unsuitable if it can occur in the
data stream. Calling object() is a common way to get a unique value to use as senti‐
nel. However, that does not work across processes because Python objects must be
serialized for inter-process communication, and when you pickle.dump and
pickle.load an instance of object, the unpickled instance is distinct from the origi‐
nal: it doesn’t compare equal. A good alternative to None is the Ellipsis built-in
object (a.k.a. ...), which survives serialization without losing its identity.15

Python’s standard library uses lots of different values as sentinels. PEP 661—Sentinel
Values proposes a standard sentinel type. As of September 2021, it’s only a draft.

A Homegrown Process Pool | 721

https://fpy.li/19-22
https://fpy.li/pep661
https://fpy.li/pep661

Now let’s study the main function of procs.py in Example 19-14.

Example 19-14. procs.py: multiprocess primality check; main function

def main() -> None:
 if len(sys.argv) < 2:
 procs = cpu_count()
 else:
 procs = int(sys.argv[1])

 print(f'Checking {len(NUMBERS)} numbers with {procs} processes:')
 t0 = perf_counter()
 jobs: JobQueue = SimpleQueue()
 results: ResultQueue = SimpleQueue()
 start_jobs(procs, jobs, results)
 checked = report(procs, results)
 elapsed = perf_counter() - t0
 print(f'{checked} checks in {elapsed:.2f}s')

def report(procs: int, results: ResultQueue) -> int:
 checked = 0
 procs_done = 0
 while procs_done < procs:
 n, prime, elapsed = results.get()
 if n == 0:
 procs_done += 1
 else:
 checked += 1
 label = 'P' if prime else ' '
 print(f'{n:16} {label} {elapsed:9.6f}s')
 return checked

if __name__ == '__main__':
 main()

If no command-line argument is given, set the number of processes to the num‐
ber of CPU cores; otherwise, create as many processes as given in the first
argument.

jobs and results are the queues described in Example 19-13.

Start proc processes to consume jobs and post results.

Retrieve the results and display them; report is defined in .

Display how many numbers were checked and the total elapsed time.

The arguments are the number of procs and the queue to post the results.

722 | Chapter 19: Concurrency Models in Python

Loop until all processes are done.

Get one PrimeResult. Calling .get() on a queue block until there is an item in
the queue. It’s also possible to make this nonblocking, or set a timeout. See the
SimpleQueue.get documentation for details.

If n is zero, then one process exited; increment the procs_done count.

Otherwise, increment the checked count (to keep track of the numbers checked)
and display the results.

The results will not come back in the same order the jobs were submitted. That’s why
I had to put n in each PrimeResult tuple. Otherwise, I’d have no way to know which
result belonged to each number.

If the main process exits before all subprocesses are done, you may see confusing
tracebacks on FileNotFoundError exceptions caused by an internal lock in multi
processing. Debugging concurrent code is always hard, and debugging multiproc
essing is even harder because of all the complexity behind the thread-like façade.
Fortunately, the ProcessPoolExecutor we’ll meet in Chapter 20 is easier to use and
more robust.

Thanks to reader Michael Albert who noticed the code I published
during the early release had a race condition in Example 19-14. A
race condition is a bug that may or may not occur depending on
the order of actions performed by concurrent execution units. If
“A” happens before “B,” all is fine; but it “B” happens first, some‐
thing goes wrong. That’s the race.
If you are curious, this diff shows the bug and how I fixed it:
example-code-2e/commit/2c123057—but note that I later refactored
the example to delegate parts of main to the start_jobs and
report functions. There’s a README.md file in the same directory
explaining the problem and the solution.

Experimenting with More or Fewer Processes
You may want try running procs.py, passing arguments to set the number of worker
processes. For example, this command…

$ python3 procs.py 2

…will launch two worker processes, producing results almost twice as fast as sequen‐
tial.py—if your machine has at least two cores and is not too busy running other
programs.

A Homegrown Process Pool | 723

https://fpy.li/19-23
https://fpy.li/19-24
https://fpy.li/19-25
https://fpy.li/19-26

16 See 19-concurrency/primes/threads.py in the Fluent Python code repository.

I ran procs.py 12 times with 1 to 20 processes, totaling 240 runs. Then I computed the
median time for all runs with the same number of processes, and plotted Figure 19-2.

Figure 19-2. Median run times for each number of processes from 1 to 20. Highest
median time was 40.81s, with 1 process. Lowest median time was 10.39s, with 6 pro‐
cesses, indicated by the dotted line.

In this 6-core laptop, the lowest median time was with 6 processes: 10.39s—marked
by the dotted line in Figure 19-2. I expected the run time to increase after 6 processes
due to CPU contention, and it reached a local maximum of 12.51s at 10 processes. I
did not expect and I can’t explain why the performance improved at 11 processes and
remained almost flat from 13 to 20 processes, with median times only slightly higher
than the lowest median time at 6 processes.

Thread-Based Nonsolution
I also wrote threads.py, a version of procs.py using threading instead of multiproc
essing. The code is very similar—as is usually the case when converting simple
examples between these two APIs.16 Due to the GIL and the compute-intensive
nature of is_prime, the threaded version is slower than the sequential code in
Example 19-12, and it gets slower as the number of threads increase, because of CPU
contention and the cost of context switching. To switch to a new thread, the OS
needs to save CPU registers and update the program counter and stack pointer,

724 | Chapter 19: Concurrency Models in Python

https://fpy.li/19-27
https://fpy.li/code

17 To learn more, see “Context switch” in the English Wikipedia.

18 These are probably the same reasons that prompted the creator of the Ruby language, Yukihiro Matsumoto,
to use a GIL in his interpreter as well.

triggering expensive side effects like invalidating CPU caches and possibly even
swapping memory pages.17

The next two chapters will cover more about concurrent programming in Python,
using the high-level concurrent.futures library to manage threads and processes
(Chapter 20) and the asyncio library for asynchronous programming (Chapter 21).

The remaining sections in this chapter aim to answer the question:

Given the limitations discussed so far, how is Python thriving in a multicore world?

Python in the Multicore World
Consider this citation from the widely quoted article “The Free Lunch Is Over: A
Fundamental Turn Toward Concurrency in Software” by Herb Sutter:

The major processor manufacturers and architectures, from Intel and AMD to Sparc
and PowerPC, have run out of room with most of their traditional approaches to
boosting CPU performance. Instead of driving clock speeds and straight-line instruc‐
tion throughput ever higher, they are instead turning en masse to hyper-threading and
multicore architectures. March 2005. [Available online].

What Sutter calls the “free lunch” was the trend of software getting faster with no
additional developer effort because CPUs were executing sequential code faster, year
after year. Since 2004, that is no longer true: clock speeds and execution optimiza‐
tions reached a plateau, and now any significant increase in performance must come
from leveraging multiple cores or hyperthreading, advances that only benefit code
that is written for concurrent execution.

Python’s story started in the early 1990s, when CPUs were still getting exponentially
faster at sequential code execution. There was no talk about multicore CPUs except
in supercomputers back then. At the time, the decision to have a GIL was a no-
brainer. The GIL makes the interpreter faster when running on a single core, and its
implementation simpler.18 The GIL also makes it easier to write simple extensions
through the Python/C API.

Python in the Multicore World | 725

https://fpy.li/19-28
https://fpy.li/19-29
https://fpy.li/19-29

19 As an exercise in college, I had to implement the LZW compression algorithm in C. But first I wrote it in
Python, to check my understanding of the spec. The C version was about 900× faster.

I just wrote “simple extensions” because an extension does not
need to deal with the GIL at all. A function written in C or Fortran
may be hundreds of times faster than the equivalent in Python.19

Therefore the added complexity of releasing the GIL to leverage
multicore CPUs may not be needed in many cases. So we can
thank the GIL for many extensions available for Python—and that
is certainly one of the key reasons why the language is so popular
today.

Despite the GIL, Python is thriving in applications that require concurrent or parallel
execution, thanks to libraries and software architectures that work around the limita‐
tions of CPython.

Now let’s discuss how Python is used in system administration, data science, and
server-side application development in the multicore, distributed computing world
of 2021.

System Administration
Python is widely used to manage large fleets of servers, routers, load balancers, and
network-attached storage (NAS). It’s also a leading option in software-defined net‐
working (SDN) and ethical hacking. Major cloud service providers support Python
through libraries and tutorials authored by the providers themselves or by their large
communities of Python users.

In this domain, Python scripts automate configuration tasks by issuing commands to
be carried out by the remote machines, so rarely there are CPU-bound operations to
be done. Threads or coroutines are well suited for such jobs. In particular, the concur
rent.futures package we’ll see in Chapter 20 can be used to perform the same oper‐
ations on many remote machines at the same time without a lot of complexity.

Beyond the standard library, there are popular Python-based projects to manage
server clusters: tools like Ansible and Salt, as well as libraries like Fabric.

There is also a growing number of libraries for system administration supporting
coroutines and asyncio. In 2016, Facebook’s Production Engineering team reported:
“We are increasingly relying on AsyncIO, which was introduced in Python 3.4, and
seeing huge performance gains as we move codebases away from Python 2.”

726 | Chapter 19: Concurrency Models in Python

https://fpy.li/19-30
https://fpy.li/19-31
https://fpy.li/19-32
https://fpy.li/19-33

Data Science
Data science—including artificial intelligence—and scientific computing are very
well served by Python. Applications in these fields are compute-intensive, but Python
users benefit from a vast ecosystem of numeric computing libraries written in C,
C++, Fortran, Cython, etc.—many of which are able to leverage multicore machines,
GPUs, and/or distributed parallel computing in heterogeneous clusters.

As of 2021, Python’s data science ecosystem includes impressive tools such as:

Project Jupyter
Two browser-based interfaces—Jupyter Notebook and JupyterLab—that allow
users to run and document analytics code potentially running across the network
on remote machines. Both are hybrid Python/JavaScript applications, supporting
computing kernels written in different languages, all integrated via ZeroMQ—an
asynchronous messaging library for distributed applications. The name Jupyter
actually comes from Julia, Python, and R, the first three languages supported by
the Notebook. The rich ecosystem built on top of the Jupyter tools include
Bokeh, a powerful interactive visualization library that lets users navigate and
interact with large datasets or continuously updated streaming data, thanks to
the performance of modern JavaScript engines and browsers.

TensorFlow and PyTorch
These are the top two deep learning frameworks, according to O’Reilly’s January
2021 report on usage of their learning resources during 2020. Both projects are
written in C++, and are able to leverage multiple cores, GPUs, and clusters. They
support other languages as well, but Python is their main focus and is used by the
majority of their users. TensorFlow was created and is used internally by Google;
PyTorch by Facebook.

Dask
A parallel computing library that can farm out work to local processes or clusters
of machines, “tested on some of the largest supercomputers in the world”—as
their home page states. Dask offers APIs that closely emulate NumPy, pandas,
and scikit-learn—the most popular libraries in data science and machine learn‐
ing today. Dask can be used from JupyterLab or Jupyter Notebook, and leverages
Bokeh not only for data visualization but also for an interactive dashboard show‐
ing the flow of data and computations across the processes/machines in near real
time. Dask is so impressive that I recommend watching a video such as this 15-
minute demo in which Matthew Rocklin—a maintainer of the project—shows
Dask crunching data on 64 cores distributed in 8 EC2 machines on AWS.

These are only some examples to illustrate how the data science community is creat‐
ing solutions that leverage the best of Python and overcome the limitations of the
CPython runtime.

Python in the Multicore World | 727

https://fpy.li/19-34
https://fpy.li/19-35
https://fpy.li/19-36
https://fpy.li/19-37
https://fpy.li/19-38
https://fpy.li/19-38
https://fpy.li/dask
https://fpy.li/dask
https://fpy.li/19-39
https://fpy.li/19-39

20 Source: Thoughtworks Technology Advisory Board, Technology Radar—November 2015.

21 Contrast application caches—used directly by your application code—with HTTP caches, which would be
placed on the top edge of Figure 19-3 to serve static assets like images, CSS, and JS files. Content Delivery
Networks (CDNs) offer another type of HTTP cache, deployed in data centers closer to the end users of your
application.

Server-Side Web/Mobile Development
Python is widely used in web applications and for the backend APIs supporting
mobile applications. How is it that Google, YouTube, Dropbox, Instagram, Quora,
and Reddit—among others—managed to build Python server-side applications serv‐
ing hundreds of millions of users 24x7? Again, the answer goes way beyond what
Python provides “out of the box.”

Before we discuss tools to support Python at scale, I must quote an admonition from
the Thoughtworks Technology Radar:

High performance envy/web scale envy
We see many teams run into trouble because they have chosen complex tools, frame‐
works or architectures because they “might need to scale.” Companies such as Twitter
and Netflix need to support extreme loads and so need these architectures, but they
also have extremely skilled development teams able to handle the complexity. Most sit‐
uations do not require these kinds of engineering feats; teams should keep their web
scale envy in check in favor of simpler solutions that still get the job done.20

At web scale, the key is an architecture that allows horizontal scaling. At that point, all
systems are distributed systems, and no single programming language is likely to be
the right choice for every part of the solution.

Distributed systems is a field of academic research, but fortunately some practitioners
have written accessible books anchored on solid research and practical experience.
One of them is Martin Kleppmann, the author of Designing Data-Intensive Applica‐
tions (O’Reilly).

Consider Figure 19-3, the first of many architecture diagrams in Kleppmann’s book.
Here are some components I’ve seen in Python engagements that I worked on or
have firsthand knowledge of:

• Application caches:21 memcached, Redis, Varnish
• Relational databases: PostgreSQL, MySQL
• Document databases: Apache CouchDB, MongoDB
• Full-text indexes: Elasticsearch, Apache Solr
• Message queues: RabbitMQ, Redis

728 | Chapter 19: Concurrency Models in Python

https://fpy.li/19-40

22 Diagram adapted from Figure 1-1, Designing Data-Intensive Applications by Martin Kleppmann (O’Reilly).

Figure 19-3. One possible architecture for a system combining several components.22

There are other industrial-strength open source products in each of those categories.
Major cloud providers also offer their own proprietary alternatives.

Kleppmann’s diagram is general and language independent—as is his book. For
Python server-side applications, two specific components are often deployed:

• An application server to distribute the load among several instances of the
Python application. The application server would appear near the top in
Figure 19-3, handling client requests before they reached the application code.

• A task queue built around the message queue on the righthand side of
Figure 19-3, providing a higher-level, easier-to-use API to distribute tasks to pro‐
cesses running on other machines.

Python in the Multicore World | 729

23 Some speakers spell out the WSGI acronym, while others pronounce it as one word rhyming with “whisky.”

24 uWSGI is spelled with a lowercase “u,” but that is pronounced as the Greek letter “µ,” so the whole name
sounds like “micro-whisky” with a “g” instead of the “k.”

The next two sections explore these components that are recommended best practi‐
ces in Python server-side deployments.

WSGI Application Servers
WSGI—the Web Server Gateway Interface—is a standard API for a Python frame‐
work or application to receive requests from an HTTP server and send responses to
it.23 WSGI application servers manage one or more processes running your applica‐
tion, maximizing the use of the available CPUs.

Figure 19-4 illustrates a typical WSGI deployment.

If we wanted to merge the previous pair of diagrams, the content of
the dashed rectangle in Figure 19-4 would replace the solid “Appli‐
cation code” rectangle at the top of Figure 19-3.

The best-known application servers in Python web projects are:

• mod_wsgi
• uWSGI24

• Gunicorn
• NGINX Unit

For users of the Apache HTTP server, mod_wsgi is the best option. It’s as old as
WSGI itself, but is actively maintained, and now provides a command-line launcher
called mod_wsgi-express that makes it easier to configure and more suitable for use
in Docker containers.

730 | Chapter 19: Concurrency Models in Python

https://fpy.li/pep3333
https://fpy.li/19-41
https://fpy.li/19-42
https://fpy.li/gunicorn
https://fpy.li/19-43

25 Bloomberg engineers Peter Sperl and Ben Green wrote “Configuring uWSGI for Production Deployment”,
explaining how many of the default settings in uWSGI are not suitable for many common deployment sce‐
narios. Sperl presented a summary of their recommendations at EuroPython 2019. Highly recommended for
users of uWSGI.

Figure 19-4. Clients connect to an HTTP server that delivers static files and routes
other requests to the application server, which forks child processes to run the applica‐
tion code, leveraging multiple CPU cores. The WSGI API is the glue between the appli‐
cation server and the Python application code.

uWSGI and Gunicorn are the top choices in recent projects I know about. Both are
often used with the NGINX HTTP server. uWSGI offers a lot of extra functionality,
including an application cache, a task queue, cron-like periodic tasks, and many
other features. On the flip side, uWSGI is much harder to configure properly than
Gunicorn.25

Released in 2018, NGINX Unit is a new product from the makers of the well-known
NGINX HTTP server and reverse proxy.

Python in the Multicore World | 731

https://fpy.li/19-44
https://fpy.li/19-45

mod_wsgi and Gunicorn support Python web apps only, while uWSGI and NGINX
Unit work with other languages as well. Please browse their docs to learn more.

The main point: all of these application servers can potentially use all CPU cores on
the server by forking multiple Python processes to run traditional web apps written
in good old sequential code in Django, Flask, Pyramid, etc. This explains why it’s
been possible to earn a living as a Python web developer without ever studying the
threading, multiprocessing, or asyncio modules: the application server handles
concurrency transparently.

ASGI—Asynchronous Server Gateway Interface

WSGI is a synchronous API. It doesn’t support coroutines with
async/await—the most efficient way to implement WebSockets or
HTTP long polling in Python. The ASGI specification is a succes‐
sor to WSGI, designed for asynchronous Python web frameworks
such as aiohttp, Sanic, FastAPI, etc., as well as Django and Flask,
which are gradually adding asynchronous functionality.

Now let’s turn to another way of bypassing the GIL to achieve higher performance
with server-side Python applications.

Distributed Task Queues
When the application server delivers a request to one of the Python processes run‐
ning your code, your app needs to respond quickly: you want the process to be avail‐
able to handle the next request as soon as possible. However, some requests demand
actions that may take longer—for example, sending email or generating a PDF. That’s
the problem that distributed task queues are designed to solve.

Celery and RQ are the best known open source task queues with Python APIs. Cloud
providers also offer their own proprietary task queues.

These products wrap a message queue and offer a high-level API for delegating tasks
to workers, possibly running on different machines.

In the context of task queues, the words producer and consumer are
used instead of traditional client/server terminology. For example,
a Django view handler produces job requests, which are put in the
queue to be consumed by one or more PDF rendering processes.

Quoting directly from Celery’s FAQ, here are some typical use cases:

• Running something in the background. For example, to finish the web request as
soon as possible, then update the users page incrementally. This gives the user the

732 | Chapter 19: Concurrency Models in Python

https://fpy.li/19-46
https://fpy.li/19-47
https://fpy.li/19-48
https://fpy.li/19-49

impression of good performance and “snappiness,” even though the real work
might actually take some time.

• Running something after the web request has finished.

• Making sure something is done, by executing it asynchronously and using retries.

• Scheduling periodic work.

Besides solving these immediate problems, task queues support horizontal scalability.
Producers and consumers are decoupled: a producer doesn’t call a consumer, it puts
a request in a queue. Consumers don’t need to know anything about the producers
(but the request may include information about the producer, if an acknowledgment
is required). Crucially, you can easily add more workers to consume tasks as demand
grows. That’s why Celery and RQ are called distributed task queues.

Recall that our simple procs.py (Example 19-13) used two queues: one for job
requests, the other for collecting results. The distributed architecture of Celery and
RQ uses a similar pattern. Both support using the Redis NoSQL database as a message
queue and result storage. Celery also supports other message queues like RabbitMQ
or Amazon SQS, as well other databases for result storage.

This wraps up our introduction to concurrency in Python. The next two chapters will
continue this theme, focusing on the concurrent.futures and asyncio packages of
the standard library.

Chapter Summary
After a bit of theory, this chapter presented the spinner scripts implemented in each
of Python’s three native concurrency programming models:

• Threads, with the threading package
• Processes, with multiprocessing
• Asynchronous coroutines with asyncio

We then explored the real impact of the GIL with an experiment: changing the spin‐
ner examples to compute the primality of a large integer and observe the resulting
behavior. This demonstrated graphically that CPU-intensive functions must be avoi‐
ded in asyncio, as they block the event loop. The threaded version of the experiment
worked—despite the GIL—because Python periodically interrupts threads, and the
example used only two threads: one doing compute-intensive work, and the other
driving the animation only 10 times per second. The multiprocessing variant
worked around the GIL, starting a new process just for the animation, while the main
process did the primality check.

Chapter Summary | 733

https://fpy.li/19-50

The next example, computing several primes, highlighted the difference between mul
tiprocessing and threading, proving that only processes allow Python to benefit
from multicore CPUs. Python’s GIL makes threads worse than sequential code for
heavy computations.

The GIL dominates discussions about concurrent and parallel computing in Python,
but we should not overestimate its impact. That was the point of “Python in the Mul‐
ticore World” on page 725. For example, the GIL doesn’t affect many use cases of
Python in system administration. On the other hand, the data science and server-side
development communities have worked around the GIL with industrial-strength sol‐
utions tailored to their specific needs. The last two sections mentioned two common
elements to support Python server-side applications at scale: WSGI application
servers and distributed task queues.

Further Reading
This chapter has an extensive reading list, so I split it into subsections.

Concurrency with Threads and Processes
The concurrent.futures library covered in Chapter 20 uses threads, processes, locks,
and queues under the hood, but you won’t see individual instances of them; they’re
bundled and managed by the higher-level abstractions of a ThreadPoolExecutor and
a ProcessPoolExecutor. If you want to learn more about the practice of concurrent
programming with those low-level objects, “An Intro to Threading in Python” by Jim
Anderson is a good first read. Doug Hellmann has a chapter titled “Concurrency with
Processes, Threads, and Coroutines” on his website and book, The Python 3 Standard
Library by Example (Addison-Wesley).

Brett Slatkin’s Effective Python, 2nd ed. (Addison-Wesley), David Beazley’s Python
Essential Reference, 4th ed. (Addison-Wesley), and Martelli et al., Python in a Nut‐
shell, 3rd ed. (O’Reilly) are other general Python references with significant coverage
of threading and multiprocessing. The vast multiprocessing official documenta‐
tion includes useful advice in its “Programming guidelines” section.

Jesse Noller and Richard Oudkerk contributed the multiprocessing package, intro‐
duced in PEP 371—Addition of the multiprocessing package to the standard library.
The official documentation for the package is a 93 KB .rst file—that’s about 63 pages
—making it one of the longest chapters in the Python standard library.

In High Performance Python, 2nd ed., (O’Reilly), authors Micha Gorelick and Ian
Ozsvald include a chapter about multiprocessing with an example about checking
for primes with a different strategy than our procs.py example. For each number, they
split the range of possible factors—from 2 to sqrt(n)—into subranges, and make

734 | Chapter 19: Concurrency Models in Python

https://fpy.li/19-51
https://fpy.li/19-52
https://fpy.li/19-53
https://fpy.li/19-53
https://fpy.li/effectpy
https://fpy.li/19-54
https://fpy.li/pep371
https://fpy.li/19-55
https://fpy.li/19-56

26 Caleb is one of the tech reviewers for this edition of Fluent Python.

each worker iterate over one of the subranges. Their divide-and-conquer approach is
typical of scientific computing applications where the datasets are huge, and worksta‐
tions (or clusters) have more CPU cores than users. On a server-side system handling
requests from many users, it is simpler and more efficient to let each process work on
one computation from start to finish—reducing the overhead of communication and
coordination among processes. Besides multiprocessing, Gorelick and Ozsvald
present many other ways of developing and deploying high-performance data science
applications leveraging multiple cores, GPUs, clusters, profilers, and compilers like
Cython and Numba. Their last chapter, “Lessons from the Field,” is a valuable collec‐
tion of short case studies contributed by other practitioners of high-performance
computing in Python.

Advanced Python Development by Matthew Wilkes (Apress), is a rare book that
includes short examples to explain concepts, while also showing how to build a realis‐
tic application ready for production: a data aggregator, similar to DevOps monitoring
systems or IoT data collectors for distributed sensors. Two chapters in Advanced
Python Development cover concurrent programming with threading and asyncio.

Jan Palach’s Parallel Programming with Python (Packt, 2014) explains the core con‐
cepts behind concurrency and parallelism, covering Python’s standard library as well
as Celery.

“The Truth About Threads” is the title of Chapter 2 in Using Asyncio in Python by
Caleb Hattingh (O’Reilly).26 The chapter covers the benefits and drawbacks of thread‐
ing—with compelling quotes from several authoritative sources—making it clear that
the fundamental challenges of threads have nothing to do with Python or the GIL.
Quoting verbatim from page 14 of Using Asyncio in Python:

These themes repeat throughout:

• Threading makes code hard to reason about.

• Threading is an inefficient model for large-scale concurrency (thousands of con‐
current tasks).

If you want to learn the hard way how difficult it is to reason about threads and locks
—without risking your job—try the exercises in Allen Downey’s workbook, The Little
Book of Semaphores (Green Tea Press). The exercises in Downey’s book range from
easy to very hard to unsolvable, but even the easy ones are eye-opening.

Further Reading | 735

https://fpy.li/19-57
https://fpy.li/19-58
https://fpy.li/hattingh
https://fpy.li/19-59
https://fpy.li/19-59

27 Thanks to Lucas Brunialti for sending me a link to this talk.

The GIL
If you are intrigued about the GIL, remember we have no control over it from Python
code, so the canonical reference is in the C-API documentation: Thread State and the
Global Interpreter Lock. The Python Library and Extension FAQ answers: “Can’t we
get rid of the Global Interpreter Lock?”. Also worth reading are posts by Guido van
Rossum and Jesse Noller (contributor of the multiprocessing package), respectively:
“It isn’t Easy to Remove the GIL” and “Python Threads and the Global Interpreter
Lock”.

CPython Internals by Anthony Shaw (Real Python) explains the implementation of
the CPython 3 interpreter at the C programming level. Shaw’s longest chapter is
“Parallelism and Concurrency”: a deep dive into Python’s native support for threads
and processes, including managing the GIL from extensions using the C/Python API.

Finally, David Beazley presented a detailed exploration in “Understanding the
Python GIL”.27 In slide #54 of the presentation, Beazley reports an increase in pro‐
cessing time for a particular benchmark with the new GIL algorithm introduced in
Python 3.2. The issue is not significant with real workloads, according to a comment
by Antoine Pitrou—who implemented the new GIL algorithm—in the bug report
submitted by Beazley: Python issue #7946.

Concurrency Beyond the Standard Library
Fluent Python focuses on core language features and core parts of the standard
library. Full Stack Python is a great complement to this book: it’s about Python’s eco‐
system, with sections titled “Development Environments,” “Data,” “Web Develop‐
ment,” and “DevOps,” among others.

I’ve already mentioned two books that cover concurrency using the Python standard
library that also include significant content on third-party libraries and tools:
High Performance Python, 2nd ed. and Parallel Programming with Python. Francesco
Pierfederici’s Distributed Computing with Python (Packt) covers the standard library
and also the use of cloud providers and HPC (High-Performance Computing) clus‐
ters.

“Python, Performance, and GPUs” by Matthew Rocklin is “a status update for using
GPU accelerators from Python,” posted in June 2019.

“Instagram currently features the world’s largest deployment of the Django web
framework, which is written entirely in Python.” That’s the opening sentence of the
blog post, “Web Service Efficiency at Instagram with Python”, written by Min Ni—a
software engineer at Instagram. The post describes metrics and tools Instagram uses

736 | Chapter 19: Concurrency Models in Python

https://fpy.li/19-60
https://fpy.li/19-60
https://fpy.li/19-61
https://fpy.li/19-61
https://fpy.li/19-62
https://fpy.li/19-63
https://fpy.li/19-63
https://fpy.li/19-64
https://fpy.li/19-65
https://fpy.li/19-65
https://fpy.li/19-66
https://fpy.li/19-67
https://fpy.li/19-68
https://fpy.li/19-69
https://fpy.li/19-56
https://fpy.li/19-58
https://fpy.li/19-72
https://fpy.li/19-73
https://fpy.li/19-74

to optimize the efficiency of its Python codebase, as well as detect and diagnose per‐
formance regressions as it deploys its back end “30-50 times a day.”

Architecture Patterns with Python: Enabling Test-Driven Development, Domain-
Driven Design, and Event-Driven Microservices by Harry Percival and Bob Gregory
(O’Reilly) presents architectural patterns for Python server-side applications. The
authors also made the book freely available online at cosmicpython.com.

Two elegant and easy-to-use libraries for parallelizing tasks over processes are lelo by
João S. O. Bueno and python-parallelize by Nat Pryce. The lelo package defines a @par
allel decorator that you can apply to any function to magically make it unblocking:
when you call the decorated function, its execution is started in another process. Nat
Pryce’s python-parallelize package provides a parallelize generator that distributes
the execution of a for loop over multiple CPUs. Both packages are built on the multi‐
processing library.

Python core developer Eric Snow maintains a Multicore Python wiki, with notes
about his and other people’s efforts to improve Python’s support for parallel execu‐
tion. Snow is the author of PEP 554—Multiple Interpreters in the Stdlib. If approved
and implemented, PEP 554 lays the groundwork for future enhancements that may
eventually allow Python to use multiple cores without the overheads of multiprocess‐
ing. One of the biggest blockers is the complex interaction between multiple active
subinterpreters and extensions that assume a single interpreter.

Mark Shannon—also a Python maintainer—created a useful table comparing concur‐
rent models in Python, referenced in a discussion about subinterpreters between him,
Eric Snow, and other developers on the python-dev mailing list. In Shannon’s table,
the “Ideal CSP” column refers to the theoretical Communicating sequential processes
model proposed by Tony Hoare in 1978. Go also allows shared objects, violating an
essential constraint of CSP: execution units should communicate through message
passing through channels.

Stackless Python (a.k.a. Stackless) is a fork of CPython implementing microthreads,
which are application-level lightweight threads—as opposed to OS threads. The mas‐
sively multiplayer online game EVE Online was built on Stackless, and engineers
employed by the game company CCP were maintainers of Stackless for a while. Some
features of Stackless were reimplemented in the Pypy interpreter and the greenlet
package, the core technology of the gevent networking library, which in turn is the
foundation of the Gunicorn application server.

The actor model of concurrent programming is at the core of the highly scalable
Erlang and Elixir languages, and is also the model of the Akka framework for Scala
and Java. If you want to try out the actor model in Python, check out the Thespian
and Pykka libraries.

Further Reading | 737

https://fpy.li/19-75
https://fpy.li/19-75
https://fpy.li/19-76
https://fpy.li/19-77
https://fpy.li/19-78
https://fpy.li/19-79
https://fpy.li/pep554
https://fpy.li/19-80
https://fpy.li/19-81
https://fpy.li/19-82
https://fpy.li/19-83
https://fpy.li/19-84
https://fpy.li/19-85
https://fpy.li/19-86
https://fpy.li/19-87
https://fpy.li/19-14
https://fpy.li/19-17
https://fpy.li/gunicorn
https://fpy.li/19-90
https://fpy.li/19-91

28 Python’s threading and concurrent.futures APIs are heavily influenced by the Java standard library.

My remaining recommendations have few or zero mentions of Python, but are nev‐
ertheless relevant to readers interested in the theme of this chapter.

Concurrency and Scalability Beyond Python
RabbitMQ in Action by Alvaro Videla and Jason J. W. Williams (Manning) is a very
well-written introduction to RabbitMQ and the Advanced Message Queuing Protocol
(AMQP) standard, with examples in Python, PHP, and Ruby. Regardless of the rest
of your tech stack, and even if you plan to use Celery with RabbitMQ under the hood,
I recommend this book for its coverage of concepts, motivation, and patterns for dis‐
tributed message queues, as well as operating and tuning RabbitMQ at scale.

I learned a lot reading Seven Concurrency Models in Seven Weeks, by Paul Butcher
(Pragmatic Bookshelf), with the eloquent subtitle When Threads Unravel. Chapter 1
of the book presents the core concepts and challenges of programming with threads
and locks in Java.28 The remaining six chapters of the book are devoted to what the
author considers better alternatives for concurrent and parallel programming, as sup‐
ported by different languages, tools, and libraries. The examples use Java, Clojure,
Elixir, and C (for the chapter about parallel programming with the OpenCL frame‐
work). The CSP model is exemplified with Clojure code, although the Go language
deserves credit for popularizing that approach. Elixir is the language of the examples
illustrating the actor model. A freely available, alternative bonus chapter about actors
uses Scala and the Akka framework. Unless you already know Scala, Elixir is a more
accessible language to learn and experiment with the actor model and the
Erlang/OTP distributed systems platform.

Unmesh Joshi of Thoughtworks has contributed several pages documenting “Pat‐
terns of Distributed Systems” to Martin Fowler’s blog. The opening page is a great
introduction the topic, with links to individual patterns. Joshi is adding patterns
incrementally, but what’s already there distills years of hard-earned experience in
mission-critical systems.

Martin Kleppmann’s Designing Data-Intensive Applications (O’Reilly) is a rare book
written by a practitioner with deep industry experience and advanced academic back‐
ground. The author worked with large-scale data infrastructure at LinkedIn and two
startups, before becoming a researcher of distributed systems at the University of
Cambridge. Each chapter in Kleppmann’s book ends with an extensive list of refer‐
ences, including recent research results. The book also includes numerous illuminat‐
ing diagrams and beautiful concept maps.

I was fortunate to be in the audience for Francesco Cesarini’s outstanding workshop
on the architecture of reliable distributed systems at OSCON 2016: “Designing and

738 | Chapter 19: Concurrency Models in Python

https://fpy.li/19-92
https://fpy.li/19-93
https://fpy.li/19-94
https://fpy.li/19-94
https://fpy.li/19-95
https://fpy.li/19-96
https://fpy.li/19-97
https://fpy.li/19-98

architecting for scalability with Erlang/OTP” (video at the O’Reilly Learning Plat‐
form). Despite the title, 9:35 into the video, Cesarini explains:

Very little of what I am going to say will be Erlang-specific […]. The fact remains that
Erlang will remove a lot of accidental difficulties to making systems which are resilient
and which never fail, and are scalable. So it will be much easier if you do use Erlang, or
a language running on the Erlang virtual machine.

That workshop was based on the last four chapters of Designing for Scalability with
Erlang/OTP by Francesco Cesarini and Steve Vinoski (O’Reilly).

Programming distributed systems is challenging and exciting, but beware of web-
scale envy. The KISS principle remains solid engineering advice.

Check out the paper “Scalability! But at what COST?” by Frank McSherry, Michael
Isard, and Derek G. Murray. The authors identified parallel graph-processing systems
presented in academic symposia that require hundreds of cores to outperform a
“competent single-threaded implementation.” They also found systems that “under‐
perform one thread for all of their reported configurations.”

Those findings remind me of a classic hacker quip:

My Perl script is faster than your Hadoop cluster.

Soapbox

To Manage Complexity, We Need Constraints

I learned to program on a TI-58 calculator. Its “language” was similar to assembly. At
that level, all “variables” are globals, and you don’t have the luxury of structured con‐
trol flow statements. You have conditional jumps: instructions that take the execution
directly to an arbitrary location—ahead or behind the current spot—depending on
the value of a CPU register or flag.

Basically you can do anything in assembly, and that’s the challenge: there are very few
constraints to keep you from making mistakes, and to help maintainers understand
the code when changes are needed.

The second language I learned was the unstructured BASIC that came with 8-bit
computers—nothing like Visual Basic, which appeared much later. There were FOR,
GOSUB, and RETURN statements, but still no concept of local variables. GOSUB did not
support parameter passing: it was just a fancy GOTO that put a return line number in a
stack so that RETURN had a target to jump to. Subroutines could help themselves to the
global data, and put results there too. We had to improvise other forms of control
flow with combinations of IF and GOTO—which, again, allowed you to jump to any
line of the program.

Further Reading | 739

https://fpy.li/19-99
https://fpy.li/19-100
https://fpy.li/19-100
https://fpy.li/19-40
https://fpy.li/19-40
https://fpy.li/19-102
https://fpy.li/19-103

29 The Erlang community uses the term “process” for actors. In Erlang, each process is a function in its own
loop, so they are very lightweight and it’s feasible to have millions of them active at once in a single machine
—no relation to the heavyweight OS processes we’ve been talking about elsewhere in this chapter. So here we
have examples of the two sins described by Prof. Simon: using different words to mean the same thing, and
using one word to mean different things.

After a few years of programming with jumps and global variables, I remember the
struggle to rewire my brain for “structured programming” when I learned Pascal.
Now I had to use control flow statements around blocks of code that have a single
entry point. I couldn’t jump to any instruction I liked. Global variables were unavoid‐
able in BASIC, but now they were taboo. I needed to rethink the flow of data and
explicitly pass arguments to functions.

The next challenge for me was learning object-oriented programming. At its core,
object-oriented programming is structured programming with more constraints and
polymorphism. Information hiding forces yet another rethink of where data lives. I
remember being frustrated more than once because I had to refactor my code so that
a method I was writing could get information that was encapsulated in an object that
my method could not reach.

Functional programming languages add other constraints, but immutability is the
hardest to swallow after decades of imperative programming and object-oriented
programming. After we get used to these constraints, we see them as blessings. They
make reasoning about the code much easier.

Lack of constraints is the main problem with the threads-and-locks model of concur‐
rent programming. When summarizing Chapter 1 of Seven Concurrency Models in
Seven Weeks, Paul Butcher wrote:

The greatest weakness of the approach, however, is that threads-and-locks program‐
ming is hard. It may be easy for a language designer to add them to a language, but
they provide us, the poor programmers, with very little help.

Some examples of unconstrained behavior in that model:

• Threads can share access to arbitrary, mutable data structures.
• The scheduler can interrupt a thread at almost any point, including in the middle

of a simple operation like a += 1. Very few operations are atomic at the level of
source code expressions.

• Locks are usually advisory. That’s a technical term meaning that you must
remember to explicitly hold a lock before updating a shared data structure. If you
forget to get the lock, nothing prevents your code from messing up the data
while another thread dutifully holds the lock and is updating the same data.

In contrast, consider some constraints enforced by the actor model, in which the exe‐
cution unit is called an actor:29

740 | Chapter 19: Concurrency Models in Python

• An actor can have internal state, but cannot share state with other actors.
• Actors can only communicate by sending and receiving messages.
• Messages only hold copies of data, not references to mutable data.
• An actor only handles one message at a time. There is no concurrent execution

inside a single actor.

Of course, you can adopt an actor style of coding in any language by following these
rules. You can also use object-oriented programming idioms in C, and even struc‐
tured programming patterns in assembly. But doing any of that requires a lot of
agreement and discipline among everyone who touches the code.

Managing locks is unnecessary in the actor model, as implemented by Erlang and
Elixir, where all data types are immutable.

Threads-and-locks are not going away. I just don’t think dealing with such low-level
entities is a good use of my time as I write applications—as opposed to kernel mod‐
ules or databases.

I reserve the right to change my mind, always. But right now, I am convinced that the
actor model is the most sensible, general-purpose concurrent programming model
available. CSP (Communicating Sequential Processes) is also sensible, but its
implementation in Go leaves out some constraints. The idea in CSP is that coroutines
(or goroutines in Go) exchange data and synchronize using queues (called channels in
Go). But Go also supports memory sharing and locks. I’ve seen a book about Go
advocate the use of shared memory and locks instead of channels—in the name of
performance. Old habits die hard.

Further Reading | 741

1 From Michele Simionato’s post, “Threads, processes and concurrency in Python: some thoughts”, summar‐
ized as “Removing the hype around the multicore (non) revolution and some (hopefully) sensible comment
about threads and other forms of concurrency.”

CHAPTER 20

Concurrent Executors

The people bashing threads are typically system programmers which have in mind use
cases that the typical application programmer will never encounter in her life. [...] In
99% of the use cases an application programmer is likely to run into, the simple pat‐
tern of spawning a bunch of independent threads and collecting the results in a queue
is everything one needs to know.

—Michele Simionato, Python deep thinker1

This chapter focuses on the concurrent.futures.Executor classes that encapsulate
the pattern of “spawning a bunch of independent threads and collecting the results in
a queue,” described by Michele Simionato. The concurrent executors make this pat‐
tern almost trivial to use, not only with threads but also with processes—useful for
compute-intensive tasks.

Here I also introduce the concept of futures—objects representing the asynchronous
execution of an operation, similar to JavaScript promises. This primitive idea is the
foundation not only of concurrent.futures but also of the asyncio package, the
subject of Chapter 21.

What’s New in This Chapter
I renamed the chapter from “Concurrency with Futures” to “Concurrent Executors”
because the executors are the most important high-level feature covered here. Futures
are low-level objects, focused on in “Where Are the Futures?” on page 751, but mostly
invisible in the rest of the chapter.

743

https://fpy.li/20-1

2 Particularly if your cloud provider rents machines by the second, regardless of how busy the CPUs are.

All the HTTP client examples now use the new HTTPX library, which provides syn‐
chronous and asynchronous APIs.

The setup for the experiments in “Downloads with Progress Display and Error Han‐
dling” on page 762 is now simpler, thanks to the multithreaded server added to the
http.server package in Python 3.7. Previously, the standard library only had the
single-threaded BaseHttpServer, which was no good for experimenting with concur‐
rent clients, so I had to resort to external tools in the first edition of this book.

“Launching Processes with concurrent.futures” on page 754 now demonstrates how an
executor simplifies the code we saw in “Code for the Multicore Prime Checker” on
page 719.

Finally, I moved most of the theory to the new Chapter 19, “Concurrency Models in
Python”.

Concurrent Web Downloads
Concurrency is essential for efficient network I/O: instead of idly waiting for remote
machines, the application should do something else until a response comes back.2

To demonstrate with code, I wrote three simple programs to download images of 20
country flags from the web. The first one, flags.py, runs sequentially: it only requests
the next image when the previous one is downloaded and saved locally. The other
two scripts make concurrent downloads: they request several images practically at the
same time, and save them as they arrive. The flags_threadpool.py script uses the con
current.futures package, while flags_asyncio.py uses asyncio.

Example 20-1 shows the result of running the three scripts, three times each. I also
posted a 73s video on YouTube so you can watch them running while a macOS
Finder window displays the flags as they are saved. The scripts are downloading
images from fluentpython.com, which is behind a CDN, so you may see slower results
in the first runs. The results in Example 20-1 were obtained after several runs, so the
CDN cache was warm.

Example 20-1. Three typical runs of the scripts flags.py, flags_threadpool.py, and
flags_asyncio.py

$ python3 flags.py
BD BR CD CN DE EG ET FR ID IN IR JP MX NG PH PK RU TR US VN
20 flags downloaded in 7.26s
$ python3 flags.py
BD BR CD CN DE EG ET FR ID IN IR JP MX NG PH PK RU TR US VN

744 | Chapter 20: Concurrent Executors

https://fpy.li/httpx
https://fpy.li/20-2
https://fpy.li/20-3

20 flags downloaded in 7.20s
$ python3 flags.py
BD BR CD CN DE EG ET FR ID IN IR JP MX NG PH PK RU TR US VN
20 flags downloaded in 7.09s
$ python3 flags_threadpool.py
DE BD CN JP ID EG NG BR RU CD IR MX US PH FR PK VN IN ET TR
20 flags downloaded in 1.37s
$ python3 flags_threadpool.py
EG BR FR IN BD JP DE RU PK PH CD MX ID US NG TR CN VN ET IR
20 flags downloaded in 1.60s
$ python3 flags_threadpool.py
BD DE EG CN ID RU IN VN ET MX FR CD NG US JP TR PK BR IR PH
20 flags downloaded in 1.22s
$ python3 flags_asyncio.py
BD BR IN ID TR DE CN US IR PK PH FR RU NG VN ET MX EG JP CD
20 flags downloaded in 1.36s
$ python3 flags_asyncio.py
RU CN BR IN FR BD TR EG VN IR PH CD ET ID NG DE JP PK MX US
20 flags downloaded in 1.27s
$ python3 flags_asyncio.py
RU IN ID DE BR VN PK MX US IR ET EG NG BD FR CN JP PH CD TR
20 flags downloaded in 1.42s

The output for each run starts with the country codes of the flags as they are
downloaded, and ends with a message stating the elapsed time.

It took flags.py an average 7.18s to download 20 images.

The average for flags_threadpool.py was 1.40s.

For flags_asyncio.py, 1.35s was the average time.

Note the order of the country codes: the downloads happened in a different
order every time with the concurrent scripts.

The difference in performance between the concurrent scripts is not significant, but
they are both more than five times faster than the sequential script—and this is just
for the small task of downloading 20 files of a few kilobytes each. If you scale the task
to hundreds of downloads, the concurrent scripts can outpace the sequential code by
a factor or 20 or more.

While testing concurrent HTTP clients against public web servers,
you may inadvertently launch a denial-of-service (DoS) attack, or
be suspected of doing so. In the case of Example 20-1, it’s OK to do
it because those scripts are hardcoded to make only 20 requests.
We’ll use Python’s http.server package to run tests later in this
chapter.

Concurrent Web Downloads | 745

3 For servers that may be hit by many clients, there is a difference: coroutines scale better because they use
much less memory than threads, and also reduce the cost of context switching, which I mentioned in
“Thread-Based Nonsolution” on page 724.

Now let’s study the implementations of two of the scripts tested in Example 20-1:
flags.py and flags_threadpool.py. I will leave the third script, flags_asyncio.py, for
Chapter 21, but I wanted to demonstrate all three together to make two points:

1. Regardless of the concurrency constructs you use—threads or coroutines—you’ll
see vastly improved throughput over sequential code in network I/O operations,
if you code it properly.

2. For HTTP clients that can control how many requests they make, there is no sig‐
nificant difference in performance between threads and coroutines.3

On to the code.

A Sequential Download Script
Example 20-2 contains the implementation of flags.py, the first script we ran in
Example 20-1. It’s not very interesting, but we’ll reuse most of its code and settings to
implement the concurrent scripts, so it deserves some attention.

For clarity, there is no error handling in Example 20-2. We will
deal with exceptions later, but here I want to focus on the basic
structure of the code, to make it easier to contrast this script with
the concurrent ones.

Example 20-2. flags.py: sequential download script; some functions will be reused by
the other scripts

import time
from pathlib import Path
from typing import Callable

import httpx

POP20_CC = ('CN IN US ID BR PK NG BD RU JP '
 'MX PH VN ET EG DE IR TR CD FR').split()

BASE_URL = 'https://www.fluentpython.com/data/flags'
DEST_DIR = Path('downloaded')

def save_flag(img: bytes, filename: str) -> None:
 (DEST_DIR / filename).write_bytes(img)

746 | Chapter 20: Concurrent Executors

4 The images are originally from the CIA World Factbook, a public-domain, US government publication. I
copied them to my site to avoid the risk of launching a DOS attack on cia.gov.

def get_flag(cc: str) -> bytes:
 url = f'{BASE_URL}/{cc}/{cc}.gif'.lower()
 resp = httpx.get(url, timeout=6.1,
 follow_redirects=True)
 resp.raise_for_status()
 return resp.content

def download_many(cc_list: list[str]) -> int:
 for cc in sorted(cc_list):
 image = get_flag(cc)
 save_flag(image, f'{cc}.gif')
 print(cc, end=' ', flush=True)
 return len(cc_list)

def main(downloader: Callable[[list[str]], int]) -> None:
 DEST_DIR.mkdir(exist_ok=True)
 t0 = time.perf_counter()
 count = downloader(POP20_CC)
 elapsed = time.perf_counter() - t0
 print(f'\n{count} downloads in {elapsed:.2f}s')

if __name__ == '__main__':
 main(download_many)

Import the httpx library. It’s not part of the standard library, so by convention
the import goes after the standard library modules and a blank line.

List of the ISO 3166 country codes for the 20 most populous countries in order of
decreasing population.

The directory with the flag images.4

Local directory where the images are saved.

Save the img bytes to filename in the DEST_DIR.

Given a country code, build the URL and download the image, returning the
binary contents of the response.

It’s good practice to add a sensible timeout to network operations, to avoid
blocking for several minutes for no good reason.

Concurrent Web Downloads | 747

https://fpy.li/20-4

5 Setting follow_redirects=True is not needed for this example, but I wanted to highlight this important dif‐
ference between HTTPX and requests. Also, setting follow_redirects=True in this example gives me flexibil‐
ity to host the image files elsewhere in the future. I think the HTTPX default setting of follow_redirects
=False is sensible because unexpected redirects can mask needless requests and complicate error diagnostics.

By default, HTTPX does not follow redirects.5

There’s no error handling in this script, but this method raises an exception if the
HTTP status is not in the 2XX range—highly recommended to avoid silent
failures.

download_many is the key function to compare with the concurrent
implementations.

Loop over the list of country codes in alphabetical order, to make it easy to see
that the ordering is preserved in the output; return the number of country codes
downloaded.

Display one country code at a time in the same line so we can see progress as
each download happens. The end=' ' argument replaces the usual line break at
the end of each line printed with a space character, so all country codes are dis‐
played progressively in the same line. The flush=True argument is needed
because, by default, Python output is line buffered, meaning that Python only
displays printed characters after a line break.

main must be called with the function that will make the downloads; that way, we
can use main as a library function with other implementations of download_many
in the threadpool and ascyncio examples.

Create DEST_DIR if needed; don’t raise an error if the directory exists.

Record and report the elapsed time after running the downloader function.

Call main with the download_many function.

The HTTPX library is inspired by the Pythonic requests package,
but is built on a more modern foundation. Crucially, HTTPX pro‐
vides synchronous and asynchronous APIs, so we can use it in all
HTTP client examples in this chapter and the next. Python’s stan‐
dard library provides the urllib.request module, but its API is
synchronous only, and is not user friendly.

748 | Chapter 20: Concurrent Executors

https://fpy.li/httpx
https://fpy.li/20-5

There’s really nothing new to flags.py. It serves as a baseline for comparing the other
scripts, and I used it as a library to avoid redundant code when implementing them.
Now let’s see a reimplementation using concurrent.futures.

Downloading with concurrent.futures
The main features of the concurrent.futures package are the ThreadPoolExecutor
and ProcessPoolExecutor classes, which implement an API to submit callables for
execution in different threads or processes, respectively. The classes transparently
manage a pool of worker threads or processes, and queues to distribute jobs and col‐
lect results. But the interface is very high-level, and we don’t need to know about any
of those details for a simple use case like our flag downloads.

Example 20-3 shows the easiest way to implement the downloads concurrently, using
the ThreadPoolExecutor.map method.

Example 20-3. flags_threadpool.py: threaded download script using futures.Thread
PoolExecutor

from concurrent import futures

from flags import save_flag, get_flag, main

def download_one(cc: str):
 image = get_flag(cc)
 save_flag(image, f'{cc}.gif')
 print(cc, end=' ', flush=True)
 return cc

def download_many(cc_list: list[str]) -> int:
 with futures.ThreadPoolExecutor() as executor:
 res = executor.map(download_one, sorted(cc_list))

 return len(list(res))

if __name__ == '__main__':
 main(download_many)

Reuse some functions from the flags module (Example 20-2).

Function to download a single image; this is what each worker will execute.

Instantiate the ThreadPoolExecutor as a context manager; the executor

.__exit__ method will call executor.shutdown(wait=True), which will block
until all threads are done.

Concurrent Web Downloads | 749

The map method is similar to the map built-in, except that the download_one func‐
tion will be called concurrently from multiple threads; it returns a generator that
you can iterate to retrieve the value returned by each function call—in this case,
each call to download_one will return a country code.

Return the number of results obtained. If any of the threaded calls raises an
exception, that exception is raised here when the implicit next() call inside the
list constructor tries to retrieve the corresponding return value from the itera‐
tor returned by executor.map.

Call the main function from the flags module, passing the concurrent version of
download_many.

Note that the download_one function from Example 20-3 is essentially the body of the
for loop in the download_many function from Example 20-2. This is a common refac‐
toring when writing concurrent code: turning the body of a sequential for loop into a
function to be called concurrently.

Example 20-3 is very short because I was able to reuse most func‐
tions from the sequential flags.py script. One of the best features of
concurrent.futures is to make it simple to add concurrent execu‐
tion on top of legacy sequential code.

The ThreadPoolExecutor constructor takes several arguments not shown, but the
first and most important one is max_workers, setting the maximum number of
worker threads to be executed. When max_workers is None (the default), ThreadPool
Executor decides its value using the following expression—since Python 3.8:

max_workers = min(32, os.cpu_count() + 4)

The rationale is explained in the ThreadPoolExecutor documentation:

This default value preserves at least 5 workers for I/O bound tasks. It utilizes at most
32 CPU cores for CPU bound tasks which release the GIL. And it avoids using very
large resources implicitly on many-core machines.

ThreadPoolExecutor now reuses idle worker threads before starting max_workers
worker threads too.

To conclude: the computed default for max_workers is sensible, and ThreadPoolExe
cutor avoids starting new workers unnecessarily. Understanding the logic behind
max_workers may help you decide when and how to set it yourself.

The library is called concurrency.futures, yet there are no futures to be seen in
Example 20-3, so you may be wondering where they are. The next section explains.

750 | Chapter 20: Concurrent Executors

https://fpy.li/20-6

Where Are the Futures?
Futures are core components of concurrent.futures and of asyncio, but as users of
these libraries we sometimes don’t see them. Example 20-3 depends on futures
behind the scenes, but the code I wrote does not touch them directly. This section is
an overview of futures, with an example that shows them in action.

Since Python 3.4, there are two classes named Future in the standard library: concur
rent.futures.Future and asyncio.Future. They serve the same purpose: an
instance of either Future class represents a deferred computation that may or may
not have completed. This is somewhat similar to the Deferred class in Twisted, the
Future class in Tornado, and Promise in modern JavaScript.

Futures encapsulate pending operations so that we can put them in queues, check
whether they are done, and retrieve results (or exceptions) when they become
available.

An important thing to know about futures is that you and I should not create them:
they are meant to be instantiated exclusively by the concurrency framework, be it
concurrent.futures or asyncio. Here is why: a Future represents something that
will eventually run, therefore it must be scheduled to run, and that’s the job of the
framework. In particular, concurrent.futures.Future instances are created only as
the result of submitting a callable for execution with a concurrent.futures.Execu
tor subclass. For example, the Executor.submit() method takes a callable, schedules
it to run, and returns a Future.

Application code is not supposed to change the state of a future: the concurrency
framework changes the state of a future when the computation it represents is done,
and we can’t control when that happens.

Both types of Future have a .done() method that is nonblocking and returns a
Boolean that tells you whether the callable wrapped by that future has executed or
not. However, instead of repeatedly asking whether a future is done, client code usu‐
ally asks to be notified. That’s why both Future classes have an .add_done_call
back() method: you give it a callable, and the callable will be invoked with the future
as the single argument when the future is done. Be aware that the callback callable
will run in the same worker thread or process that ran the function wrapped in the
future.

There is also a .result() method, which works the same in both classes when the
future is done: it returns the result of the callable, or re-raises whatever exception
might have been thrown when the callable was executed. However, when the future is
not done, the behavior of the result method is very different between the two flavors
of Future. In a concurrency.futures.Future instance, invoking f.result() will
block the caller’s thread until the result is ready. An optional timeout argument can

Concurrent Web Downloads | 751

be passed, and if the future is not done in the specified time, the result method
raises TimeoutError. The asyncio.Future.result method does not support time‐
out, and await is the preferred way to get the result of futures in asyncio—but await
doesn’t work with concurrency.futures.Future instances.

Several functions in both libraries return futures; others use them in their implemen‐
tation in a way that is transparent to the user. An example of the latter is the Execu
tor.map we saw in Example 20-3: it returns an iterator in which __next__ calls the
result method of each future, so we get the results of the futures, and not the futures
themselves.

To get a practical look at futures, we can rewrite Example 20-3 to use the concur
rent.futures.as_completed function, which takes an iterable of futures and returns
an iterator that yields futures as they are done.

Using futures.as_completed requires changes to the download_many function only.
The higher-level executor.map call is replaced by two for loops: one to create and
schedule the futures, the other to retrieve their results. While we are at it, we’ll add a
few print calls to display each future before and after it’s done. Example 20-4 shows
the code for a new download_many function. The code for download_many grew from
5 to 17 lines, but now we get to inspect the mysterious futures. The remaining func‐
tions are the same as in Example 20-3.

Example 20-4. flags_threadpool_futures.py: replacing executor.map with execu
tor.submit and futures.as_completed in the download_many function

def download_many(cc_list: list[str]) -> int:
 cc_list = cc_list[:5]
 with futures.ThreadPoolExecutor(max_workers=3) as executor:
 to_do: list[futures.Future] = []
 for cc in sorted(cc_list):
 future = executor.submit(download_one, cc)
 to_do.append(future)
 print(f'Scheduled for {cc}: {future}')

 for count, future in enumerate(futures.as_completed(to_do), 1):
 res: str = future.result()
 print(f'{future} result: {res!r}')

 return count

752 | Chapter 20: Concurrent Executors

https://fpy.li/20-7
https://fpy.li/20-7

For this demonstration, use only the top five most populous countries.

Set max_workers to 3 so we can see pending futures in the output.

Iterate over country codes alphabetically, to make it clear that results will arrive
out of order.

executor.submit schedules the callable to be executed, and returns a future
representing this pending operation.

Store each future so we can later retrieve them with as_completed.

Display a message with the country code and the respective future.

as_completed yields futures as they are completed.

Get the result of this future.

Display the future and its result.

Note that the future.result() call will never block in this example because the
future is coming out of as_completed. Example 20-5 shows the output of one run of
Example 20-4.

Example 20-5. Output of flags_threadpool_futures.py

$ python3 flags_threadpool_futures.py
Scheduled for BR: <Future at 0x100791518 state=running>
Scheduled for CN: <Future at 0x100791710 state=running>
Scheduled for ID: <Future at 0x100791a90 state=running>
Scheduled for IN: <Future at 0x101807080 state=pending>
Scheduled for US: <Future at 0x101807128 state=pending>
CN <Future at 0x100791710 state=finished returned str> result: 'CN'
BR ID <Future at 0x100791518 state=finished returned str> result: 'BR'
<Future at 0x100791a90 state=finished returned str> result: 'ID'
IN <Future at 0x101807080 state=finished returned str> result: 'IN'
US <Future at 0x101807128 state=finished returned str> result: 'US'

5 downloads in 0.70s

The futures are scheduled in alphabetical order; the repr() of a future shows its
state: the first three are running, because there are three worker threads.

The last two futures are pending, waiting for worker threads.

Concurrent Web Downloads | 753

The first CN here is the output of download_one in a worker thread; the rest of the
line is the output of download_many.

Here, two threads output codes before download_many in the main thread can
display the result of the first thread.

I recommend experimenting with flags_threadpool_futures.py. If
you run it several times, you’ll see the order of the results varying.
Increasing max_workers to 5 will increase the variation in the order
of the results. Decreasing it to 1 will make this script run sequen‐
tially, and the order of the results will always be the order of the
submit calls.

We saw two variants of the download script using concurrent.futures: one in
Example 20-3 with ThreadPoolExecutor.map and one in Example 20-4 with
futures.as_completed. If you are curious about the code for flags_asyncio.py, you
may peek at Example 21-3 in Chapter 21, where it is explained.

Now let’s take a brief look at a simple way to work around the GIL for CPU-bound
jobs using concurrent.futures.

Launching Processes with concurrent.futures
The concurrent.futures documentation page is subtitled “Launching parallel
tasks.” The package enables parallel computation on multicore machines because it
supports distributing work among multiple Python processes using the ProcessPool
Executor class.

Both ProcessPoolExecutor and ThreadPoolExecutor implement the Executor
interface, so it’s easy to switch from a thread-based to a process-based solution using
concurrent.futures.

There is no advantage in using a ProcessPoolExecutor for the flags download exam‐
ple or any I/O-bound job. It’s easy to verify this; just change these lines in
Example 20-3:

def download_many(cc_list: list[str]) -> int:
 with futures.ThreadPoolExecutor() as executor:

To this:

def download_many(cc_list: list[str]) -> int:
 with futures.ProcessPoolExecutor() as executor:

754 | Chapter 20: Concurrent Executors

https://fpy.li/20-8
https://fpy.li/20-9

The constructor for ProcessPoolExecutor also has a max_workers parameter, which
defaults to None. In that case, the executor limits the number of workers to the num‐
ber returned by os.cpu_count().

Processes use more memory and take longer to start than threads, so the real value
of ProcessPoolExecutor is in CPU-intensive jobs. Let’s go back to the primality
test example of “A Homegrown Process Pool” on page 716, rewriting it with
concurrent.futures.

Multicore Prime Checker Redux
In “Code for the Multicore Prime Checker” on page 719 we studied procs.py, a script
that checked the primality of some large numbers using multiprocessing. In
Example 20-6 we solve the same problem in the proc_pool.py program using a Proc
essPoolExecutor. From the first import to the main() call at the end, procs.py has 43
nonblank lines of code, and proc_pool.py has 31—28% shorter.

Example 20-6. proc_pool.py: procs.py rewritten with ProcessPoolExecutor

import sys
from concurrent import futures
from time import perf_counter
from typing import NamedTuple

from primes import is_prime, NUMBERS

class PrimeResult(NamedTuple):
 n: int
 flag: bool
 elapsed: float

def check(n: int) -> PrimeResult:
 t0 = perf_counter()
 res = is_prime(n)
 return PrimeResult(n, res, perf_counter() - t0)

def main() -> None:
 if len(sys.argv) < 2:
 workers = None
 else:
 workers = int(sys.argv[1])

 executor = futures.ProcessPoolExecutor(workers)
 actual_workers = executor._max_workers # type: ignore

 print(f'Checking {len(NUMBERS)} numbers with {actual_workers} processes:')

 t0 = perf_counter()

Launching Processes with concurrent.futures | 755

 numbers = sorted(NUMBERS, reverse=True)
 with executor:
 for n, prime, elapsed in executor.map(check, numbers):
 label = 'P' if prime else ' '
 print(f'{n:16} {label} {elapsed:9.6f}s')

 time = perf_counter() - t0
 print(f'Total time: {time:.2f}s')

if __name__ == '__main__':
 main()

No need to import multiprocessing, SimpleQueue etc.; concurrent.futures
hides all that.

The PrimeResult tuple and the check function are the same as we saw in
procs.py, but we don’t need the queues and the worker function anymore.

Instead of deciding ourselves how many workers to use if no command-line
argument was given, we set workers to None and let the ProcessPoolExecutor
decide.

Here I build the ProcessPoolExecutor before the with block in ➐ so that I can
display the actual number of workers in the next line.

_max_workers is an undocumented instance attribute of a ProcessPoolExecutor.
I decided to use it to show the number of workers when the workers variable is
None. Mypy correctly complains when I access it, so I put the type: ignore com‐
ment to silence it.

Sort the numbers to be checked in descending order. This will expose a differ‐
ence in the behavior of proc_pool.py when compared with procs.py. See the
explanation after this example.

Use the executor as a context manager.

The executor.map call returns the PrimeResult instances returned by check in
the same order as the numbers arguments.

If you run Example 20-6, you’ll see the results appearing in strict descending order, as
shown in Example 20-7. In contrast, the ordering of the output of procs.py (shown in
“Process-Based Solution” on page 718) is heavily influenced by the difficulty in
checking whether each number is a prime. For example, procs.py shows the result for

756 | Chapter 20: Concurrent Executors

7777777777777777 near the top, because it has a low divisor, 7, so is_prime quickly
determines it’s not a prime.

In contrast, 7777777536340681 is 881917092, so is_prime will take much longer to
determine that it’s a composite number, and even longer to find out that
7777777777777753 is prime—therefore both of these numbers appear near the end of
the output of procs.py.

Running proc_pool.py, you’ll observe not only the descending order of the results, but
also that the program will appear to be stuck after showing the result for
9999999999999999.

Example 20-7. Output of proc_pool.py

$./proc_pool.py
Checking 20 numbers with 12 processes:
9999999999999999 0.000024s
9999999999999917 P 9.500677s
7777777777777777 0.000022s
7777777777777753 P 8.976933s
7777777536340681 8.896149s
6666667141414921 8.537621s
6666666666666719 P 8.548641s
6666666666666666 0.000002s
5555555555555555 0.000017s
5555555555555503 P 8.214086s
5555553133149889 8.067247s
4444444488888889 7.546234s
4444444444444444 0.000002s
4444444444444423 P 7.622370s
3333335652092209 6.724649s
3333333333333333 0.000018s
3333333333333301 P 6.655039s
 299593572317531 P 2.072723s
 142702110479723 P 1.461840s
 2 P 0.000001s
Total time: 9.65s

This line appears very quickly.

This line takes more than 9.5s to show up.

All the remaining lines appear almost immediately.

Launching Processes with concurrent.futures | 757

Here is why proc_pool.py behaves in that way:

• As mentioned before, executor.map(check, numbers) returns the result in the
same order as the numbers are given.

• By default, proc_pool.py uses as many workers as there are CPUs—it’s what
ProcessPoolExecutor does when max_workers is None. That’s 12 processes in
this laptop.

• Because we are submitting numbers in descending order, the first is
9999999999999999; with 9 as a divisor, it returns quickly.

• The second number is 9999999999999917, the largest prime in the sample. This
will take longer than all the others to check.

• Meanwhile, the remaining 11 processes will be checking other numbers, which
are either primes or composites with large factors, or composites with very small
factors.

• When the worker in charge of 9999999999999917 finally determines that’s a
prime, all the other processes have completed their last jobs, so the results appear
immediately after.

Although the progress of proc_pool.py is not as visible as that of
procs.py, the overall execution time is practically the same as depic‐
ted in Figure 19-2, for the same number of workers and CPU cores.

Understanding how concurrent programs behave is not straightforward, so here’s is a
second experiment that may help you visualize the operation of Executor.map.

Experimenting with Executor.map
Let’s investigate Executor.map, now using a ThreadPoolExecutor with three workers
running five callables that output timestamped messages. The code is in
Example 20-8, the output in Example 20-9.

Example 20-8. demo_executor_map.py: Simple demonstration of the map method of
ThreadPoolExecutor

from time import sleep, strftime
from concurrent import futures

def display(*args):
 print(strftime('[%H:%M:%S]'), end=' ')
 print(*args)

758 | Chapter 20: Concurrent Executors

def loiter(n):
 msg = '{}loiter({}): doing nothing for {}s...'
 display(msg.format('\t'*n, n, n))
 sleep(n)
 msg = '{}loiter({}): done.'
 display(msg.format('\t'*n, n))
 return n * 10

def main():
 display('Script starting.')
 executor = futures.ThreadPoolExecutor(max_workers=3)
 results = executor.map(loiter, range(5))
 display('results:', results)
 display('Waiting for individual results:')
 for i, result in enumerate(results):
 display(f'result {i}: {result}')

if __name__ == '__main__':
 main()

This function simply prints whatever arguments it gets, preceded by a timestamp
in the format [HH:MM:SS].

loiter does nothing except display a message when it starts, sleep for n seconds,
then display a message when it ends; tabs are used to indent the messages accord‐
ing to the value of n.

loiter returns n * 10 so we can see how to collect results.

Create a ThreadPoolExecutor with three threads.

Submit five tasks to the executor. Since there are only three threads, only three
of those tasks will start immediately: the calls loiter(0), loiter(1), and loi
ter(2); this is a nonblocking call.

Immediately display the results of invoking executor.map: it’s a generator, as
the output in Example 20-9 shows.

The enumerate call in the for loop will implicitly invoke next(results), which
in turn will invoke _f.result() on the (internal) _f future representing the first
call, loiter(0). The result method will block until the future is done, therefore
each iteration in this loop will have to wait for the next result to be ready.

Experimenting with Executor.map | 759

6 Your mileage may vary: with threads, you never know the exact sequencing of events that should happen
nearly at the same time; it’s possible that, in another machine, you see loiter(1) starting before loiter(0)
finishes, particularly because sleep always releases the GIL, so Python may switch to another thread even if
you sleep for 0s.

I encourage you to run Example 20-8 and see the display being updated incremen‐
tally. While you’re at it, play with the max_workers argument for the ThreadPoolExec
utor and with the range function that produces the arguments for the executor.map
call—or replace it with lists of handpicked values to create different delays.

Example 20-9 shows a sample run of Example 20-8.

Example 20-9. Sample run of demo_executor_map.py from Example 20-8

$ python3 demo_executor_map.py
[15:56:50] Script starting.
[15:56:50] loiter(0): doing nothing for 0s...
[15:56:50] loiter(0): done.
[15:56:50] loiter(1): doing nothing for 1s...
[15:56:50] loiter(2): doing nothing for 2s...
[15:56:50] results: <generator object result_iterator at 0x106517168>
[15:56:50] loiter(3): doing nothing for 3s...
[15:56:50] Waiting for individual results:
[15:56:50] result 0: 0
[15:56:51] loiter(1): done.
[15:56:51] loiter(4): doing nothing for 4s...
[15:56:51] result 1: 10
[15:56:52] loiter(2): done.
[15:56:52] result 2: 20
[15:56:53] loiter(3): done.
[15:56:53] result 3: 30
[15:56:55] loiter(4): done.
[15:56:55] result 4: 40

This run started at 15:56:50.

The first thread executes loiter(0), so it will sleep for 0s and return even before
the second thread has a chance to start, but YMMV.6

loiter(1) and loiter(2) start immediately (because the thread pool has three
workers, it can run three functions concurrently).

This shows that the results returned by executor.map is a generator; nothing so
far would block, regardless of the number of tasks and the max_workers setting.

760 | Chapter 20: Concurrent Executors

Because loiter(0) is done, the first worker is now available to start the fourth
thread for loiter(3).

This is where execution may block, depending on the parameters given to the
loiter calls: the __next__ method of the results generator must wait until the
first future is complete. In this case, it won’t block because the call to loiter(0)
finished before this loop started. Note that everything up to this point happened
within the same second: 15:56:50.

loiter(1) is done one second later, at 15:56:51. The thread is freed to start
loiter(4).

The result of loiter(1) is shown: 10. Now the for loop will block waiting for the
result of loiter(2).

The pattern repeats: loiter(2) is done, its result is shown; same with loiter(3).

There is a 2s delay until loiter(4) is done, because it started at 15:56:51 and did
nothing for 4s.

The Executor.map function is easy to use, but often it’s preferable to get the results as
they are ready, regardless of the order they were submitted. To do that, we need a
combination of the Executor.submit method and the futures.as_completed func‐
tion, as we saw in Example 20-4. We’ll come back to this technique in “Using
futures.as_completed” on page 769.

The combination of executor.submit and futures.as_completed
is more flexible than executor.map because you can submit
different callables and arguments, while executor.map is designed
to run the same callable on the different arguments. In addition,
the set of futures you pass to futures.as_completed may come
from more than one executor—perhaps some were created by
a ThreadPoolExecutor instance, while others are from a
ProcessPoolExecutor.

In the next section, we will resume the flag download examples with new require‐
ments that will force us to iterate over the results of futures.as_completed instead
of using executor.map.

Experimenting with Executor.map | 761

Downloads with Progress Display and Error Handling
As mentioned, the scripts in “Concurrent Web Downloads” on page 744 have no
error handling to make them easier to read and to contrast the structure of the three
approaches: sequential, threaded, and asynchronous.

In order to test the handling of a variety of error conditions, I created the flags2
examples:

flags2_common.py
This module contains common functions and settings used by all flags2 exam‐
ples, including a main function, which takes care of command-line parsing, tim‐
ing, and reporting results. That is really support code, not directly relevant to
the subject of this chapter, so I will not list the source code here, but you can
read it in the fluentpython/example-code-2e repository: 20-executors/getflags/
flags2_common.py.

flags2_sequential.py
A sequential HTTP client with proper error handling and progress bar display.
Its download_one function is also used by flags2_threadpool.py.

flags2_threadpool.py
Concurrent HTTP client based on futures.ThreadPoolExecutor to demon‐
strate error handling and integration of the progress bar.

flags2_asyncio.py
Same functionality as the previous example, but implemented with asyncio and
httpx. This will be covered in “Enhancing the asyncio Downloader” on page 787,
in Chapter 21.

Be Careful when Testing Concurrent Clients

When testing concurrent HTTP clients on public web servers, you
may generate many requests per second, and that’s how denial-of-
service (DoS) attacks are made. Carefully throttle your clients when
hitting public servers. For testing, set up a local HTTP server. See
“Setting Up Test Servers” on page 765 for instructions.

The most visible feature of the flags2 examples is that they have an animated, text-
mode progress bar implemented with the tqdm package. I posted a 108s video on
YouTube to show the progress bar and contrast the speed of the three flags2 scripts.
In the video, I start with the sequential download, but I interrupt it after 32s because
it was going to take more than 5 minutes to hit on 676 URLs and get 194 flags. I then
run the threaded and asyncio scripts three times each, and every time they complete

762 | Chapter 20: Concurrent Executors

https://fpy.li/code
https://fpy.li/20-10
https://fpy.li/20-10
https://fpy.li/20-11
https://fpy.li/20-12
https://fpy.li/20-12

the job in 6s or less (i.e., more than 60 times faster). Figure 20-1 shows two screen‐
shots: during and after running flags2_threadpool.py.

Figure 20-1. Top-left: flags2_threadpool.py running with live progress bar generated by
tqdm; bottom-right: same terminal window after the script is finished.

The simplest tqdm example appears in an animated .gif in the project’s README.md.
If you type the following code in the Python console after installing the tqdm pack‐
age, you’ll see an animated progress bar where the comment is:

>>> import time
>>> from tqdm import tqdm
>>> for i in tqdm(range(1000)):
... time.sleep(.01)
...
>>> # -> progress bar will appear here <-

Besides the neat effect, the tqdm function is also interesting conceptually: it consumes
any iterable and produces an iterator which, while it’s consumed, displays the pro‐
gress bar and estimates the remaining time to complete all iterations. To compute
that estimate, tqdm needs to get an iterable that has a len, or additionally receive the
total= argument with the expected number of items. Integrating tqdm with our
flags2 examples provides an opportunity to look deeper into how the concurrent
scripts actually work, by forcing us to use the futures.as_completed and the asyn
cio.as_completed functions so that tqdm can display progress as each future is
completed.

The other feature of the flags2 example is a command-line interface. All three
scripts accept the same options, and you can see them by running any of the scripts
with the -h option. Example 20-10 shows the help text.

Downloads with Progress Display and Error Handling | 763

https://fpy.li/20-13
https://fpy.li/20-7
https://fpy.li/20-15
https://fpy.li/20-15

Example 20-10. Help screen for the scripts in the flags2 series

$ python3 flags2_threadpool.py -h
usage: flags2_threadpool.py [-h] [-a] [-e] [-l N] [-m CONCURRENT] [-s LABEL]
 [-v]
 [CC [CC ...]]

Download flags for country codes. Default: top 20 countries by population.

positional arguments:
 CC country code or 1st letter (eg. B for BA...BZ)

optional arguments:
 -h, --help show this help message and exit
 -a, --all get all available flags (AD to ZW)
 -e, --every get flags for every possible code (AA...ZZ)
 -l N, --limit N limit to N first codes
 -m CONCURRENT, --max_req CONCURRENT
 maximum concurrent requests (default=30)
 -s LABEL, --server LABEL
 Server to hit; one of DELAY, ERROR, LOCAL, REMOTE
 (default=LOCAL)
 -v, --verbose output detailed progress info

All arguments are optional. But the -s/--server is essential for testing: it lets you
choose which HTTP server and port will be used in the test. Pass one of these case-
insensitive labels to determine where the script will look for the flags:

LOCAL

Use http://localhost:8000/flags; this is the default. You should configure a
local HTTP server to answer at port 8000. See the following note for instructions.

REMOTE

Use http://fluentpython.com/data/flags; that is a public website owned by
me, hosted on a shared server. Please do not pound it with too many concurrent
requests. The fluentpython.com domain is handled by the Cloudflare CDN (Con‐
tent Delivery Network) so you may notice that the first downloads are slower,
but they get faster when the CDN cache warms up.

DELAY

Use http://localhost:8001/flags; a server delaying HTTP responses should
be listening to port 8001. I wrote slow_server.py to make it easier to experiment.
You’ll find it in the 20-futures/getflags/ directory of the Fluent Python code repos‐
itory. See the following note for instructions.

ERROR

Use http://localhost:8002/flags; a server returning some HTTP errors
should be listening on port 8002. Instructions are next.

764 | Chapter 20: Concurrent Executors

https://fpy.li/20-16
https://fpy.li/code
https://fpy.li/code

Setting Up Test Servers

If you don’t have a local HTTP server for testing, I wrote setup
instructions using only Python ≥ 3.9 (no external libraries) in 20-
executors/getflags/README.adoc in the fluentpython/example-
code-2e repository. In short, README.adoc describes how to use:

python3 -m http.server
The LOCAL server on port 8000

python3 slow_server.py
The DELAY server on port 8001, which adds a random delay
of .5s to 5s before each response

python3 slow_server.py 8002 --error-rate .25
The ERROR server on port 8002, which in addition to the ran‐
dom delay, has a 25% chance of returning a “418 I’m a teapot”
error response

By default, each flags2*.py script will fetch the flags of the 20 most populous countries
from the LOCAL server (http://localhost:8000/flags) using a default number of
concurrent connections, which varies from script to script. Example 20-11 shows
a sample run of the flags2_sequential.py script using all defaults. To run it, you
need a local server, as explained in “Be Careful when Testing Concurrent Clients” on
page 762.

Example 20-11. Running flags2_sequential.py with all defaults: LOCAL site, top 20
flags, 1 concurrent connection

$ python3 flags2_sequential.py
LOCAL site: http://localhost:8000/flags
Searching for 20 flags: from BD to VN
1 concurrent connection will be used.

20 flags downloaded.
Elapsed time: 0.10s

You can select which flags will be downloaded in several ways. Example 20-12 shows
how to download all flags with country codes starting with the letters A, B, or C.

Example 20-12. Run flags2_threadpool.py to fetch all flags with country codes prefixes
A, B, or C from the DELAY server

$ python3 flags2_threadpool.py -s DELAY a b c
DELAY site: http://localhost:8001/flags
Searching for 78 flags: from AA to CZ
30 concurrent connections will be used.

Downloads with Progress Display and Error Handling | 765

https://fpy.li/20-17
https://fpy.li/20-17
https://fpy.li/code
https://fpy.li/code
https://fpy.li/20-18

43 flags downloaded.
35 not found.
Elapsed time: 1.72s

Regardless of how the country codes are selected, the number of flags to fetch can be
limited with the -l/--limit option. Example 20-13 demonstrates how to run exactly
100 requests, combining the -a option to get all flags with -l 100.

Example 20-13. Run flags2_asyncio.py to get 100 flags (-al 100) from the ERROR
server, using 100 concurrent requests (-m 100)

$ python3 flags2_asyncio.py -s ERROR -al 100 -m 100
ERROR site: http://localhost:8002/flags
Searching for 100 flags: from AD to LK
100 concurrent connections will be used.

73 flags downloaded.
27 errors.
Elapsed time: 0.64s

That’s the user interface of the flags2 examples. Let’s see how they are implemented.

Error Handling in the flags2 Examples
The common strategy in all three examples to deal with HTTP errors is that 404
errors (not found) are handled by the function in charge of downloading a single file
(download_one). Any other exception propagates to be handled by the down
load_many function or the supervisor coroutine—in the asyncio example.

Once more, we’ll start by studying the sequential code, which is easier to follow—and
mostly reused by the thread pool script. Example 20-14 shows the functions that per‐
form the actual downloads in the flags2_sequential.py and flags2_threadpool.py
scripts.

Example 20-14. flags2_sequential.py: basic functions in charge of downloading; both
are reused in flags2_threadpool.py

from collections import Counter
from http import HTTPStatus

import httpx
import tqdm # type: ignore

from flags2_common import main, save_flag, DownloadStatus

DEFAULT_CONCUR_REQ = 1
MAX_CONCUR_REQ = 1

766 | Chapter 20: Concurrent Executors

7 As of September 2021, there are no type hints in the current release of tdqm. That’s OK. The world will not
end because of that. Thank Guido for optional typing!

def get_flag(base_url: str, cc: str) -> bytes:
 url = f'{base_url}/{cc}/{cc}.gif'.lower()
 resp = httpx.get(url, timeout=3.1, follow_redirects=True)
 resp.raise_for_status()
 return resp.content

def download_one(cc: str, base_url: str, verbose: bool = False) -> DownloadStatus:
 try:
 image = get_flag(base_url, cc)
 except httpx.HTTPStatusError as exc:
 res = exc.response
 if res.status_code == HTTPStatus.NOT_FOUND:
 status = DownloadStatus.NOT_FOUND
 msg = f'not found: {res.url}'
 else:
 raise
 else:
 save_flag(image, f'{cc}.gif')
 status = DownloadStatus.OK
 msg = 'OK'

 if verbose:
 print(cc, msg)

 return status

Import the tqdm progress-bar display library, and tell Mypy to skip checking it.7

Import a couple of functions and an Enum from the flags2_common module.

Raises HTTPStetusError if the HTTP status code is not in range(200, 300).

download_one catches HTTPStatusError to handle HTTP code 404 specifically…

…by setting its local status to DownloadStatus.NOT_FOUND; DownloadStatus is
an Enum imported from flags2_common.py.

Any other HTTPStatusError exception is re-raised to propagate to the caller.

If the -v/--verbose command-line option is set, the country code and status
message are displayed; this is how you’ll see progress in verbose mode.

Downloads with Progress Display and Error Handling | 767

Example 20-15 lists the sequential version of the download_many function. This code
is straightforward, but it’s worth studying to contrast with the concurrent versions
coming up. Focus on how it reports progress, handles errors, and tallies downloads.

Example 20-15. flags2_sequential.py: the sequential implementation of download_many

def download_many(cc_list: list[str],
 base_url: str,
 verbose: bool,
 _unused_concur_req: int) -> Counter[DownloadStatus]:
 counter: Counter[DownloadStatus] = Counter()
 cc_iter = sorted(cc_list)
 if not verbose:
 cc_iter = tqdm.tqdm(cc_iter)
 for cc in cc_iter:
 try:
 status = download_one(cc, base_url, verbose)
 except httpx.HTTPStatusError as exc:
 error_msg = 'HTTP error {resp.status_code} - {resp.reason_phrase}'
 error_msg = error_msg.format(resp=exc.response)
 except httpx.RequestError as exc:
 error_msg = f'{exc} {type(exc)}'.strip()
 except KeyboardInterrupt:
 break
 else:
 error_msg = ''

 if error_msg:
 status = DownloadStatus.ERROR
 counter[status] += 1
 if verbose and error_msg:
 print(f'{cc} error: {error_msg}')

 return counter

This Counter will tally the different download outcomes: DownloadStatus.OK,
DownloadStatus.NOT_FOUND, or DownloadStatus.ERROR.

cc_iter holds the list of the country codes received as arguments, ordered
alphabetically.

If not running in verbose mode, cc_iter is passed to tqdm, which returns an iter‐
ator yielding the items in cc_iter while also animating the progress bar.

Make successive calls to download_one.

768 | Chapter 20: Concurrent Executors

HTTP status code exceptions raised by get_flag and not handled by down
load_one are handled here.

Other network-related exceptions are handled here. Any other exception will
abort the script, because the flags2_common.main function that calls down
load_many has no try/except.

Exit the loop if the user hits Ctrl-C.

If no exception escaped download_one, clear the error message.

If there was an error, set the local status accordingly.

Increment the counter for that status.

In verbose mode, display the error message for the current country code, if any.

Return counter so that main can display the numbers in the final report.

We’ll now study the refactored thread pool example, flags2_threadpool.py.

Using futures.as_completed
In order to integrate the tqdm progress bar and handle errors on each request,
the flags2_threadpool.py script uses futures.ThreadPoolExecutor with the
futures.as_completed function we’ve already seen. Example 20-16 is the full listing
of flags2_threadpool.py. Only the download_many function is implemented; the other
functions are reused from flags2_common.py and flags2_sequential.py.

Example 20-16. flags2_threadpool.py: full listing

from collections import Counter
from concurrent.futures import ThreadPoolExecutor, as_completed

import httpx
import tqdm # type: ignore

from flags2_common import main, DownloadStatus
from flags2_sequential import download_one

DEFAULT_CONCUR_REQ = 30
MAX_CONCUR_REQ = 1000

def download_many(cc_list: list[str],
 base_url: str,

Downloads with Progress Display and Error Handling | 769

 verbose: bool,
 concur_req: int) -> Counter[DownloadStatus]:
 counter: Counter[DownloadStatus] = Counter()
 with ThreadPoolExecutor(max_workers=concur_req) as executor:
 to_do_map = {}
 for cc in sorted(cc_list):
 future = executor.submit(download_one, cc,
 base_url, verbose)
 to_do_map[future] = cc
 done_iter = as_completed(to_do_map)
 if not verbose:
 done_iter = tqdm.tqdm(done_iter, total=len(cc_list))
 for future in done_iter:
 try:
 status = future.result()
 except httpx.HTTPStatusError as exc:
 error_msg = 'HTTP error {resp.status_code} - {resp.reason_phrase}'
 error_msg = error_msg.format(resp=exc.response)
 except httpx.RequestError as exc:
 error_msg = f'{exc} {type(exc)}'.strip()
 except KeyboardInterrupt:
 break
 else:
 error_msg = ''

 if error_msg:
 status = DownloadStatus.ERROR
 counter[status] += 1
 if verbose and error_msg:
 cc = to_do_map[future]
 print(f'{cc} error: {error_msg}')

 return counter

if __name__ == '__main__':
 main(download_many, DEFAULT_CONCUR_REQ, MAX_CONCUR_REQ)

Reuse download_one from flags2_sequential (Example 20-14).

If the -m/--max_req command-line option is not given, this will be the maxi‐
mum number of concurrent requests, implemented as the size of the thread pool;
the actual number may be smaller if the number of flags to download is smaller.

MAX_CONCUR_REQ caps the maximum number of concurrent requests regardless of
the number of flags to download or the -m/--max_req command-line option. It’s
a safety precaution to avoid launching too many threads with their significant
memory overhead.

770 | Chapter 20: Concurrent Executors

Create the executor with max_workers set to concur_req, computed by the main
function as the smaller of: MAX_CONCUR_REQ, the length of cc_list, or the value of
the -m/--max_req command-line option. This avoids creating more threads than
necessary.

This dict will map each Future instance—representing one download—with the
respective country code for error reporting.

Iterate over the list of country codes in alphabetical order. The order of the
results will depend on the timing of the HTTP responses more than anything,
but if the size of the thread pool (given by concur_req) is much smaller than
len(cc_list), you may notice the downloads batched alphabetically.

Each call to executor.submit schedules the execution of one callable and returns
a Future instance. The first argument is the callable, the rest are the arguments it
will receive.

Store the future and the country code in the dict.

futures.as_completed returns an iterator that yields futures as each task is
done.

If not in verbose mode, wrap the result of as_completed with the tqdm function
to display the progress bar; because done_iter has no len, we must tell tqdm
what is the expected number of items as the total= argument, so tqdm can esti‐
mate the work remaining.

Iterate over the futures as they are completed.

Calling the result method on a future either returns the value returned by the
callable, or raises whatever exception was caught when the callable was executed.
This method may block waiting for a resolution, but not in this example because
as_completed only returns futures that are done.

Handle the potential exceptions; the rest of this function is identical to the
sequential download_many in Example 20-15), except for the next callout.

To provide context for the error message, retrieve the country code from the
to_do_map using the current future as key. This was not necessary in the
sequential version because we were iterating over the list of country codes, so we
knew the current cc; here we are iterating over the futures.

Downloads with Progress Display and Error Handling | 771

Example 20-16 uses an idiom that is very useful with
futures.as_completed: building a dict to map each future to
other data that may be useful when the future is completed. Here
the to_do_map maps each future to the country code assigned to it.
This makes it easy to do follow-up processing with the result of the
futures, despite the fact that they are produced out of order.

Python threads are well suited for I/O-intensive applications, and the concur
rent.futures package makes it relatively simple to use for certain use cases. With
ProcessPoolExecutor, you can also solve CPU-intensive problems on multiple cores
—if the computations are “embarrassingly parallel”. This concludes our basic intro‐
duction to concurrent.futures.

Chapter Summary
We started the chapter by comparing two concurrent HTTP clients with a sequential
one, demonstrating that the concurrent solutions show significant performance gains
over the sequential script.

After studying the first example based on concurrent.futures, we took a closer look
at future objects, either instances of concurrent.futures.Future or asyncio
.Future, emphasizing what these classes have in common (their differences will be
emphasized in Chapter 21). We saw how to create futures by calling Executor.sub
mit, and iterate over completed futures with concurrent.futures.as_completed.

We then discussed the use of multiple processes with the concurrent.futures.Proc
essPoolExecutor class, to go around the GIL and use multiple CPU cores to simplify
the multicore prime checker we first saw in Chapter 19.

In the following section, we saw how the concurrent.futures.ThreadPoolExecutor
works with a didactic example, launching tasks that did nothing for a few seconds,
except for displaying their status with a timestamp.

Next we went back to the flag downloading examples. Enhancing them with a pro‐
gress bar and proper error handling prompted further exploration of the
future.as_completed generator function, showing a common pattern: storing
futures in a dict to link further information to them when submitting, so that we can
use that information when the future comes out of the as_completed iterator.

Further Reading
The concurrent.futures package was contributed by Brian Quinlan, who presented
it in a great talk titled “The Future Is Soon!” at PyCon Australia 2010. Quinlan’s talk
has no slides; he shows what the library does by typing code directly in the Python

772 | Chapter 20: Concurrent Executors

https://fpy.li/20-19
https://fpy.li/20-20

8 Slide #9 from “A Curious Course on Coroutines and Concurrency” tutorial presented at PyCon 2009.

console. As a motivating example, the presentation features a short video with XKCD
cartoonist/programmer Randall Munroe making an unintended DoS attack on Goo‐
gle Maps to build a colored map of driving times around his city. The formal intro‐
duction to the library is PEP 3148 - futures - execute computations asynchronously.
In the PEP, Quinlan wrote that the concurrent.futures library was “heavily influ‐
enced by the Java java.util.concurrent package.”

For additional resources covering concurrent.futures, please see Chapter 19. All
the references that cover Python’s threading and multiprocessing in “Concurrency
with Threads and Processes” on page 734 also cover concurrent.futures.

Soapbox

Thread Avoidance

Concurrency: one of the most difficult topics in computer science (usually best
avoided).

—David Beazley, Python instructor and mad scientist8

I agree with the apparently contradictory quotes by David Beazley and Michele Sim‐
ionato at the start of this chapter.

I attended an undergraduate course about concurrency. All we did was POSIX
threads programming. What I learned: I don’t want to manage threads and locks
myself, for the same reason that I don’t want to manage memory allocation and deal‐
location. Those jobs are best carried out by the systems programmers who have the
know-how, the inclination, and the time to get them right—hopefully. I am paid to
develop applications, not operating systems. I don’t need all the fine-grained control
of threads, locks, malloc, and free—see “C dynamic memory allocation”.

That’s why I think the concurrent.futures package is interesting: it treats threads,
processes, and queues as infrastructure at your service, not something you have to
deal with directly. Of course, it’s designed with simple jobs in mind, the so-called
embarrassingly parallel problems. But that’s a large slice of the concurrency problems
we face when writing applications—as opposed to operating systems or database
servers, as Simionato points out in that quote.

For “nonembarrassing” concurrency problems, threads and locks are not the answer
either. Threads will never disappear at the OS level, but every programming language
I’ve found exciting in the last several years provides higher-level, concurrency
abstractions that are easier to use correctly, as the excellent Seven Concurrency Models
in Seven Weeks book by Paul Butcher demonstrates. Go, Elixir, and Clojure are

Further Reading | 773

https://fpy.li/20-21
https://fpy.li/pep3148
https://fpy.li/20-22
https://fpy.li/20-22
https://fpy.li/20-23
https://fpy.li/20-24
https://fpy.li/20-24

among them. Erlang—the implementation language of Elixir—is a prime example of
a language designed from the ground up with concurrency in mind. Erlang doesn’t
excite me for a simple reason: I find its syntax ugly. Python spoiled me that way.

José Valim, previously a Ruby on Rails core contributor, designed Elixir with a pleas‐
ant, modern syntax. Like Lisp and Clojure, Elixir implements syntactic macros. That’s
a double-edged sword. Syntactic macros enable powerful DSLs, but the proliferation
of sublanguages can lead to incompatible codebases and community fragmentation.
Lisp drowned in a flood of macros, with each Lisp shop using its own arcane dialect.
Standardizing around Common Lisp resulted in a bloated language. I hope José
Valim can inspire the Elixir community to avoid a similar outcome. So far, it’s look‐
ing good. The Ecto database wrapper and query generator is a joy to use: a great
example of using macros to create a flexible yet user-friendly DSL—Domain-Specific
Language—for interacting with relational and nonrelational databases.

Like Elixir, Go is a modern language with fresh ideas. But, in some regards, it’s a con‐
servative language, compared to Elixir. Go doesn’t have macros, and its syntax is sim‐
pler than Python’s. Go doesn’t support inheritance or operator overloading, and it
offers fewer opportunities for metaprogramming than Python. These limitations are
considered features. They lead to more predictable behavior and performance. That’s
a big plus in the highly concurrent, mission-critical settings where Go aims to replace
C++, Java, and Python.

While Elixir and Go are direct competitors in the high-concurrency space, their
design philosophies appeal to different crowds. Both are likely to thrive. But in the
history of programming languages, the conservative ones tend to attract more coders.

774 | Chapter 20: Concurrent Executors

https://fpy.li/20-25

1 Videla & Williams, RabbitMQ in Action (Manning), Chapter 4, “Solving Problems with Rabbit: coding and
patterns,” p. 61.

CHAPTER 21

Asynchronous Programming

The problem with normal approaches to asynchronous programming is that they’re
all-or-nothing propositions. You rewrite all your code so none of it blocks or you’re
just wasting your time.
Alvaro Videla and Jason J. W. Williams, RabbitMQ in Action1

This chapter addresses three major topics that are closely related:

• Python’s async def, await, async with, and async for constructs
• Objects supporting those constructs: native coroutines and asynchronous var‐

iants of context managers, iterables, generators, and comprehensions
• asyncio and other asynchronous libraries

This chapter builds on the ideas of iterables and generators (Chapter 17, in particular
“Classic Coroutines” on page 641), context managers (Chapter 18), and general con‐
cepts of concurrent programming (Chapter 19).

We’ll study concurrent HTTP clients similar to the ones we saw in Chapter 20,
rewritten with native coroutines and asynchronous context managers, using the same
HTTPX library as before, but now through its asynchronous API. We’ll also see how
to avoid blocking the event loop by delegating slow operations to a thread or process
executor.

After the HTTP client examples, we’ll see two simple asynchronous server-side appli‐
cations, one of them using the increasingly popular FastAPI framework. Then
we’ll cover other language constructs enabled by the async/await keywords:

775

2 Selivanov implemented async/await in Python, and wrote the related PEPs 492, 525, and 530.

asynchronous generator functions, asynchronous comprehensions, and asynchro‐
nous generator expressions. To emphasize the fact that those language features are
not tied to asyncio, we’ll see one example rewritten to use Curio—the elegant and
innovative asynchronous framework invented by David Beazley.

To wrap up the chapter, I wrote a brief section on the advantages and pitfalls of asyn‐
chronous programming.

That’s a lot of ground to cover. We only have space for basic examples, but they will
illustrate the most important features of each idea.

The asyncio documentation is much better after Yury Selivanov2

reorganized it, separating the few functions useful to application
developers from the low-level API for creators of packages like web
frameworks and database drivers.
For book-length coverage of asyncio, I recommend Using Asyncio
in Python by Caleb Hattingh (O’Reilly). Full disclosure: Caleb is
one of the tech reviewers of this book.

What’s New in This Chapter
When I wrote the first edition of Fluent Python, the asyncio library was provisional
and the async/await keywords did not exist. Therefore, I had to update all examples
in this chapter. I also created new examples: domain probing scripts, a FastAPI web
service, and experiments with Python’s new asynchronous console mode.

New sections cover language features that did not exist at the time, such as native
coroutines, async with, async for, and the objects that support those constructs.

The ideas in “How Async Works and How It Doesn’t” on page 825 reflect hard-
earned lessons that I consider essential reading for anyone using asynchronous pro‐
gramming. They may save you a lot of trouble—whether you’re using Python or
Node.js.

Finally, I removed several paragraphs about asyncio.Futures, which is now consid‐
ered part of the low-level asyncio APIs.

776 | Chapter 21: Asynchronous Programming

https://fpy.li/pep492
https://fpy.li/pep525
https://fpy.li/pep530
https://fpy.li/21-1
https://fpy.li/hattingh
https://fpy.li/hattingh

3 There is one exception to this rule: if you run Python with the -m asyncio option, you can use await directly
at the >>> prompt to drive a native coroutine. This is explained in “Experimenting with Python’s async con‐
sole” on page 812.

4 Sorry, I could not resist it.

A Few Definitions
At the start of “Classic Coroutines” on page 641, we saw that Python 3.5 and later
offer three kinds of coroutines:

Native coroutine
A coroutine function defined with async def. You can delegate from a native
coroutine to another native coroutine using the await keyword, similar to how
classic coroutines use yield from. The async def statement always defines a
native coroutine, even if the await keyword is not used in its body. The await
keyword cannot be used outside of a native coroutine.3

Classic coroutine
A generator function that consumes data sent to it via my_coro.send(data) calls,
and reads that data by using yield in an expression. Classic coroutines can dele‐
gate to other classic coroutines using yield from. Classic coroutines cannot be
driven by await, and are no longer supported by asyncio.

Generator-based coroutine
A generator function decorated with @types.coroutine—introduced in Python
3.5. That decorator makes the generator compatible with the new await
keyword.

In this chapter, we focus on native coroutines as well as asynchronous generators:

Asynchronous generator
A generator function defined with async def and using yield in its body. It
returns an asynchronous generator object that provides __anext__, a coroutine
method to retrieve the next item.

@asyncio.coroutine has No Future4

The @asyncio.coroutine decorator for classic coroutines and
generator-based coroutines was deprecated in Python 3.8 and is
scheduled for removal in Python 3.11, according to Issue 43216. In
contrast, @types.coroutine should remain, per Issue 36921. It is
no longer supported by asyncio, but is used in low-level code in the
Curio and Trio asynchronous frameworks.

A Few Definitions | 777

https://fpy.li/21-2
https://fpy.li/21-3

5 true.dev is available for USD 360/year as I write this. I see that for.dev is registered, but has no DNS config‐
ured.

An asyncio Example: Probing Domains
Imagine you are about to start a new blog on Python, and you plan to register a
domain using a Python keyword and the .DEV suffix—for example: AWAIT.DEV.
Example 21-1 is a script using asyncio to check several domains concurrently. This is
the output it produces:

$ python3 blogdom.py
 with.dev
+ elif.dev
+ def.dev
 from.dev
 else.dev
 or.dev
 if.dev
 del.dev
+ as.dev
 none.dev
 pass.dev
 true.dev
+ in.dev
+ for.dev
+ is.dev
+ and.dev
+ try.dev
+ not.dev

Note that the domains appear unordered. If you run the script, you’ll see them dis‐
played one after the other, with varying delays. The + sign indicates your machine
was able to resolve the domain via DNS. Otherwise, the domain did not resolve and
may be available.5

In blogdom.py, the DNS probing is done via native coroutine objects. Because the
asynchronous operations are interleaved, the time needed to check the 18 domains is
much less than checking them sequentially. In fact, the total time is practically the
same as the time for the single slowest DNS response, instead of the sum of the times
of all responses.

Example 21-1 shows the code for blogdom.py.

Example 21-1. blogdom.py: search for domains for a Python blog

#!/usr/bin/env python3
import asyncio
import socket

778 | Chapter 21: Asynchronous Programming

from keyword import kwlist

MAX_KEYWORD_LEN = 4

async def probe(domain: str) -> tuple[str, bool]:
 loop = asyncio.get_running_loop()
 try:
 await loop.getaddrinfo(domain, None)
 except socket.gaierror:
 return (domain, False)
 return (domain, True)

async def main() -> None:
 names = (kw for kw in kwlist if len(kw) <= MAX_KEYWORD_LEN)
 domains = (f'{name}.dev'.lower() for name in names)
 coros = [probe(domain) for domain in domains]
 for coro in asyncio.as_completed(coros):
 domain, found = await coro
 mark = '+' if found else ' '
 print(f'{mark} {domain}')

if __name__ == '__main__':
 asyncio.run(main())

Set maximum length of keyword for domains, because shorter is better.

probe returns a tuple with the domain name and a boolean; True means the
domain resolved. Returning the domain name will make it easier to display the
results.

Get a reference to the asyncio event loop, so we can use it next.

The loop.getaddrinfo(…) coroutine-method returns a five-part tuple of param‐
eters to connect to the given address using a socket. In this example, we don’t
need the result. If we got it, the domain resolves; otherwise, it doesn’t.

main must be a coroutine, so that we can use await in it.

Generator to yield Python keywords with length up to MAX_KEYWORD_LEN.

Generator to yield domain names with the .dev suffix.

Build a list of coroutine objects by invoking the probe coroutine with each
domain argument.

An asyncio Example: Probing Domains | 779

https://fpy.li/21-4
https://fpy.li/21-5
https://fpy.li/21-5

asyncio.as_completed is a generator that yields coroutines that return the
results of the coroutines passed to it in the order they are completed—not the
order they were submitted. It’s similar to futures.as_completed, which we saw
in Chapter 20, Example 20-4.

At this point, we know the coroutine is done because that’s how as_completed
works. Therefore, the await expression will not block but we need it to get the
result from coro. If coro raised an unhandled exception, it would be re-raised
here.

asyncio.run starts the event loop and returns only when the event loop exits.
This is a common pattern for scripts that use asyncio: implement main as a
coroutine, and drive it with asyncio.run inside the if __name__ ==

'__main__': block.

The asyncio.get_running_loop function was added in Python 3.7
for use inside coroutines, as shown in probe. If there’s no running
loop, asyncio.get_running_loop raises RuntimeError. Its imple‐
mentation is simpler and faster than asyncio.get_event_loop,
which may start an event loop if necessary. Since Python 3.10, asyn
cio.get_event_loop is deprecated and will eventually become an
alias to asyncio.get_running_loop.

Guido’s Trick to Read Asynchronous Code
There are a lot of new concepts to grasp in asyncio, but the overall logic of
Example 21-1 is easy to follow if you employ a trick suggested by Guido van Rossum
himself: squint and pretend the async and await keywords are not there. If you do
that, you’ll realize that coroutines read like plain old sequential functions.

For example, imagine that the body of this coroutine…

async def probe(domain: str) -> tuple[str, bool]:
 loop = asyncio.get_running_loop()
 try:
 await loop.getaddrinfo(domain, None)
 except socket.gaierror:
 return (domain, False)
 return (domain, True)

…works like the following function, except that it magically never blocks:

def probe(domain: str) -> tuple[str, bool]: # no async
 loop = asyncio.get_running_loop()
 try:
 loop.getaddrinfo(domain, None) # no await

780 | Chapter 21: Asynchronous Programming

https://fpy.li/21-6

 except socket.gaierror:
 return (domain, False)
 return (domain, True)

Using the syntax await loop.getaddrinfo(...) avoids blocking because await sus‐
pends the current coroutine object. For example, during the execution of the
probe('if.dev') coroutine, a new coroutine object is created by getad

drinfo('if.dev', None). Awaiting it starts the low-level addrinfo query and yields
control back to the event loop, not to the probe(‘if.dev’) coroutine, which is sus‐
pended. The event loop can then drive other pending coroutine objects, such as
probe('or.dev').

When the event loop gets a response for the getaddrinfo('if.dev', None) query,
that specific coroutine object resumes and returns control back to the
probe('if.dev')—which was suspended at await—and can now handle a possible
exception and return the result tuple.

So far, we’ve only seen asyncio.as_completed and await applied to coroutines. But
they handle any awaitable object. That concept is explained next.

New Concept: Awaitable
The for keyword works with iterables. The await keyword works with awaitables.

As an end user of asyncio, these are the awaitables you will see on a daily basis:

• A native coroutine object, which you get by calling a native coroutine function
• An asyncio.Task, which you usually get by passing a coroutine object to asyn
cio.create_task()

However, end-user code does not always need to await on a Task. We use asyn
cio.create_task(one_coro()) to schedule one_coro for concurrent execution,
without waiting for its return. That’s what we did with the spinner coroutine in spin‐
ner_async.py (Example 19-4). If you don’t expect to cancel the task or wait for it,
there is no need to keep the Task object returned from create_task. Creating the
task is enough to schedule the coroutine to run.

In contrast, we use await other_coro() to run other_coro right now and wait for
its completion because we need its result before we can proceed. In spinner_async.py,
the supervisor coroutine did res = await slow() to execute slow and get its result.

When implementing asynchronous libraries or contributing to asyncio itself, you
may also deal with these lower-level awaitables:

New Concept: Awaitable | 781

• An object with an __await__ method that returns an iterator; for example, an
asyncio.Future instance (asyncio.Task is a subclass of asyncio.Future)

• Objects written in other languages using the Python/C API with a
tp_as_async.am_await function, returning an iterator (similar to __await__
method)

Existing codebases may also have one additional kind of awaitable: generator-based
coroutine objects—which are in the process of being deprecated.

PEP 492 states that the await expression “uses the yield from
implementation with an extra step of validating its argument” and
“await only accepts an awaitable.” The PEP does not explain that
implementation in detail, but refers to PEP 380, which introduced
yield from. I posted a detailed explanation in “Classic Corou‐
tines”, section “The Meaning of yield from”, at fluentpython.com.

Now let’s study the asyncio version of a script that downloads a fixed set of flag
images.

Downloading with asyncio and HTTPX
The flags_asyncio.py script downloads a fixed set of 20 flags from fluentpython.com.
We first mentioned it in “Concurrent Web Downloads” on page 744, but now we’ll
study it in detail, applying the concepts we just saw.

As of Python 3.10, asyncio only supports TCP and UDP directly, and there are no
asynchronous HTTP client or server packages in the standard library. I am using
HTTPX in all the HTTP client examples.

We’ll explore flags_asyncio.py from the bottom up—that is, looking first at the func‐
tions that set up the action in Example 21-2.

To make the code easier to read, flags_asyncio.py has no error han‐
dling. As we introduce async/await, it’s useful to focus on the
“happy path” initially, to understand how regular functions and
coroutines are arranged in a program. Starting with “Enhancing
the asyncio Downloader” on page 787, the examples include error
handling and more features.
The flags_.py examples from this chapter and Chapter 20 share
code and data, so I put them together in the example-code-2e/20-
executors/getflags directory.

782 | Chapter 21: Asynchronous Programming

https://fpy.li/21-7
https://fpy.li/pep380
https://fpy.li/oldcoro
https://fpy.li/oldcoro
https://fpy.li/21-8
http://fluentpython.com
https://fpy.li/httpx
https://fpy.li/21-9
https://fpy.li/21-9

Example 21-2. flags_asyncio.py: startup functions

def download_many(cc_list: list[str]) -> int:
 return asyncio.run(supervisor(cc_list))

async def supervisor(cc_list: list[str]) -> int:
 async with AsyncClient() as client:
 to_do = [download_one(client, cc)
 for cc in sorted(cc_list)]
 res = await asyncio.gather(*to_do)

 return len(res)

if __name__ == '__main__':
 main(download_many)

This needs to be a plain function—not a coroutine—so it can be passed to and
called by the main function from the flags.py module (Example 20-2).

Execute the event loop driving the supervisor(cc_list) coroutine object until
it returns. This will block while the event loop runs. The result of this line is
whatever supervisor returns.

Asynchronous HTTP client operations in httpx are methods of AsyncClient,
which is also an asynchronous context manager: a context manager with asyn‐
chronous setup and teardown methods (more about this in “Asynchronous Con‐
text Managers” on page 786).

Build a list of coroutine objects by calling the download_one coroutine once for
each flag to be retrieved.

Wait for the asyncio.gather coroutine, which accepts one or more awaitable
arguments and waits for all of them to complete, returning a list of results for the
given awaitables in the order they were submitted.

supervisor returns the length of the list returned by asyncio.gather.

Now let’s review the top of flags_asyncio.py (Example 21-3). I reorganized the corou‐
tines so we can read them in the order they are started by the event loop.

Example 21-3. flags_asyncio.py: imports and download functions

import asyncio

from httpx import AsyncClient

from flags import BASE_URL, save_flag, main

Downloading with asyncio and HTTPX | 783

async def download_one(client: AsyncClient, cc: str):
 image = await get_flag(client, cc)
 save_flag(image, f'{cc}.gif')
 print(cc, end=' ', flush=True)
 return cc

async def get_flag(client: AsyncClient, cc: str) -> bytes:
 url = f'{BASE_URL}/{cc}/{cc}.gif'.lower()
 resp = await client.get(url, timeout=6.1,
 follow_redirects=True)
 return resp.read()

httpx must be installed—it’s not in the standard library.

Reuse code from flags.py (Example 20-2).

download_one must be a native coroutine, so it can await on get_flag—which
does the HTTP request. Then it displays the code of the downloaded flag, and
saves the image.

get_flag needs to receive the AsyncClient to make the request.

The get method of an httpx.AsyncClient instance returns a ClientResponse
object that is also an asynchronous context manager.

Network I/O operations are implemented as coroutine methods, so they are
driven asynchronously by the asyncio event loop.

For better performance, the save_flag call inside get_flag should
be asynchronous, to avoid blocking the event loop. However, asyn‐
cio does not provide an asynchronous filesystem API at this time—
as Node.js does.
“Using asyncio.as_completed and a Thread” on page 788 will show
how to delegate save_flag to a thread.

Your code delegates to the httpx coroutines explicitly through await or implicitly
through the special methods of the asynchronous context managers, such as Async
Client and ClientResponse—as we’ll see in “Asynchronous Context Managers” on
page 786.

The Secret of Native Coroutines: Humble Generators
A key difference between the classic coroutine examples we saw in “Classic Corou‐
tines” on page 641 and flags_asyncio.py is that there are no visible .send() calls or

784 | Chapter 21: Asynchronous Programming

yield expressions in the latter. Your code sits between the asyncio library and the
asynchronous libraries you are using, such as HTTPX. This is illustrated in
Figure 21-1.

Figure 21-1. In an asynchronous program, a user’s function starts the event loop, sched‐
uling an initial coroutine with asyncio.run. Each user’s coroutine drives the next with
an await expression, forming a channel that enables communication between a library
like HTTPX and the event loop.

Under the hood, the asyncio event loop makes the .send calls that drive your corou‐
tines, and your coroutines await on other coroutines, including library coroutines.
As mentioned, await borrows most of its implementation from yield from, which
also makes .send calls to drive coroutines.

The await chain eventually reaches a low-level awaitable, which returns a generator
that the event loop can drive in response to events such as timers or network I/O. The
low-level awaitables and generators at the end of these await chains are implemented
deep into the libraries, are not part of their APIs, and may be Python/C extensions.

Using functions like asyncio.gather and asyncio.create_task, you can start mul‐
tiple concurrent await channels, enabling concurrent execution of multiple I/O oper‐
ations driven by a single event loop, in a single thread.

The All-or-Nothing Problem
Note that in Example 21-3, I could not reuse the get_flag function from flags.py
(Example 20-2). I had to rewrite it as a coroutine to use the asynchronous API of
HTTPX. For peak performance with asyncio, we must replace every function that
does I/O with an asynchronous version that is activated with await or asyncio.cre
ate_task, so that control is given back to the event loop while the function waits for
I/O. If you can’t rewrite a blocking function as a coroutine, you should run it in a
separate thread or process, as we’ll see in “Delegating Tasks to Executors” on page 797.

Downloading with asyncio and HTTPX | 785

That’s why I chose the epigraph for this chapter, which includes this advice: “You
rewrite all your code so none of it blocks or you’re just wasting your time.”

For the same reason, I could not reuse the download_one function from flags_thread‐
pool.py (Example 20-3) either. The code in Example 21-3 drives get_flag with
await, so download_one must also be a coroutine. For each request, a download_one
coroutine object is created in supervisor, and they are all driven by the
asyncio.gather coroutine.

Now let’s study the async with statement that appeared in supervisor

(Example 21-2) and get_flag (Example 21-3).

Asynchronous Context Managers
In “Context Managers and with Blocks” on page 658, we saw how an object can be
used to run code before and after the body of a with block, if its class provides the
__enter__ and __exit__ methods.

Now, consider Example 21-4, from the asyncpg asyncio-compatible PostgreSQL
driver documentation on transactions.

Example 21-4. Sample code from the documentation of the asyncpg PostgreSQL driver

tr = connection.transaction()
await tr.start()
try:
 await connection.execute("INSERT INTO mytable VALUES (1, 2, 3)")
except:
 await tr.rollback()
 raise
else:
 await tr.commit()

A database transaction is a natural fit for the context manager protocol: the transac‐
tion has to be started, data is changed with connection.execute, and then a rollback
or commit must happen, depending on the outcome of the changes.

In an asynchronous driver like asyncpg, the setup and wrap-up need to be coroutines
so that other operations can happen concurrently. However, the implementation of
the classic with statement doesn’t support coroutines doing the work of __enter__ or
__exit__.

That’s why PEP 492—Coroutines with async and await syntax introduced the async
with statement, which works with asynchronous context managers: objects imple‐
menting the __aenter__ and __aexit__ methods as coroutines.

786 | Chapter 21: Asynchronous Programming

https://fpy.li/21-10
https://fpy.li/21-11
https://fpy.li/pep492

6 This tip is quoted verbatim from a comment by tech reviewer Caleb Hattingh. Thanks, Caleb!

With async with, Example 21-4 can be written like this other snippet from the
asyncpg documentation:

async with connection.transaction():
 await connection.execute("INSERT INTO mytable VALUES (1, 2, 3)")

In the asyncpg.Transaction class, the __aenter__ coroutine method does await
self.start(), and the __aexit__ coroutine awaits on private __rollback or __com
mit coroutine methods, depending on whether an exception occurred or not. Using
coroutines to implement Transaction as an asynchronous context manager allows
asyncpg to handle many transactions concurrently.

Caleb Hattingh on asyncpg

Another really great thing about asyncpg is that it also works
around PostgreSQL’s lack of high-concurrency support (it uses one
server-side process per connection) by implementing a connection
pool for internal connections to Postgres itself.
This means you don’t need additional tools like pgbouncer as
explained in the asyncpg documentation.6

Back to flags_asyncio.py, the AsyncClient class of httpx is an asynchronous context
manager, so it can use awaitables in its __aenter__ and __aexit__ special coroutine
methods.

“Asynchronous generators as context managers” on page 817 shows
how to use Python’s contextlib to create an asynchronous context
manager without having to write a class. That explanation comes
later in this chapter because of a prerequisite topic: “Asynchronous
Generator Functions” on page 812.

We’ll now enhance the asyncio flag download example with a progress bar, which will
lead us to explore a bit more of the asyncio API.

Enhancing the asyncio Downloader
Recall from “Downloads with Progress Display and Error Handling” on page 762 that
the flags2 set of examples share the same command-line interface, and they display
a progress bar while the downloads are happening. They also include error handling.

Enhancing the asyncio Downloader | 787

https://fpy.li/21-11
https://fpy.li/21-13
https://fpy.li/21-14

I encourage you to play with the flags2 examples to develop an
intuition of how concurrent HTTP clients perform. Use the -h
option to see the help screen in Example 20-10. Use the -a, -e, and
-l command-line options to control the number of downloads,
and the -m option to set the number of concurrent downloads. Run
tests against the LOCAL, REMOTE, DELAY, and ERROR servers. Discover
the optimum number of concurrent downloads to maximize
throughput against each server. Tweak the options for the test
servers, as described in “Setting Up Test Servers” on page 765.

For instance, Example 21-5 shows an attempt to get 100 flags (-al 100) from the
ERROR server, using 100 concurrent requests (-m 100). The 48 errors in the result
are either HTTP 418 or time-out errors—the expected (mis)behavior of the
slow_server.py.

Example 21-5. Running flags2_asyncio.py

$ python3 flags2_asyncio.py -s ERROR -al 100 -m 100
ERROR site: http://localhost:8002/flags
Searching for 100 flags: from AD to LK
100 concurrent connections will be used.
100%|███| 100/100 [00:03<00:00, 30.48it/s]

 52 flags downloaded.
 48 errors.
Elapsed time: 3.31s

Act Responsibly When Testing Concurrent Clients

Even if the overall download time is not much different between
the threaded and asyncio HTTP clients, asyncio can send requests
faster, so it’s more likely that the server will suspect a DoS attack.
To really exercise these concurrent clients at full throttle, please use
local HTTP servers for testing, as explained in “Setting Up Test
Servers” on page 765.

Now let’s see how flags2_asyncio.py is implemented.

Using asyncio.as_completed and a Thread
In Example 21-3, we passed several coroutines to asyncio.gather, which returns a
list with results of the coroutines in the order they were submitted. This means that
asyncio.gather can only return when all the awaitables are done. However, to
update a progress bar, we need to get results as they are done.

788 | Chapter 21: Asynchronous Programming

Fortunately, there is an asyncio equivalent of the as_completed generator function
we used in the thread pool example with the progress bar (Example 20-16).

Example 21-6 shows the top of the flags2_asyncio.py script where the get_flag and
download_one coroutines are defined. Example 21-7 lists the rest of the source, with
supervisor and download_many. This script is longer than flags_asyncio.py because
of error handling.

Example 21-6. flags2_asyncio.py: top portion of the script; remaining code is in
Example 21-7

import asyncio
from collections import Counter
from http import HTTPStatus
from pathlib import Path

import httpx
import tqdm # type: ignore

from flags2_common import main, DownloadStatus, save_flag

low concurrency default to avoid errors from remote site,
such as 503 - Service Temporarily Unavailable
DEFAULT_CONCUR_REQ = 5
MAX_CONCUR_REQ = 1000

async def get_flag(client: httpx.AsyncClient,
 base_url: str,
 cc: str) -> bytes:
 url = f'{base_url}/{cc}/{cc}.gif'.lower()
 resp = await client.get(url, timeout=3.1, follow_redirects=True)
 resp.raise_for_status()
 return resp.content

async def download_one(client: httpx.AsyncClient,
 cc: str,
 base_url: str,
 semaphore: asyncio.Semaphore,
 verbose: bool) -> DownloadStatus:
 try:
 async with semaphore:
 image = await get_flag(client, base_url, cc)
 except httpx.HTTPStatusError as exc:
 res = exc.response
 if res.status_code == HTTPStatus.NOT_FOUND:
 status = DownloadStatus.NOT_FOUND
 msg = f'not found: {res.url}'
 else:
 raise
 else:

Enhancing the asyncio Downloader | 789

 await asyncio.to_thread(save_flag, image, f'{cc}.gif')
 status = DownloadStatus.OK
 msg = 'OK'
 if verbose and msg:
 print(cc, msg)
 return status

get_flag is very similar to the sequential version in Example 20-14. First differ‐
ence: it requires the client parameter.

Second and third differences: .get is an AsyncClient method, and it’s a corou‐
tine, so we need to await it.

Use the semaphore as an asynchronous context manager so that the program as a
whole is not blocked; only this coroutine is suspended when the semaphore
counter is zero. More about this in “Python’s Semaphores” on page 791.

The error handling logic is the same as in download_one, from Example 20-14.

Saving the image is an I/O operation. To avoid blocking the event loop, run
save_flag in a thread.

All network I/O is done with coroutines in asyncio, but not file I/O. However, file
I/O is also “blocking”—in the sense that reading/writing files takes thousands of
times longer than reading/writing to RAM. If you’re using Network-Attached Stor‐
age, it may even involve network I/O under the covers.

Since Python 3.9, the asyncio.to_thread coroutine makes it easy to delegate file I/O
to a thread pool provided by asyncio. If you need to support Python 3.7 or 3.8, “Dele‐
gating Tasks to Executors” on page 797 shows how to add a couple of lines to do it. But
first, let’s finish our study of the HTTP client code.

Throttling Requests with a Semaphore
Network clients like the ones we are studying should be throttled (i.e., limited) to
avoid pounding the server with too many concurrent requests.

A semaphore is a synchronization primitive, more flexible than a lock. A semaphore
can be held by multiple coroutines, with a configurable maximum number. This
makes it ideal to throttle the number of active concurrent coroutines. “Python’s Sem‐
aphores” on page 791 has more information.

In flags2_threadpool.py (Example 20-16), the throttling was done by instantiating the
ThreadPoolExecutor with the required max_workers argument set to concur_req in
the download_many function. In flags2_asyncio.py, an asyncio.Semaphore is created

790 | Chapter 21: Asynchronous Programming

https://fpy.li/21-15
https://fpy.li/21-15
https://fpy.li/21-16
https://fpy.li/21-16
https://fpy.li/21-17

7 Thanks to Guto Maia who noted that the concept of a semaphore was not explained when he read the first
edition draft for this chapter.

by the supervisor function (shown in Example 21-7) and passed as the semaphore
argument to download_one in Example 21-6.

Python’s Semaphores
Computer scientist Edsger W. Dijkstra invented the semaphore in the early 1960s. It’s
a simple idea, but it’s so flexible that most other synchronization objects—such as
locks and barriers—can be built on top of semaphores. There are three Semaphore
classes in Python’s standard library: one in threading, another in multiprocessing,
and a third one in asyncio. Here we’ll describe the latter.

An asyncio.Semaphore has an internal counter that is decremented whenever we
await on the .acquire() coroutine method, and incremented when we call
the .release() method—which is not a coroutine because it never blocks. The initial
value of the counter is set when the Semaphore is instantiated:

 semaphore = asyncio.Semaphore(concur_req)

Awaiting on .acquire() causes no delay when the counter is greater than zero, but if
the counter is zero, .acquire() suspends the awaiting coroutine until some other
coroutine calls .release() on the same Semaphore, thus incrementing the counter.
Instead of using those methods directly, it’s safer to use the semaphore as an asyn‐
chronous context manager, as I did in Example 21-6, function download_one:

 async with semaphore:
 image = await get_flag(client, base_url, cc)

The Semaphore.__aenter__ coroutine method awaits for .acquire(), and its
__aexit__ coroutine method calls .release(). That snippet guarantees that no more
than concur_req instances of get_flags coroutines will be active at any time.

Each of the Semaphore classes in the standard library has a BoundedSemaphore
subclass that enforces an additional constraint: the internal counter can never
become larger than the initial value when there are more .release()

than .acquire() operations.7

Now let’s take a look at the rest of the script in Example 21-7.

Example 21-7. flags2_asyncio.py: script continued from Example 21-6

async def supervisor(cc_list: list[str],
 base_url: str,

Enhancing the asyncio Downloader | 791

https://fpy.li/21-17

 verbose: bool,
 concur_req: int) -> Counter[DownloadStatus]:
 counter: Counter[DownloadStatus] = Counter()
 semaphore = asyncio.Semaphore(concur_req)
 async with httpx.AsyncClient() as client:
 to_do = [download_one(client, cc, base_url, semaphore, verbose)
 for cc in sorted(cc_list)]
 to_do_iter = asyncio.as_completed(to_do)
 if not verbose:
 to_do_iter = tqdm.tqdm(to_do_iter, total=len(cc_list))
 error: httpx.HTTPError | None = None
 for coro in to_do_iter:
 try:
 status = await coro
 except httpx.HTTPStatusError as exc:
 error_msg = 'HTTP error {resp.status_code} - {resp.reason_phrase}'
 error_msg = error_msg.format(resp=exc.response)
 error = exc
 except httpx.RequestError as exc:
 error_msg = f'{exc} {type(exc)}'.strip()
 error = exc
 except KeyboardInterrupt:
 break

 if error:
 status = DownloadStatus.ERROR
 if verbose:
 url = str(error.request.url)
 cc = Path(url).stem.upper()
 print(f'{cc} error: {error_msg}')
 counter[status] += 1

 return counter

def download_many(cc_list: list[str],
 base_url: str,
 verbose: bool,
 concur_req: int) -> Counter[DownloadStatus]:
 coro = supervisor(cc_list, base_url, verbose, concur_req)
 counts = asyncio.run(coro)

 return counts

if __name__ == '__main__':
 main(download_many, DEFAULT_CONCUR_REQ, MAX_CONCUR_REQ)

supervisor takes the same arguments as the download_many function, but it can‐
not be invoked directly from main because it’s a coroutine and not a plain func‐
tion like download_many.

792 | Chapter 21: Asynchronous Programming

Create an asyncio.Semaphore that will not allow more than concur_req active
coroutines among those using this semaphore. The value of concur_req is com‐
puted by the main function from flags2_common.py, based on command-line
options and constants set in each example.

Create a list of coroutine objects, one per call to the download_one coroutine.

Get an iterator that will return coroutine objects as they are done. I did not place
this call to as_completed directly in the for loop below because I may need to
wrap it with the tqdm iterator for the progress bar, depending on the user’s choice
for verbosity.

Wrap the as_completed iterator with the tqdm generator function to display
progress.

Declare and initialize error with None; this variable will be used to hold an
exception beyond the try/except statement, if one is raised.

Iterate over the completed coroutine objects; this loop is similar to the one in
download_many in Example 20-16.

await on the coroutine to get its result. This will not block because as_comple
ted only produces coroutines that are done.

This assignment is necessary because the exc variable scope is limited to this
except clause, but I need to preserve its value for later.

Same as before.

If there was an error, set the status.

In verbose mode, extract the URL from the exception that was raised…

…and extract the name of the file to display the country code next.

download_many instantiates the supervisor coroutine object and passes it to the
event loop with asyncio.run, collecting the counter supervisor returns when
the event loop ends.

In Example 21-7, we could not use the mapping of futures to country codes we saw in
Example 20-16, because the awaitables returned by asyncio.as_completed are
the same awaitables we pass into the as_completed call. Internally, the asyncio

Enhancing the asyncio Downloader | 793

8 A detailed discussion about this can be found in a thread I started in the python-tulip group, titled “Which
other futures may come out of asyncio.as_completed?”. Guido responds, and gives insight on the implemen‐
tation of as_completed, as well as the close relationship between futures and coroutines in asyncio.

machinery may replace the awaitables we provide with others that will, in the end,
produce the same results.8

Because I could not use the awaitables as keys to retrieve the coun‐
try code from a dict in case of failure, I had to extract the country
code from the exception. To do that, I kept the exception in the
error variable to retrieve outside of the try/except statement.
Python is not a block-scoped language: statements such as loops
and try/except don’t create a local scope in the blocks they man‐
age. But if an except clause binds an exception to a variable, like
the exc variables we just saw—that binding only exists within the
block inside that particular except clause.

This wraps up the discussion of an asyncio example functionally equivalent to the
flags2_threadpool.py we saw earlier.

The next example demonstrates the simple pattern of executing one asynchronous
task after another using coroutines. This deserves our attention because anyone with
previous experience with JavaScript knows that running one asynchronous function
after the other was the reason for the nested coding pattern known as pyramid of
doom. The await keyword makes that curse go away. That’s why await is now part of
Python and JavaScript.

Making Multiple Requests for Each Download
Suppose you want to save each country flag with the name of the country and the
country code, instead of just the country code. Now you need to make two HTTP
requests per flag: one to get the flag image itself, the other to get the metadata.json file
in the same directory as the image—that’s where the name of the country is recorded.

Coordinating multiple requests in the same task is easy in the threaded script: just
make one request then the other, blocking the thread twice, and keeping both pieces
of data (country code and name) in local variables, ready to use when saving the files.
If you needed to do the same in an asynchronous script with callbacks, you needed
nested functions so that the country code and name were available in their closures
until you could save the file, because each callback runs in a different local scope. The
await keyword provides relief from that, allowing you to drive the asynchronous
requests one after the other, sharing the local scope of the driving coroutine.

794 | Chapter 21: Asynchronous Programming

https://fpy.li/21-19
https://fpy.li/21-19
https://fpy.li/21-20
https://fpy.li/21-20

If you are doing asynchronous application programming in
modern Python with lots of callbacks, you are probably applying
old patterns that don’t make sense in modern Python. That is justi‐
fied if you are writing a library that interfaces with legacy or low-
level code that does not support coroutines. Anyway,
the StackOverflow Q&A, “What is the use case for
future.add_done_callback()?” explains why callbacks are needed in
low-level code, but are not very useful in Python application-level
code these days.

The third variation of the asyncio flag downloading script has a few changes:

get_country

This new coroutine fetches the metadata.json file for the country code, and gets
the name of the country from it.

download_one

This coroutine now uses await to delegate to get_flag and the new get_country
coroutine, using the result of the latter to build the name of the file to save.

Let’s start with the code for get_country (Example 21-8). Note that it is very similar
to get_flag from Example 21-6.

Example 21-8. flags3_asyncio.py: get_country coroutine

async def get_country(client: httpx.AsyncClient,
 base_url: str,
 cc: str) -> str:
 url = f'{base_url}/{cc}/metadata.json'.lower()
 resp = await client.get(url, timeout=3.1, follow_redirects=True)
 resp.raise_for_status()
 metadata = resp.json()
 return metadata['country']

This coroutine returns a string with the country name—if all goes well.

metadata will get a Python dict built from the JSON contents of the response.

Return the country name.

Now let’s see the modified download_one in Example 21-9, which has only a few lines
changed from the same coroutine in Example 21-6.

Enhancing the asyncio Downloader | 795

https://fpy.li/21-21
https://fpy.li/21-21

Example 21-9. flags3_asyncio.py: download_one coroutine

async def download_one(client: httpx.AsyncClient,
 cc: str,
 base_url: str,
 semaphore: asyncio.Semaphore,
 verbose: bool) -> DownloadStatus:
 try:
 async with semaphore:
 image = await get_flag(client, base_url, cc)
 async with semaphore:
 country = await get_country(client, base_url, cc)
 except httpx.HTTPStatusError as exc:
 res = exc.response
 if res.status_code == HTTPStatus.NOT_FOUND:
 status = DownloadStatus.NOT_FOUND
 msg = f'not found: {res.url}'
 else:
 raise
 else:
 filename = country.replace(' ', '_')
 await asyncio.to_thread(save_flag, image, f'{filename}.gif')
 status = DownloadStatus.OK
 msg = 'OK'
 if verbose and msg:
 print(cc, msg)
 return status

Hold the semaphore to await for get_flag…

…and again for get_country.

Use the country name to create a filename. As a command-line user, I don’t like
to see spaces in filenames.

Much better than nested callbacks!

I put the calls to get_flag and get_country in separate with blocks controlled by the
semaphore because it’s good practice to hold semaphores and locks for the shortest
possible time.

I could schedule both get_flag and get_country in parallel using asyncio.gather,
but if get_flag raises an exception, there is no image to save, so it’s pointless to run
get_country. But there are cases where it makes sense to use asyncio.gather to hit
several APIs at the same time instead of waiting for one response before making the
next request.

In flags3_asyncio.py, the await syntax appears six times, and async with three times.
Hopefully, you should be getting the hang of asynchronous programming in Python.

796 | Chapter 21: Asynchronous Programming

One challenge is to know when you have to use await and when you can’t use it. The
answer in principle is easy: you await coroutines and other awaitables, such as asyn
cio.Task instances. But some APIs are tricky, mixing coroutines and plain functions
in seemingly arbitrary ways, like the StreamWriter class we’ll use in Example 21-14.

Example 21-9 wrapped up the flags set of examples. Now let’s discuss the use of
thread or process executors in asynchronous programming.

Delegating Tasks to Executors
One important advantage of Node.js over Python for asynchronous programming is
the Node.js standard library, which provides async APIs for all I/O—not just for net‐
work I/O. In Python, if you’re not careful, file I/O can seriously degrade the perfor‐
mance of asynchronous applications, because reading and writing to storage in the
main thread blocks the event loop.

In the download_one coroutine of Example 21-6, I used this line to save the downloa‐
ded image to disk:

 await asyncio.to_thread(save_flag, image, f'{cc}.gif')

As mentioned before, the asyncio.to_thread was added in Python 3.9. If you need
to support 3.7 or 3.8, then replace that single line with the lines in Example 21-10.

Example 21-10. Lines to use instead of await asyncio.to_thread

 loop = asyncio.get_running_loop()
 loop.run_in_executor(None, save_flag,
 image, f'{cc}.gif')

Get a reference to the event loop.

The first argument is the executor to use; passing None selects the default Thread
PoolExecutor that is always available in the asyncio event loop.

You can pass positional arguments to the function to run, but if you need to pass
keyword arguments, then you need to resort to functool.partial, as described
in the run_in_executor documentation.

The newer asyncio.to_thread function is easier to use and more flexible, as it also
accepts keyword arguments.

The implementation of asyncio itself uses run_in_executor under the hood in a few
places. For example, the loop.getaddrinfo(…) coroutine we saw in Example 21-1
is implemented by calling the getaddrinfo function from the socket module—

Delegating Tasks to Executors | 797

https://fpy.li/21-22

which is a blocking function that may take seconds to return, as it depends on DNS
resolution.

A common pattern in asynchronous APIs is to wrap blocking calls that are imple‐
mentation details in coroutines using run_in_executor internally. That way, you
provide a consistent interface of coroutines to be driven with await, and hide the
threads you need to use for pragmatic reasons. The Motor asynchronous driver for
MongoDB has an API compatible with async/await that is really a façade around a
threaded core that talks to the database server. A. Jesse Jiryu Davis, the lead developer
of Motor, explains his reasoning in “Response to ‘Asynchronous Python and Data‐
bases’”. Spoiler: Davis discovered that a thread pool was more performant in the par‐
ticular use case of a database driver—despite the myth that asynchronous approaches
are always faster than threads for network I/O.

The main reason to pass an explict Executor to loop.run_in_executor is to employ
a ProcessPoolExecutor if the function to execute is CPU intensive, so that it runs in
a different Python process, avoiding contention for the GIL. Because of the high
start-up cost, it would be better to start the ProcessPoolExecutor in the supervisor,
and pass it to the coroutines that need to use it.

Caleb Hattingh—the author of Using Asyncio in Python (O’ Reilly)—is one of the
tech reviewers of this book and suggested I add the following warning about execu‐
tors and asyncio.

Caleb’s Warning about run_in_executors

Using run_in_executor can produce hard-to-debug problems
since cancellation doesn’t work the way one might expect. Corou‐
tines that use executors give merely the pretense of cancellation:
the underlying thread (if it’s a ThreadPoolExecutor) has no cancel‐
lation mechanism. For example, a long-lived thread that is created
inside a run_in_executor call may prevent your asyncio program
from shutting down cleanly: asyncio.run will wait for the executor
to fully shut down before returning, and it will wait forever
if the executor jobs don’t stop somehow on their own. My
greybeard inclination is to want that function to be named
run_in_executor_uncancellable.

We’ll now go from client scripts to writing servers with asyncio.

798 | Chapter 21: Asynchronous Programming

https://fpy.li/21-23
https://fpy.li/21-24
https://fpy.li/21-24
https://fpy.li/hattingh

Writing asyncio Servers
The classic toy example of a TCP server is an echo server. We’ll build slightly more
interesting toys: server-side Unicode character search utilities, first using HTTP with
FastAPI, then using plain TCP with asyncio only.

These servers let users query for Unicode characters based on words in their standard
names from the unicodedata module we discussed in “The Unicode Database” on
page 150. Figure 21-2 shows a session with web_mojifinder.py, the first server we’ll
build.

Figure 21-2. Browser window displaying search results for “mountain” from the
web_mojifinder.py service.

The Unicode search logic in these examples is in the InvertedIndex class in the char‐
index.py module in the Fluent Python code repository. There’s nothing concurrent in
that small module, so I’ll only give a brief overview in the optional box that follows.
You can skip to the HTTP server implementation in “A FastAPI Web Service” on
page 800.

Meet the Inverted Index
An inverted index usually maps words to documents in which they occur. In the
mojifinder examples, each “document” is one Unicode character. The charin
dex.InvertedIndex class indexes each word that appears in each character name in
the Unicode database, and creates an inverted index stored in a defaultdict. For
example, to index character U+0037—DIGIT SEVEN—the InvertedIndex initializer
appends the character '7' to the entries under the keys 'DIGIT' and 'SEVEN'. After
indexing the Unicode 13.0.0 data bundled with Python 3.9.1, 'DIGIT' maps to 868
characters, and 'SEVEN' maps to 143, including U+1F556—CLOCK FACE SEVEN

Writing asyncio Servers | 799

https://fpy.li/21-25
https://fpy.li/code

9 The boxed question mark in the screen shot is not a defect of the book or ebook you are reading. It’s the U
+101EC—PHAISTOS DISC SIGN CAT character, which is missing from the font in the terminal I used. The
Phaistos disc is an ancient artifact inscribed with pictograms, discovered in the island of Crete.

OCLOCK and U+2790—DINGBAT NEGATIVE CIRCLED SANS-SERIF DIGIT
SEVEN (which appears in many code listings in this book).

See Figure 21-3 for a demonstration using the entries for 'CAT' and 'FACE'.9

Figure 21-3. Python console exploring InvertedIndex attribute entries and search
method.

The InvertedIndex.search method breaks the query into words, and returns the
intersection of the entries for each word. That’s why searching for “face” finds 171
results, “cat” finds 14, but “cat face” only 10.

That’s the beautiful idea behind an inverted index: a fundamental building block in
information retrieval—the theory behind search engines. See the English Wikipedia
article “Inverted Index” to learn more.

A FastAPI Web Service
I wrote the next example—web_mojifinder.py—using FastAPI: one of the Python
ASGI Web frameworks mentioned in “ASGI—Asynchronous Server Gateway Inter‐
face” on page 732. Figure 21-2 is a screenshot of the frontend. It’s a super simple SPA
(Single Page Application): after the initial HTML download, the UI is updated by
client-side JavaScript communicating with the server.

FastAPI is designed to implement backends for SPA and mobile apps, which mostly
consist of web API end points returning JSON responses instead of server-rendered
HTML. FastAPI leverages decorators, type hints, and code introspection to eliminate
a lot of the boilerplate code for web APIs, and also automatically publishes interactive
OpenAPI—a.k.a. Swagger—documentation for the APIs we create. Figure 21-4 shows
the autogenerated /docs page for web_mojifinder.py.

800 | Chapter 21: Asynchronous Programming

https://fpy.li/21-26
https://fpy.li/21-27
https://fpy.li/21-28
https://fpy.li/21-29

10 Instead of uvicorn, you may use another ASGI server, such as hypercorn or Daphne. See the official ASGI doc‐
umentation page about implementations for more information.

Figure 21-4. Autogenerated OpenAPI schema for the /search endpoint.

Example 21-11 is the code for web_mojifinder.py, but that’s just the backend code.
When you hit the root URL /, the server sends the form.html file, which has 81 lines
of code, including 54 lines of JavaScript to communicate with the server and fill a
table with the results. If you’re interested in reading plain framework-less JavaScript,
please find 21-async/mojifinder/static/form.html in the Fluent Python code repository.

To run web_mojifinder.py, you need to install two packages and their dependencies:
FastAPI and uvicorn.10 This is the command to run Example 21-11 with uvicorn in
development mode:

$ uvicorn web_mojifinder:app --reload

The parameters are:

web_mojifinder:app

The package name, a colon, and the name of the ASGI application defined in it—
app is the conventional name.

--reload

Make uvicorn monitor changes to application source files and automatically
reload them. Useful only during development.

Now let’s study the source code for web_mojifinder.py.

Writing asyncio Servers | 801

https://fpy.li/21-30
https://fpy.li/code

11 Thanks to tech reviewer Miroslav Šedivý for highlighting good places to use pathlib in code examples.

Example 21-11. web_mojifinder.py: complete source

from pathlib import Path
from unicodedata import name

from fastapi import FastAPI
from fastapi.responses import HTMLResponse
from pydantic import BaseModel

from charindex import InvertedIndex

STATIC_PATH = Path(__file__).parent.absolute() / 'static'

app = FastAPI(
 title='Mojifinder Web',
 description='Search for Unicode characters by name.',
)

class CharName(BaseModel):
 char: str
 name: str

def init(app):
 app.state.index = InvertedIndex()
 app.state.form = (STATIC_PATH / 'form.html').read_text()

init(app)

@app.get('/search', response_model=list[CharName])
async def search(q: str):
 chars = sorted(app.state.index.search(q))
 return ({'char': c, 'name': name(c)} for c in chars)

@app.get('/', response_class=HTMLResponse, include_in_schema=False)
def form():
 return app.state.form

no main funcion

Unrelated to the theme of this chapter, but worth noting: the elegant use of the
overloaded / operator by pathlib.11

This line defines the ASGI app. It could be as simple as app = FastAPI(). The
parameters shown are metadata for the autogenerated documentation.

802 | Chapter 21: Asynchronous Programming

12 As mentioned in Chapter 8, pydantic enforces type hints at runtime, for data validation.

A pydantic schema for a JSON response with char and name fields.12

Build the index and load the static HTML form, attaching both to the app.state
for later use.

Run init when this module is loaded by the ASGI server.

Route for the /search endpoint; response_model uses that CharName pydantic
model to describe the response format.

FastAPI assumes that any parameters that appear in the function or coroutine
signature that are not in the route path will be passed in the HTTP query string,
e.g., /search?q=cat. Since q has no default, FastAPI will return a 422 (Unpro‐
cessable Entity) status if q is missing from the query string.

Returning an iterable of dicts compatible with the response_model schema
allows FastAPI to build the JSON response according to the response_model in
the @app.get decorator.

Regular functions (i.e., non-async) can also be used to produce responses.

This module has no main function. It is loaded and driven by the ASGI server—
uvicorn in this example.

Example 21-11 has no direct calls to asyncio. FastAPI is built on the Starlette ASGI
toolkit, which in turn uses asyncio.

Also note that the body of search doesn’t use await, async with, or async for,
therefore it could be a plain function. I defined search as a coroutine just to show
that FastAPI knows how to handle it. In a real app, most endpoints will query data‐
bases or hit other remote servers, so it is a critical advantage of FastAPI—and ASGI
frameworks in general—to support coroutines that can take advantage of asynchro‐
nous libraries for network I/O.

Writing asyncio Servers | 803

https://fpy.li/21-31

The init and form functions I wrote to load and serve the static
HTML form are a hack to make the example short and easy to run.
The recommended best practice is to have a proxy/load-balancer in
front of the ASGI server to handle all static assets, and also use a
CDN (Content Delivery Network) when possible. One such proxy/
load-balancer is Traefik, a self-described “edge router” that
“receives requests on behalf of your system and finds out which
components are responsible for handling them.” FastAPI has
project generation scripts that prepare your code to do that.

The typing enthusiast may have noticed that there are no return type hints in search
and form. Instead, FastAPI relies on the response_model= keyword argument in the
route decorators. The “Response Model” page in the FastAPI documentation
explains:

The response model is declared in this parameter instead of as a function return type
annotation, because the path function may not actually return that response model but
rather return a dict, database object or some other model, and then use the
response_model to perform the field limiting and serialization.

For example, in search, I returned a generator of dict items, not a list of CharName
objects, but that’s good enough for FastAPI and pydantic to validate my data and
build the appropriate JSON response compatible with response_model=list[Char
Name].

We’ll now focus on the tcp_mojifinder.py script that is answering the queries in
Figure 21-5.

An asyncio TCP Server
The tcp_mojifinder.py program uses plain TCP to communicate with a client like Tel‐
net or Netcat, so I could write it using asyncio without external dependencies—and
without reinventing HTTP. Figure 21-5 shows text-based UI.

804 | Chapter 21: Asynchronous Programming

https://fpy.li/21-32
https://fpy.li/21-33
https://fpy.li/21-34

Figure 21-5. Telnet session with the tcp_mojifinder.py server: querying for “fire.”

This program is twice as long as web_mojifinder.py, so I split the presentation into
three parts: Example 21-12, Example 21-14, and Example 21-15. The top of tcp_moji‐
finder.py—including the import statements—is in Example 21-14, but I will start by
describing the supervisor coroutine and the main function that drives the program.

Example 21-12. tcp_mojifinder.py: a simple TCP server; continues in Example 21-14

async def supervisor(index: InvertedIndex, host: str, port: int) -> None:
 server = await asyncio.start_server(
 functools.partial(finder, index),
 host, port)

 socket_list = cast(tuple[TransportSocket, ...], server.sockets)
 addr = socket_list[0].getsockname()
 print(f'Serving on {addr}. Hit CTRL-C to stop.')
 await server.serve_forever()

def main(host: str = '127.0.0.1', port_arg: str = '2323'):
 port = int(port_arg)
 print('Building index.')
 index = InvertedIndex()
 try:
 asyncio.run(supervisor(index, host, port))
 except KeyboardInterrupt:
 print('\nServer shut down.')

if __name__ == '__main__':
 main(*sys.argv[1:])

Writing asyncio Servers | 805

13 Issue #5535 is closed as of October 2021, but Mypy did not have a new release since then, so the error persists.

14 Tech reviewer Leonardo Rochael pointed out that building the index could be delegated to another thread
using loop.run_with_executor() in the supervisor coroutine, so the server would be ready to take requests
immediately while the index is built. That’s true, but querying the index is the only thing this server does, so it
would not be a big win in this example.

This await quickly gets an instance of asyncio.Server, a TCP socket server. By
default, start_server creates and starts the server, so it’s ready to receive
connections.

The first argument to start_server is client_connected_cb, a callback to run
when a new client connection starts. The callback can be a function or a corou‐
tine, but it must accept exactly two arguments: an asyncio.StreamReader and an
asyncio.StreamWriter. However, my finder coroutine also needs to get an
index, so I used functools.partial to bind that parameter and obtain a callable
that takes the reader and writer. Adapting user functions to callback APIs is the
most common use case for functools.partial.

host and port are the second and third arguments to start_server. See the full
signature in the asyncio documentation.

This cast is needed because typeshed has an outdated type hint for the sockets
property of the Server class—as of May 2021. See Issue #5535 on typeshed.13

Display the address and port of the first socket of the server.

Although start_server already started the server as a concurrent task, I need to
await on the server_forever method so that my supervisor is suspended here.
Without this line, supervisor would return immediately, ending the loop started
with asyncio.run(supervisor(…)), and exiting the program. The documenta‐
tion for Server.serve_forever says: “This method can be called if the server is
already accepting connections.”

Build the inverted index.14

Start the event loop running supervisor.

Catch the KeyboardInterrupt to avoid a distracting traceback when I stop the
server with Ctrl-C on the terminal running it.

You may find it easier to understand how control flows in tcp_mojifinder.py if you
study the output it generates on the server console, listed in Example 21-13.

806 | Chapter 21: Asynchronous Programming

https://fpy.li/21-35
https://fpy.li/21-36
https://fpy.li/21-37
https://fpy.li/21-37

Example 21-13. tcp_mojifinder.py: this is the server side of the session depicted in
Figure 21-5

$ python3 tcp_mojifinder.py
Building index.
Serving on ('127.0.0.1', 2323). Hit Ctrl-C to stop.
 From ('127.0.0.1', 58192): 'cat face'
 To ('127.0.0.1', 58192): 10 results.
 From ('127.0.0.1', 58192): 'fire'
 To ('127.0.0.1', 58192): 11 results.
 From ('127.0.0.1', 58192): '\x00'
Close ('127.0.0.1', 58192).
^C
Server shut down.
$

Output by main. Before the next line appears, I see a 0.6s delay on my machine
while the index is built.

Output by supervisor.

First iteration of a while loop in finder. The TCP/IP stack assigned port 58192
to my Telnet client. If you connect several clients to the server, you’ll see their
various ports in the output.

Second iteration of the while loop in finder.

I hit Ctrl-C on the client terminal; the while loop in finder exits.

The finder coroutine displays this message then exits. Meanwhile the server is
still running, ready to service another client.

I hit Ctrl-C on the server terminal; server.serve_forever is cancelled, ending
supervisor and the event loop.

Output by main.

After main builds the index and starts the event loop, supervisor quickly displays the
Serving on… message and is suspended at the await server.serve_forever() line.
At that point, control flows into the event loop and stays there, occasionally coming
back to the finder coroutine, which yields control back to the event loop whenever it
needs to wait for the network to send or receive data.

While the event loop is alive, a new instance of the finder coroutine will be started
for each client that connects to the server. In this way, many clients can be handled

Writing asyncio Servers | 807

concurrently by this simple server. This continues until a KeyboardInterrupt occurs
on the server or its process is killed by the OS.

Now let’s see the top of tcp_mojifinder.py, with the finder coroutine.

Example 21-14. tcp_mojifinder.py: continued from Example 21-12

import asyncio
import functools
import sys
from asyncio.trsock import TransportSocket
from typing import cast

from charindex import InvertedIndex, format_results

CRLF = b'\r\n'
PROMPT = b'?> '

async def finder(index: InvertedIndex,
 reader: asyncio.StreamReader,
 writer: asyncio.StreamWriter) -> None:
 client = writer.get_extra_info('peername')
 while True:
 writer.write(PROMPT) # can't await!
 await writer.drain() # must await!
 data = await reader.readline()
 if not data:
 break
 try:
 query = data.decode().strip()
 except UnicodeDecodeError:
 query = '\x00'
 print(f' From {client}: {query!r}')
 if query:
 if ord(query[:1]) < 32:
 break
 results = await search(query, index, writer)
 print(f' To {client}: {results} results.')

 writer.close()
 await writer.wait_closed()
 print(f'Close {client}.')

808 | Chapter 21: Asynchronous Programming

format_results is useful to display the results of InvertedIndex.search in a
text-based UI such as the command line or a Telnet session.

To pass finder to asyncio.start_server, I wrapped it with functools.par
tial, because the server expects a coroutine or function that takes only the
reader and writer arguments.

Get the remote client address to which the socket is connected.

This loop handles a dialog that lasts until a control character is received from the
client.

The StreamWriter.write method is not a coroutine, just a plain function; this
line sends the ?> prompt.

StreamWriter.drain flushes the writer buffer; it is a coroutine, so it must be
driven with await.

StreamWriter.readline is a coroutine that returns bytes.

If no bytes were received, the client closed the connection, so exit the loop.

Decode the bytes to str, using the default UTF-8 encoding.

A UnicodeDecodeError may happen when the user hits Ctrl-C and the Telnet cli‐
ent sends control bytes; if that happens, replace the query with a null character,
for simplicity.

Log the query to the server console.

Exit the loop if a control or null character was received.

Do the actual search; code is presented next.

Log the response to the server console.

Close the StreamWriter.

Wait for the StreamWriter to close. This is recommended in the .close()
method documentation.

Log the end of this client’s session to the server console.

The last piece of this example is the search coroutine, shown in Example 21-15.

Writing asyncio Servers | 809

https://fpy.li/21-38
https://fpy.li/21-38

Example 21-15. tcp_mojifinder.py: search coroutine

async def search(query: str,
 index: InvertedIndex,
 writer: asyncio.StreamWriter) -> int:
 chars = index.search(query)
 lines = (line.encode() + CRLF for line
 in format_results(chars))
 writer.writelines(lines)
 await writer.drain()
 status_line = f'{"─" * 66} {len(chars)} found'
 writer.write(status_line.encode() + CRLF)
 await writer.drain()
 return len(chars)

search must be a coroutine because it writes to a StreamWriter and must use
its .drain() coroutine method.

Query the inverted index.

This generator expression will yield byte strings encoded in UTF-8 with the Uni‐
code codepoint, the actual character, its name, and a CRLF sequence—e.g.,
b'U+0039\t9\tDIGIT NINE\r\n').

Send the lines. Surprisingly, writer.writelines is not a coroutine.

But writer.drain() is a coroutine. Don’t forget the await!

Build a status line, then send it.

Note that all network I/O in tcp_mojifinder.py is in bytes; we need to decode the
bytes received from the network, and encode strings before sending them out. In
Python 3, the default encoding is UTF-8, and that’s what I used implicitly in all
encode and decode calls in this example.

Note that some of the I/O methods are coroutines and must be
driven with await, while others are simple functions. For example,
StreamWriter.write is a plain function, because it writes to a
buffer. On the other hand, StreamWriter.drain—which flushes
the buffer and performs the network I/O—is a coroutine, as
is StreamReader.readline—but not StreamWriter.writelines!
While I was writing the first edition of this book, the asyncio API
docs were improved by clearly labeling coroutines as such.

810 | Chapter 21: Asynchronous Programming

https://fpy.li/21-39

The tcp_mojifinder.py code leverages the high-level asyncio Streams API that pro‐
vides a ready-to-use server so you only need to implement a handler function, which
can be a plain callback or a coroutine. There is also a lower-level Transports and Pro‐
tocols API, inspired by the transport and protocols abstractions in the Twisted frame‐
work. Refer to the asyncio documentation for more information, including TCP and
UDP echo servers and clients implemented with that lower-level API.

Our next topic is async for and the objects that make it work.

Asynchronous Iteration and Asynchronous Iterables
We saw in “Asynchronous Context Managers” on page 786 how async with works
with objects implementing the __aenter__ and __aexit__ methods returning await‐
ables—usually in the form of coroutine objects.

Similarly, async for works with asynchronous iterables: objects that implement
__aiter__. However, __aiter__ must be a regular method—not a coroutine method
—and it must return an asynchronous iterator.

An asynchronous iterator provides an __anext__ coroutine method that returns an
awaitable—often a coroutine object. They are also expected to implement __aiter__,
which usually returns self. This mirrors the important distinction of iterables and
iterators we discussed in “Don’t Make the Iterable an Iterator for Itself” on page 605.

The aiopg asynchronous PostgreSQL driver documentation has an example that illus‐
trates the use of async for to iterate over the rows of a database cursor:

async def go():
 pool = await aiopg.create_pool(dsn)
 async with pool.acquire() as conn:
 async with conn.cursor() as cur:
 await cur.execute("SELECT 1")
 ret = []
 async for row in cur:
 ret.append(row)
 assert ret == [(1,)]

In this example the query will return a single row, but in a realistic scenario you may
have thousands of rows in response to a SELECT query. For large responses, the cursor
will not be loaded with all the rows in a single batch. Therefore it is important that
async for row in cur: does not block the event loop while the cursor may be wait‐
ing for additional rows. By implementing the cursor as an asynchronous iterator,
aiopg may yield to the event loop at each __anext__ call, and resume later when more
rows arrive from PostgreSQL.

Asynchronous Iteration and Asynchronous Iterables | 811

https://fpy.li/21-40
https://fpy.li/21-41
https://fpy.li/21-41
https://fpy.li/21-42
https://fpy.li/21-42
https://fpy.li/21-43

15 This is great for experimentation, like the Node.js console. Thanks to Yury Selivanov for yet another excellent
contribution to asynchronous Python.

Asynchronous Generator Functions
You can implement an asynchronous iterator by writing a class with __anext__ and
__aiter__, but there is a simpler way: write a function declared with async def and
use yield in its body. This parallels how generator functions simplify the classic Iter‐
ator pattern.

Let’s study a simple example using async for and implementing an asynchronous
generator. In Example 21-1 we saw blogdom.py, a script that probed domain names.
Now suppose we find other uses for the probe coroutine we defined there, and decide
to put it into a new module—domainlib.py—together with a new multi_probe asyn‐
chronous generator that takes a list of domain names and yields results as they are
probed.

We’ll look at the implementation of domainlib.py soon, but first let’s see how it is
used with Python’s new asynchronous console.

Experimenting with Python’s async console

Since Python 3.8, you can run the interpreter with the -m asyncio command-line
option to get an “async REPL”: a Python console that imports asyncio, provides a
running event loop, and accepts await, async for, and async with at the top-level
prompt—which otherwise are syntax errors when used outside of native coroutines.15

To experiment with domainlib.py, go to the 21-async/domains/asyncio/ directory in
your local copy of the Fluent Python code repository. Then run:

$ python -m asyncio

You’ll see the console start, similar to this:

asyncio REPL 3.9.1 (v3.9.1:1e5d33e9b9, Dec 7 2020, 12:10:52)
[Clang 6.0 (clang-600.0.57)] on darwin
Use "await" directly instead of "asyncio.run()".
Type "help", "copyright", "credits" or "license" for more information.
>>> import asyncio
>>>

Note how the header says you can use await instead of asyncio.run()—to drive
coroutines and other awaitables. Also: I did not type import asyncio. The asyncio
module is automatically imported and that line makes that fact clear to the user.

812 | Chapter 21: Asynchronous Programming

https://fpy.li/21-44
https://fpy.li/code

16 See RFC 6761—Special-Use Domain Names.

Now let’s import domainlib.py and play with its two coroutines: probe and
multi_probe (Example 21-16).

Example 21-16. Experimenting with domainlib.py after running python3 -m asyncio

>>> await asyncio.sleep(3, 'Rise and shine!')
'Rise and shine!'
>>> from domainlib import *
>>> await probe('python.org')
Result(domain='python.org', found=True)
>>> names = 'python.org rust-lang.org golang.org no-lang.invalid'.split()
>>> async for result in multi_probe(names):
... print(*result, sep='\t')
...
golang.org True
no-lang.invalid False
python.org True
rust-lang.org True
>>>

Try a simple await to see the asynchronous console in action. Tip: asyn
cio.sleep() takes an optional second argument that is returned when you
await it.

Drive the probe coroutine.

The domainlib version of probe returns a Result named tuple.

Make a list of domains. The .invalid top-level domain is reserved for testing.
DNS queries for such domains always get an NXDOMAIN response from DNS
servers, meaning “that domain does not exist.”16

Iterate with async for over the multi_probe asynchronous generator to display
the results.

Note that the results are not in the order the domains were given to multiprobe.
They appear as each DNS response comes back.

Example 21-16 shows that multi_probe is an asynchronous generator because it is
compatible with async for. Now let’s do a few more experiments, continuing from
that example with Example 21-17.

Asynchronous Iteration and Asynchronous Iterables | 813

https://fpy.li/21-45

Example 21-17. More experiments, continuing from Example 21-16

>>> probe('python.org')
<coroutine object probe at 0x10e313740>
>>> multi_probe(names)
<async_generator object multi_probe at 0x10e246b80>
>>> for r in multi_probe(names):
... print(r)
...
Traceback (most recent call last):
 ...
TypeError: 'async_generator' object is not iterable

Calling a native coroutine gives you a coroutine object.

Calling an asynchronous generator gives you an async_generator object.

We can’t use a regular for loop with asynchronous generators because they
implement __aiter__ instead of __iter__.

Asynchronous generators are driven by async for, which can be a block statement
(as seen in Example 21-16), and it also appears in asynchronous comprehensions,
which we’ll cover soon.

Implementing an asynchronous generator

Now let’s study the code for domainlib.py, with the multi_probe asynchronous gen‐
erator (Example 21-18).

Example 21-18. domainlib.py: functions for probing domains

import asyncio
import socket
from collections.abc import Iterable, AsyncIterator
from typing import NamedTuple, Optional

class Result(NamedTuple):
 domain: str
 found: bool

OptionalLoop = Optional[asyncio.AbstractEventLoop]

async def probe(domain: str, loop: OptionalLoop = None) -> Result:
 if loop is None:
 loop = asyncio.get_running_loop()
 try:

814 | Chapter 21: Asynchronous Programming

 await loop.getaddrinfo(domain, None)
 except socket.gaierror:
 return Result(domain, False)
 return Result(domain, True)

async def multi_probe(domains: Iterable[str]) -> AsyncIterator[Result]:
 loop = asyncio.get_running_loop()
 coros = [probe(domain, loop) for domain in domains]
 for coro in asyncio.as_completed(coros):
 result = await coro
 yield result

NamedTuple makes the result from probe easier to read and debug.

This type alias is to avoid making the next line too long for a book listing.

probe now gets an optional loop argument, to avoid repeated calls to get_run
ning_loop when this coroutine is driven by multi_probe.

An asynchronous generator function produces an asynchronous generator
object, which can be annotated as AsyncIterator[SomeType].

Build list of probe coroutine objects, each with a different domain.

This is not async for because asyncio.as_completed is a classic generator.

Await on the coroutine object to retrieve the result.

Yield result. This line makes multi_probe an asynchronous generator.

The for loop in Example 21-18 could be more concise:
 for coro in asyncio.as_completed(coros):
 yield await coro

Python parses that as yield (await coro), so it works.
I thought it could be confusing to use that shortcut in the first
asynchronous generator example in the book, so I split it into two
lines.

Given domainlib.py, we can demonstrate the use of the multi_probe asynchronous
generator in domaincheck.py: a script that takes a domain suffix and searches for
domains made from short Python keywords.

Here is a sample output of domaincheck.py:

Asynchronous Iteration and Asynchronous Iterables | 815

$./domaincheck.py net
FOUND NOT FOUND
===== =========
in.net
del.net
true.net
for.net
is.net
 none.net
try.net
 from.net
and.net
or.net
else.net
with.net
if.net
as.net
 elif.net
 pass.net
 not.net
 def.net

Thanks to domainlib, the code for domaincheck.py is straightforward, as seen in
Example 21-19.

Example 21-19. domaincheck.py: utility for probing domains using domainlib

#!/usr/bin/env python3
import asyncio
import sys
from keyword import kwlist

from domainlib import multi_probe

async def main(tld: str) -> None:
 tld = tld.strip('.')
 names = (kw for kw in kwlist if len(kw) <= 4)
 domains = (f'{name}.{tld}'.lower() for name in names)
 print('FOUND\t\tNOT FOUND')
 print('=====\t\t=========')
 async for domain, found in multi_probe(domains):
 indent = '' if found else '\t\t'
 print(f'{indent}{domain}')

if __name__ == '__main__':
 if len(sys.argv) == 2:
 asyncio.run(main(sys.argv[1]))
 else:
 print('Please provide a TLD.', f'Example: {sys.argv[0]} COM.BR')

816 | Chapter 21: Asynchronous Programming

Generate keywords with length up to 4.

Generate domain names with the given suffix as TLD.

Format a header for the tabular output.

Asynchronously iterate over multi_probe(domains).

Set indent to zero or two tabs to put the result in the proper column.

Run the main coroutine with the given command-line argument.

Generators have one extra use unrelated to iteration: they can be made into context
managers. This also applies to asynchronous generators.

Asynchronous generators as context managers
Writing our own asynchronous context managers is not a frequent programming
task, but if you need to write one, consider using the @asynccontextmanager decora‐
tor added to the contextlib module in Python 3.7. That’s very similar to the @con
textmanager decorator we studied in “Using @contextmanager” on page 664.

An interesting example combining @asynccontextmanager with loop.run_in_execu
tor appears in Caleb Hattingh’s book Using Asyncio in Python. Example 21-20 is
Caleb’s code—with a single change and added callouts.

Example 21-20. Example using @asynccontextmanager and loop.run_in_executor

from contextlib import asynccontextmanager

@asynccontextmanager
async def web_page(url):
 loop = asyncio.get_running_loop()
 data = await loop.run_in_executor(
 None, download_webpage, url)
 yield data
 await loop.run_in_executor(None, update_stats, url)

async with web_page('google.com') as data:
 process(data)

The decorated function must be an asynchronous generator.

Minor update to Caleb’s code: use the lightweight get_running_loop instead of
get_event_loop.

Asynchronous Iteration and Asynchronous Iterables | 817

https://fpy.li/21-46
https://fpy.li/hattingh

Suppose download_webpage is a blocking function using the requests library; we
run it in a separate thread to avoid blocking the event loop.

All lines before this yield expression will become the __aenter__ coroutine-
method of the asynchronous context manager built by the decorator. The value
of data will be bound to the data variable after the as clause in the async with
statement below.

Lines after the yield will become the __aexit__ coroutine method. Here,
another blocking call is delegated to the thread executor.

Use web_page with async with.

This is very similar to the sequential @contextmanager decorator. Please see “Using
@contextmanager” on page 664 for more details, including error handling at the
yield line. For another example of @asynccontextmanager, see the contextlib doc‐
umentation.

Now let’s wrap up our coverage of asynchronous generator functions by contrasting
them with native coroutines.

Asynchronous generators versus native coroutines
Here are some key similarities and differences between a native coroutine and an
asynchronous generator function:

• Both are declared with async def.
• An asynchronous generator always has a yield expression in its body—that’s

what makes it a generator. A native coroutine never contains yield.
• A native coroutine may return some value other than None. An asynchronous

generator can only use empty return statements.
• Native coroutines are awaitable: they can be driven by await expressions or

passed to one of the many asyncio functions that take awaitable arguments, such
as create_task. Asynchronous generators are not awaitable. They are asynchro‐
nous iterables, driven by async for or by asynchronous comprehensions.

Time to talk about asynchronous comprehensions.

Async Comprehensions and Async Generator Expressions
PEP 530—Asynchronous Comprehensions introduced the use of async for and
await in the syntax of comprehensions and generator expressions, starting with
Python 3.6.

818 | Chapter 21: Asynchronous Programming

https://fpy.li/21-46
https://fpy.li/21-46
https://fpy.li/pep530

The only construct defined by PEP 530 that can appear outside an async def body is
an asynchronous generator expression.

Defining and using an asynchronous generator expression

Given the multi_probe asynchronous generator from Example 21-18, we could write
another asynchronous generator returning only the names of the domains found.
Here is how—again using the asynchronous console launched with -m asyncio:

>>> from domainlib import multi_probe
>>> names = 'python.org rust-lang.org golang.org no-lang.invalid'.split()
>>> gen_found = (name async for name, found in multi_probe(names) if found)
>>> gen_found
<async_generator object <genexpr> at 0x10a8f9700>
>>> async for name in gen_found:
... print(name)
...
golang.org
python.org
rust-lang.org

The use of async for makes this an asynchronous generator expression. It can
be defined anywhere in a Python module.

The asynchronous generator expression builds an async_generator object—
exactly the same type of object returned by an asynchronous generator function
like multi_probe.

The asynchronous generator object is driven by the async for statement, which
in turn can only appear inside an async def body or in the magic asynchronous
console I used in this example.

To summarize: an asynchronous generator expression can be defined anywhere in
your program, but it can only be consumed inside a native coroutine or asynchro‐
nous generator function.

The remaining constructs introduced by PEP 530 can only be defined and used inside
native coroutines or asynchronous generator functions.

Asynchronous comprehensions
Yury Selivanov—the author of PEP 530—justifies the need for asynchronous com‐
prehensions with three short code snippets reproduced next.

We can all agree that we should be able to rewrite this code:

result = []
async for i in aiter():

Asynchronous Iteration and Asynchronous Iterables | 819

 if i % 2:
 result.append(i)

like this:

result = [i async for i in aiter() if i % 2]

In addition, given a native coroutine fun, we should be able to write this:

result = [await fun() for fun in funcs]

Using await in a list comprehension is similar to using asyn
cio.gather. But gather gives you more control over exception
handling, thanks to its optional return_exceptions argument.
Caleb Hattingh recommends always setting return_excep

tions=True (the default is False). Please see the asyncio.gather
documentation for more.

Back to the magic asynchronous console:

>>> names = 'python.org rust-lang.org golang.org no-lang.invalid'.split()
>>> names = sorted(names)
>>> coros = [probe(name) for name in names]
>>> await asyncio.gather(*coros)
[Result(domain='golang.org', found=True),
Result(domain='no-lang.invalid', found=False),
Result(domain='python.org', found=True),
Result(domain='rust-lang.org', found=True)]
>>> [await probe(name) for name in names]
[Result(domain='golang.org', found=True),
Result(domain='no-lang.invalid', found=False),
Result(domain='python.org', found=True),
Result(domain='rust-lang.org', found=True)]
>>>

Note that I sorted the list of names to show that the results come out in the order they
were submitted, in both cases.

PEP 530 allows the use of async for and await in list comprehensions as well as in
dict and set comprehensions. For example, here is a dict comprehension to store
the results of multi_probe in the asynchronous console:

>>> {name: found async for name, found in multi_probe(names)}
{'golang.org': True, 'python.org': True, 'no-lang.invalid': False,
'rust-lang.org': True}

We can use the await keyword in the expression before the for or async for clause,
and also in the expression after the if clause. Here is a set comprehension in the
asynchronous console, collecting only the domains that were found:

>>> {name for name in names if (await probe(name)).found}
{'rust-lang.org', 'python.org', 'golang.org'}

820 | Chapter 21: Asynchronous Programming

https://fpy.li/21-48
https://fpy.li/21-48

17 That’s in contrast with JavaScript, where async/await is hardwired to the built-in event loop and runtime
environment, i.e., a browser, Node.js, or Deno.

I had to put extra parentheses around the await expression due to the higher prece‐
dence of the __getattr__ operator . (dot).

Again, all of these comprehensions can only appear inside an async def body or in
the enchanted asynchronous console.

Now let’s talk about a very important feature of the async statements, async expres‐
sions, and the objects they create. Those constructs are often used with asyncio but,
they are actually library independent.

async Beyond asyncio: Curio
Python’s async/await language constructs are not tied to any specific event loop or
library.17 Thanks to the extensible API provided by special methods, anyone suffi‐
ciently motivated can write their own asynchronous runtime environment and
framework to drive native coroutines, asynchronous generators, etc.

That’s what David Beazley did in his Curio project. He was interested in rethinking
how these new language features could be used in a framework built from scratch.
Recall that asyncio was released in Python 3.4, and it used yield from instead of
await, so its API could not leverage asynchronous context managers, asynchronous
iterators, and everything else that the async/await keywords made possible. As a
result, Curio has a cleaner API and a simpler implementation, compared to asyncio.

Example 21-21 shows the blogdom.py script (Example 21-1) rewritten to use Curio.

Example 21-21. blogdom.py: Example 21-1, now using Curio

#!/usr/bin/env python3
from curio import run, TaskGroup
import curio.socket as socket
from keyword import kwlist

MAX_KEYWORD_LEN = 4

async def probe(domain: str) -> tuple[str, bool]:
 try:
 await socket.getaddrinfo(domain, None)
 except socket.gaierror:
 return (domain, False)
 return (domain, True)

async Beyond asyncio: Curio | 821

https://fpy.li/21-49

async def main() -> None:
 names = (kw for kw in kwlist if len(kw) <= MAX_KEYWORD_LEN)
 domains = (f'{name}.dev'.lower() for name in names)
 async with TaskGroup() as group:
 for domain in domains:
 await group.spawn(probe, domain)
 async for task in group:
 domain, found = task.result
 mark = '+' if found else ' '
 print(f'{mark} {domain}')

if __name__ == '__main__':
 run(main())

probe doesn’t need to get the event loop, because…

…getaddrinfo is a top-level function of curio.socket, not a method of a loop
object—as it is in asyncio.

A TaskGroup is a core concept in Curio, to monitor and control several corou‐
tines, and to make sure they are all executed and cleaned up.

TaskGroup.spawn is how you start a coroutine, managed by a specific TaskGroup
instance. The coroutine is wrapped by a Task.

Iterating with async for over a TaskGroup yields Task instances as each is
completed. This corresponds to the line in Example 21-1 using
for … as_completed(…):.

Curio pioneered this sensible way to start an asynchronous program in Python.

To expand on the last point: if you look at the asyncio code examples for the first
edition of Fluent Python, you’ll see lines like these, repeated over and over:

 loop = asyncio.get_event_loop()
 loop.run_until_complete(main())
 loop.close()

A Curio TaskGroup is an asynchronous context manager that replaces several ad hoc
APIs and coding patterns in asyncio. We just saw how iterating over a TaskGroup
makes the asyncio.as_completed(…) function unnecessary. Another example:
instead of a special gather function, this snippet from the “Task Groups” docs col‐
lects the results of all tasks in the group:

async with TaskGroup(wait=all) as g:
 await g.spawn(coro1)
 await g.spawn(coro2)

822 | Chapter 21: Asynchronous Programming

https://fpy.li/21-50

 await g.spawn(coro3)
print('Results:', g.results)

Task groups support structured concurrency: a form of concurrent programming that
constrains all the activity of a group of asynchronous tasks to a single entry and exit
point. This is analogous to structured programming, which eschewed the GOTO com‐
mand and introduced block statements to limit the entry and exit points of loops and
subroutines. When used as an asynchronous context manager, a TaskGroup ensures
that all tasks spawned inside are completed or cancelled, and any exceptions raised,
upon exiting the enclosed block.

Structured concurrency will probably be adopted by asyncio in
upcoming Python releases. A strong indication appears in PEP
654–Exception Groups and except*, which was approved for
Python 3.11. The “Motivation” section mentions Trio’s “nurseries,”
their name for task groups: “Implementing a better task spawning
API in asyncio, inspired by Trio nurseries, was the main motiva‐
tion for this PEP.”

Another important feature of Curio is better support for programming with corou‐
tines and threads in the same codebase—a necessity in most nontrivial asynchronous
programs. Starting a thread with await spawn_thread(func, …) returns an Asyn
cThread object with a Task-like interface. Threads can call coroutines thanks to a
special AWAIT(coro) function—named in all caps because await is now a keyword.

Curio also provides a UniversalQueue that can be used to coordinate the work
among threads, Curio coroutines, and asyncio coroutines. That’s right, Curio has
features that allow it to run in a thread along with asyncio in another thread, in the
same process, communicating via UniversalQueue and UniversalEvent. The API for
these “universal” classes is the same inside and outside of coroutines, but in a corou‐
tine, you need to prefix calls with await.

As I write this in October 2021, HTTPX is the first HTTP client library compatible
with Curio, but I don’t know of any asynchronous database libraries that support it
yet. In the Curio repository there is an impressive set of network programming exam‐
ples, including one using WebSocket, and another implementing the RFC 8305—
Happy Eyeballs concurrent algorithm for connecting to IPv6 endpoints with fast fall‐
back to IPv4 if needed.

The design of Curio has been influential. The Trio framework started by Nathaniel J.
Smith was heavily inspired by Curio. Curio may also have prompted Python contrib‐
utors to improve the usability of the asyncio API. For example, in its earliest releases,
asyncio users very often had to get and pass around a loop object because some
essential functions were either loop methods or required a loop argument. In recent

async Beyond asyncio: Curio | 823

https://fpy.li/21-51
https://fpy.li/pep654
https://fpy.li/pep654
https://fpy.li/21-52
https://fpy.li/21-52
https://fpy.li/21-53
https://fpy.li/21-54
https://fpy.li/21-55
https://fpy.li/21-55
https://fpy.li/21-56
https://fpy.li/21-56
https://fpy.li/21-57
https://fpy.li/21-57
https://fpy.li/21-58

18 This differs from the annotations of classic coroutines, as discussed in “Generic Type Hints for Classic
Coroutines” on page 650.

versions of Python, direct access to the loop is not needed as often, and in fact several
functions that accepted an optional loop are now deprecating that argument.

Type annotations for asynchronous types are our next topic.

Type Hinting Asynchronous Objects
The return type of a native coroutine describes what you get when you await on that
coroutine, which is the type of the object that appears in the return statements in the
body of the native coroutine function.18

This chapter provided many examples of annotated native coroutines, including
probe from Example 21-21:

async def probe(domain: str) -> tuple[str, bool]:
 try:
 await socket.getaddrinfo(domain, None)
 except socket.gaierror:
 return (domain, False)
 return (domain, True)

If you need to annotate a parameter that takes a coroutine object, then the generic
type is:

class typing.Coroutine(Awaitable[V_co], Generic[T_co, T_contra, V_co]):
 ...

That type, and the following types were introduced in Python 3.5 and 3.6 to annotate
asynchronous objects:

class typing.AsyncContextManager(Generic[T_co]):
 ...
class typing.AsyncIterable(Generic[T_co]):
 ...
class typing.AsyncIterator(AsyncIterable[T_co]):
 ...
class typing.AsyncGenerator(AsyncIterator[T_co], Generic[T_co, T_contra]):
 ...
class typing.Awaitable(Generic[T_co]):
 ...

With Python ≥ 3.9, use the collections.abc equivalents of these.

I want to highlight three aspects of those generic types.

First: they are all covariant on the first type parameter, which is the type of the items
yielded from these objects. Recall rule #1 of “Variance rules of thumb” on page 551:

824 | Chapter 21: Asynchronous Programming

19 Video: “Introduction to Node.js” at 4:55.

If a formal type parameter defines a type for data that comes out of the object, it can be
covariant.

Second: AsyncGenerator and Coroutine are contravariant on the second to last
parameter. That’s the type of the argument of the low-level .send() method that the
event loop calls to drive asynchronous generators and coroutines. As such, it is an
“input” type. Therefore, it can be contravariant, per Variance Rule of Thumb #2:

If a formal type parameter defines a type for data that goes into the object after its ini‐
tial construction, it can be contravariant.

Third: AsyncGenerator has no return type, in contrast with typing.Generator,
which we saw in “Generic Type Hints for Classic Coroutines” on page 650. Returning
a value by raising StopIteration(value) was one of the hacks that enabled genera‐
tors to operate as coroutines and support yield from, as we saw in “Classic Corou‐
tines” on page 641. There is no such overlap among the asynchronous objects:
AsyncGenerator objects don’t return values, and are completely separate from native
coroutine objects, which are annotated with typing.Coroutine.

Finally, let’s briefly discuss the advantages and challenges of asynchronous
programming.

How Async Works and How It Doesn’t
The sections closing this chapter discuss high-level ideas around asynchronous pro‐
gramming, regardless of the language or library you are using.

Let’s begin by explaining the #1 reason why asynchronous programming is appealing,
followed by a popular myth, and how to deal with it.

Running Circles Around Blocking Calls
Ryan Dahl, the inventor of Node.js, introduces the philosophy of his project by say‐
ing “We’re doing I/O completely wrong.”19 He defines a blocking function as one that
does file or network I/O, and argues that we can’t treat them as we treat nonblocking
functions. To explain why, he presents the numbers in the second column of
Table 21-1.

How Async Works and How It Doesn’t | 825

https://fpy.li/21-59

Table 21-1. Modern computer latency for reading data from different devices; third column
shows proportional times in a scale easier to understand for us slow humans

Device CPU cycles Proportional “human” scale
L1 cache 3 3 seconds

L2 cache 14 14 seconds

RAM 250 250 seconds

disk 41,000,000 1.3 years

network 240,000,000 7.6 years

To make sense of Table 21-1, bear in mind that modern CPUs with GHz clocks run
billions of cycles per second. Let’s say that a CPU runs exactly 1 billion cycles per sec‐
ond. That CPU can make more than 333 million L1 cache reads in 1 second, or 4
(four!) network reads in the same time. The third column of Table 21-1 puts those
numbers in perspective by multiplying the second column by a constant factor. So, in
an alternate universe, if one read from L1 cache took 3 seconds, then a network read
would take 7.6 years!

Table 21-1 explains why a disciplined approach to asynchronous programming can
lead to high-performance servers. The challenge is achieving that discipline. The first
step is to recognize that “I/O bound system” is a fantasy.

The Myth of I/O-Bound Systems
A commonly repeated meme is that asynchronous programming is good for “I/O
bound systems.” I learned the hard way that there are no “I/O-bound systems.” You
may have I/O-bound functions. Perhaps the vast majority of the functions in your
system are I/O bound; i.e., they spend more time waiting for I/O than crunching
data. While waiting, they cede control to the event loop, which can then drive some
other pending task. But inevitably, any nontrivial system will have some parts that are
CPU bound. Even trivial systems reveal that, under stress. In “Soapbox” on page 829,
I tell the story of two asynchronous programs that struggled with CPU-bound func‐
tions slowing down the event loop with severe impact on performance.

Given that any nontrivial system will have CPU-bound functions, dealing with them
is the key to success in asynchronous programming.

Avoiding CPU-Bound Traps
If you’re using Python at scale, you should have some automated tests designed
specifically to detect performance regressions as soon as they appear. This is critically
important with asynchronous code, but also relevant to threaded Python code—
because of the GIL. If you wait until the slowdown starts bothering the development
team, it’s too late. The fix will probably require some major makeover.

826 | Chapter 21: Asynchronous Programming

Here are some options for when you identify a CPU-hogging bottleneck:

• Delegate the task to a Python process pool.
• Delegate the task to an external task queue.
• Rewrite the relevant code in Cython, C, Rust, or some other language that com‐

piles to machine code and interfaces with the Python/C API, preferably releasing
the GIL.

• Decide that you can afford the performance hit and do nothing—but record the
decision to make it easier to revert to it later.

The external task queue should be chosen and integrated as soon as possible at the
start of the project, so that nobody in the team hesitates to use it when needed.

The last option—do nothing—falls in the category of technical debt.

Concurrent programming is a fascinating topic, and I would like to write a lot more
about it. But it is not the main focus of this book, and this is already one of the
longest chapters, so let’s wrap it up.

Chapter Summary
The problem with normal approaches to asynchronous programming is that they’re
all-or-nothing propositions. You rewrite all your code so none of it blocks or you’re
just wasting your time.

—Alvaro Videla and Jason J. W. Williams, RabbitMQ in Action

I chose that epigraph for this chapter for two reasons. At a high level, it reminds us to
avoid blocking the event loop by delegating slow tasks to a different processing unit,
from a simple thread all the way to a distributed task queue. At a lower level, it is also
a warning: once you write your first async def, your program is inevitably going to
have more and more async def, await, async with, and async for. And using non-
asynchronous libraries suddenly becomes a challenge.

After the simple spinner examples in Chapter 19, here our main focus was asynchro‐
nous programming with native coroutines, starting with the blogdom.py DNS prob‐
ing example, followed by the concept of awaitables. While reading the source code of
flags_asyncio.py, we found the first example of an asynchronous context manager.

The more advanced variations of the flag downloading program introduced two
powerful functions: the asyncio.as_completed generator and the loop.run_in_exec
utor coroutine. We also saw the concept and application of a semaphore to limit the
number of concurrent downloads—as expected from well-behaved HTTP clients.

Chapter Summary | 827

https://fpy.li/21-60

Server-side asynchronous programming was presented through the mojifinder exam‐
ples: a FastAPI web service and tcp_mojifinder.py—the latter using just asyncio and
the TCP protocol.

Asynchronous iteration and asynchronous iterables were the next major topic, with
sections on async for, Python’s async console, asynchronous generators, asynchro‐
nous generator expressions, and asynchronous comprehensions.

The last example in the chapter was blogdom.py rewritten with the Curio framework,
to demonstrate how Python’s asynchronous features are not tied to the asyncio
package. Curio also showcases the concept of structured concurrency, which may have
an industry-wide impact, bringing more clarity to concurrent code.

Finally, the sections under “How Async Works and How It Doesn’t” on page 825
discuss the main appeal of asynchronous programming, the misconception of “I/O-
bound systems,” and dealing with the inevitable CPU-bound parts of your program.

Further Reading
David Beazley’s PyOhio 2016 keynote “Fear and Awaiting in Async” is a fantastic,
live-coded introduction to the potential of the language features made possible by
Yury Selivanov’s contribution of the async/await keywords in Python 3.5. At one
point, Beazley complains that await can’t be used in list comprehensions, but that
was fixed by Selivanov in PEP 530—Asynchronous Comprehensions, implemented
in Python 3.6 later in that same year. Apart from that, everything else in Beazley’s
keynote is timeless, as he demonstrates how the asynchronous objects we saw in this
chapter work, without the help of any framework—just a simple run function
using .send(None) to drive coroutines. Only at the very end Beazley shows Curio,
which he started that year as an experiment to see how far can you go doing asyn‐
chronous programming without a foundation of callbacks or futures, just coroutines.
As it turns out, you can go very far—as demonstrated by the evolution of Curio and
the later creation of Trio by Nathaniel J. Smith. Curio’s documentation has links to
more talks by Beazley on the subject.

Besides starting Trio, Nathaniel J. Smith wrote two deep blog posts that I highly rec‐
ommend: “Some thoughts on asynchronous API design in a post-async/await world”,
contrasting the design of Curio with that of asyncio,and “Notes on structured concur‐
rency, or: Go statement considered harmful”, about structured concurrency. Smith
also gave a long and informative answer to the question: “What is the core difference
between asyncio and trio?” on StackOverflow.

To learn more about the asyncio package, I’ve mentioned the best written resources I
know at the start of this chapter: the official documentation after the outstanding
overhaul started by Yury Selivanov in 2018, and Caleb Hattingh’s book Using Asyncio
in Python (O’Reilly). In the official documentation, make sure to read “Developing

828 | Chapter 21: Asynchronous Programming

https://fpy.li/21-61
https://fpy.li/pep530
https://fpy.li/21-62
https://fpy.li/21-58
https://fpy.li/21-64
https://fpy.li/21-65
https://fpy.li/21-66
https://fpy.li/21-66
https://fpy.li/21-67
https://fpy.li/21-67
https://fpy.li/21-1
https://fpy.li/21-69
https://fpy.li/hattingh
https://fpy.li/hattingh
https://fpy.li/21-70

with asyncio”: documenting the asyncio debug mode, and also discussing common
mistakes and traps and how to avoid them.

For a very accessible, 30-minute introduction to asynchronous programming in gen‐
eral and also asyncio, watch Miguel Grinberg’s “Asynchronous Python for the Com‐
plete Beginner”, presented at PyCon 2017. Another great introduction is
“Demystifying Python’s Async and Await Keywords”, presented by Michael Ken‐
nedy, where among other things I learned about the unsync library that provides a
decorator to delegate the execution of coroutines, I/O-bound functions, and CPU-
bound functions to asyncio, threading, or multiprocessing as needed.

At EuroPython 2019, Lynn Root—a global leader of PyLadies—presented the excel‐
lent “Advanced asyncio: Solving Real-world Production Problems”, informed by her
experience using Python as a staff engineer at Spotify.

In 2020, Łukasz Langa recorded a series of great videos about asyncio, starting with
“Learn Python’s AsyncIO #1—The Async Ecosystem”. Langa also made the super
cool video “AsyncIO + Music” for PyCon 2020 that not only shows asyncio applied in
a very concrete event-oriented domain, but also explains it from the ground up.

Another area dominated by event-oriented programming is embedded systems.
That’s why Damien George added support for async/await in his MicroPython inter‐
preter for microcontrollers. At PyCon Australia 2018, Matt Trentini demonstrated
the uasyncio library, a subset of asyncio that is part of MicroPython’s standard
library.

For higher-level thinking about async programming in Python, read the blog post
“Python async frameworks—Beyond developer tribalism” by Tom Christie.

Finally, I recommend “What Color Is Your Function?” by Bob Nystrom, discussing
the incompatible execution models of plain functions versus async functions—a.k.a.
coroutines—in JavaScript, Python, C#, and other languages. Spoiler alert: Nystrom’s
conclusion is that the language that got this right is Go, where all functions are the
same color. I like that about Go. But I also think Nathaniel J. Smith has a point when
he wrote “Go statement considered harmful”. Nothing is perfect, and concurrent
programming is always hard.

Soapbox

How a Slow Function Almost Spoiled the uvloop Benchmarks

In 2016, Yury Selivanov released uvloop, “a fast, drop-in replacement of the built-in
asyncio event loop.” The benchmarks presented in Selivanov’s blog post announcing
the library in 2016 are very impressive. He wrote: “it is at least 2x faster than nodejs,
gevent, as well as any other Python asynchronous framework. The performance of
uvloop-based asyncio is close to that of Go programs.”

Further Reading | 829

https://fpy.li/21-70
https://fpy.li/21-71
https://fpy.li/21-71
https://fpy.li/21-72
https://fpy.li/21-73
https://fpy.li/21-74
https://fpy.li/21-75
https://fpy.li/21-76
https://fpy.li/21-77
https://fpy.li/21-78
https://fpy.li/21-79
https://fpy.li/21-80
https://fpy.li/21-81
https://fpy.li/21-66
https://fpy.li/21-83
https://fpy.li/21-84

20 Using a single thread was the default setting until Go 1.5 was released. Years before, Go had already earned a
well-deserved reputation for enabling highly concurrent networked systems. One more evidence that concur‐
rency doesn’t require multiple threads or CPU cores.

However, the post reveals that uvloop is able to match the performance of Go under
two conditions:

1. Go is configured to use a single thread. That makes the Go runtime behave simi‐
larly to asyncio: concurrency is achieved via multiple coroutines driven by an
event loop, all in the same thread.20

2. The Python 3.5 code uses httptools in addition to uvloop itself.

Selivanov explains that he wrote httptools after benchmarking uvloop with aiohttp—
one of the first full-featured HTTP libraries built on asyncio:

However, the performance bottleneck in aiohttp turned out to be its HTTP parser,
which is so slow, that it matters very little how fast the underlying I/O library is. To
make things more interesting, we created a Python binding for http-parser (Node.js
HTTP parser C library, originally developed for NGINX). The library is called
httptools, and is available on Github and PyPI.

Now think about that: Selivanov’s HTTP performance tests consisted of a simple
echo server written in the different languages/libraries, pounded by the wrk bench‐
marking tool. Most developers would consider a simple echo server an “I/O-bound
system,” right? But it turned out that parsing HTTP headers is CPU bound, and it
had a slow Python implementation in aiohttp in when Selivanov did the benchmarks
in 2016. Whenever a function written in Python was parsing headers, the event loop
was blocked. The impact was so significant that Selivanov went to the extra trouble of
writing httptools. Without optimizing the CPU-bound code, the performance gains of
a faster event loop were lost.

Death by a Thousand Cuts

Instead of a simple echo server, imagine a complex and evolving Python system with
tens of thousands of lines of asynchronous code, interfacing with many external libra‐
ries. Years ago I was asked to help diagnose performance problems in a system like
that. It was written in Python 2.7 with the Twisted framework—a solid library and in
many ways a precursor to asyncio itself.

Python was used to build a façade for the web UI, integrating functionality provided
by preexisting libraries and command-line tools written in other languages—but not
designed for concurrent execution.

830 | Chapter 21: Asynchronous Programming

https://fpy.li/21-85
https://fpy.li/21-86
https://fpy.li/21-87
https://fpy.li/21-88

21 Regardless of technical choices, this was probably the biggest mistake in this project: the stakeholders did not
go for an MVP approach—delivering a Minimum Viable Product as soon as possible, and then adding fea‐
tures at a steady pace.

The project was ambitious; it had been in development for more than a year already,
but it was not in production yet.21 Over time, the developers noticed that the
performance of the whole system was decreasing, and they were having a hard time
finding the bottlenecks.

What was happening: with each added feature, more CPU-bound code was slowing
down Twisted’s event loop. Python’s role as a glue language meant there was a lot of
data parsing and conversion between formats. There wasn’t a single bottleneck: the
problem was spread over countless little functions added over months of develop‐
ment. Fixing that would require rethinking the architecture of the system, rewriting a
lot of code, probably leveraging a task queue, and perhaps using microservices or cus‐
tom libraries written in languages better suited for CPU-intensive concurrent pro‐
cessing. The stakeholders were not prepared to make that additional investment, and
the project was cancelled shortly afterwards.

When I told this story to Glyph Lefkowitz—founder the Twisted project—he said that
one of his priorities at the start of an asynchronous programming project is to decide
which tools he will use to farm out the CPU-intensive tasks. This conversation with
Glyph was the inspiration for “Avoiding CPU-Bound Traps” on page 826.

Further Reading | 831

PART V

Metaprogramming

1 Alex Martelli, Anna Ravenscroft, and Steve Holden, Python in a Nutshell, 3rd ed. (O’Reilly), p. 123.

2 Bertrand Meyer, Object-Oriented Software Construction, 2nd ed. (Pearson), p. 57.

CHAPTER 22

Dynamic Attributes and Properties

The crucial importance of properties is that their existence makes it perfectly safe and
indeed advisable for you to expose public data attributes as part of your class’s public
interface.

— Martelli, Ravenscroft, and Holden, “Why properties are important”1

Data attributes and methods are collectively known as attributes in Python. A
method is an attribute that is callable. Dynamic attributes present the same interface
as data attributes—i.e., obj.attr—but are computed on demand. This follows Ber‐
trand Meyer’s Uniform Access Principle:

All services offered by a module should be available through a uniform notation,
which does not betray whether they are implemented through storage or through
computation.2

There are several ways to implement dynamic attributes in Python. This chapter cov‐
ers the simplest ways: the @property decorator and the __getattr__ special method.

A user-defined class implementing __getattr__ can implement a variation of
dynamic attributes that I call virtual attributes: attributes that are not explicitly
declared anywhere in the source code of the class, and are not present in the instance
__dict__, but may be retrieved elsewhere or computed on the fly whenever a user
tries to read a nonexistent attribute like obj.no_such_attr.

Coding dynamic and virtual attributes is the kind of metaprogramming that frame‐
work authors do. However, in Python the basic techniques are straightforward, so we
can use them in everyday data wrangling tasks. That’s how we’ll start this chapter.

835

https://fpy.li/pynut3

3 OSCON—O’Reilly Open Source Conference—was a casualty of the COVID-19 pandemic. The original 744
KB JSON file I used for these examples is no longer online as of January 10, 2021. You’ll find a copy of oscon‐
feed.json in the example code repository.

What’s New in This Chapter
Most of the updates to this chapter were motivated by a discussion of @func
tools.cached_property (introduced in Python 3.8), as well as the combined use of
@property with @functools.cache (new in 3.9). This affected the code for the
Record and Event classes that appear in “Computed Properties” on page 845. I also
added a refactoring to leverage the PEP 412—Key-Sharing Dictionary optimization.

To highlight more relevant features while keeping the examples readable, I removed
some nonessential code—merging the old DbRecord class into Record, replacing
shelve.Shelve with a dict, and deleting the logic to download the OSCON dataset
—which the examples now read from a local file included in the Fluent Python code
repository.

Data Wrangling with Dynamic Attributes
In the next few examples, we’ll leverage dynamic attributes to work with a JSON
dataset published by O’Reilly for the OSCON 2014 conference. Example 22-1 shows
four records from that dataset.3

Example 22-1. Sample records from osconfeed.json; some field contents abbreviated

{ "Schedule":
 { "conferences": [{"serial": 115 }],
 "events": [
 { "serial": 34505,
 "name": "Why Schools Don´t Use Open Source to Teach Programming",
 "event_type": "40-minute conference session",
 "time_start": "2014-07-23 11:30:00",
 "time_stop": "2014-07-23 12:10:00",
 "venue_serial": 1462,
 "description": "Aside from the fact that high school programming...",
 "website_url": "http://oscon.com/oscon2014/public/schedule/detail/34505",
 "speakers": [157509],
 "categories": ["Education"] }
],
 "speakers": [
 { "serial": 157509,
 "name": "Robert Lefkowitz",
 "photo": null,
 "url": "http://sharewave.com/",
 "position": "CTO",

836 | Chapter 22: Dynamic Attributes and Properties

https://fpy.li/22-1
https://fpy.li/22-1
https://fpy.li/pep412
https://fpy.li/code
https://fpy.li/code

 "affiliation": "Sharewave",
 "twitter": "sharewaveteam",
 "bio": "Robert ´r0ml´ Lefkowitz is the CTO at Sharewave, a startup..." }
],
 "venues": [
 { "serial": 1462,
 "name": "F151",
 "category": "Conference Venues" }
]
 }
}

Example 22-1 shows 4 of the 895 records in the JSON file. The entire dataset is a sin‐
gle JSON object with the key "Schedule", and its value is another mapping with four
keys: "conferences", "events", "speakers", and "venues". Each of those four keys
maps to a list of records. In the full dataset, the "events", "speakers", and "venues"
lists have dozens or hundreds of records, while "conferences" has only that one
record shown in Example 22-1. Every record has a "serial" field, which is a unique
identifier for the record within the list.

I used Python’s console to explore the dataset, as shown in Example 22-2.

Example 22-2. Interactive exploration of osconfeed.json

>>> import json
>>> with open('data/osconfeed.json') as fp:
... feed = json.load(fp)
>>> sorted(feed['Schedule'].keys())
['conferences', 'events', 'speakers', 'venues']
>>> for key, value in sorted(feed['Schedule'].items()):
... print(f'{len(value):3} {key}')
...
 1 conferences
484 events
357 speakers
 53 venues
>>> feed['Schedule']['speakers'][-1]['name']
'Carina C. Zona'
>>> feed['Schedule']['speakers'][-1]['serial']
141590
>>> feed['Schedule']['events'][40]['name']
'There *Will* Be Bugs'
>>> feed['Schedule']['events'][40]['speakers']
[3471, 5199]

feed is a dict holding nested dicts and lists, with string and integer values.

List the four record collections inside "Schedule".

Data Wrangling with Dynamic Attributes | 837

4 Two examples are AttrDict and addict.

Display record counts for each collection.

Navigate through the nested dicts and lists to get the name of the last speaker.

Get the serial number of that same speaker.

Each event has a 'speakers' list with zero or more speaker serial numbers.

Exploring JSON-Like Data with Dynamic Attributes
Example 22-2 is simple enough, but the syntax feed['Schedule']['events'][40]
['name'] is cumbersome. In JavaScript, you can get the same value by writing
feed.Schedule.events[40].name. It’s easy to implement a dict-like class that does
the same in Python—there are plenty of implementations on the web.4 I wrote
FrozenJSON, which is simpler than most recipes because it supports reading only: it’s
just for exploring the data. FrozenJSON is also recursive, dealing automatically with
nested mappings and lists.

Example 22-3 is a demonstration of FrozenJSON, and the source code is shown in
Example 22-4.

Example 22-3. FrozenJSON from Example 22-4 allows reading attributes like name, and
calling methods like .keys() and .items()

 >>> import json
 >>> raw_feed = json.load(open('data/osconfeed.json'))
 >>> feed = FrozenJSON(raw_feed)
 >>> len(feed.Schedule.speakers)
 357
 >>> feed.keys()
 dict_keys(['Schedule'])
 >>> sorted(feed.Schedule.keys())
 ['conferences', 'events', 'speakers', 'venues']
 >>> for key, value in sorted(feed.Schedule.items()):
 ... print(f'{len(value):3} {key}')
 ...
 1 conferences
 484 events
 357 speakers
 53 venues
 >>> feed.Schedule.speakers[-1].name
 'Carina C. Zona'
 >>> talk = feed.Schedule.events[40]
 >>> type(talk)

838 | Chapter 22: Dynamic Attributes and Properties

https://fpy.li/22-2
https://fpy.li/22-3

 <class 'explore0.FrozenJSON'>
 >>> talk.name
 'There *Will* Be Bugs'
 >>> talk.speakers
 [3471, 5199]
 >>> talk.flavor
 Traceback (most recent call last):
 ...
 KeyError: 'flavor'

Build a FrozenJSON instance from the raw_feed made of nested dicts and lists.

FrozenJSON allows traversing nested dicts by using attribute notation; here we
show the length of the list of speakers.

Methods of the underlying dicts can also be accessed, like .keys(), to retrieve the
record collection names.

Using items(), we can retrieve the record collection names and their contents, to
display the len() of each of them.

A list, such as feed.Schedule.speakers, remains a list, but the items inside are
converted to FrozenJSON if they are mappings.

Item 40 in the events list was a JSON object; now it’s a FrozenJSON instance.

Event records have a speakers list with speaker serial numbers.

Trying to read a missing attribute raises KeyError, instead of the usual
AttributeError.

The keystone of the FrozenJSON class is the __getattr__ method, which we already
used in the Vector example in “Vector Take #3: Dynamic Attribute Access” on page
407, to retrieve Vector components by letter: v.x, v.y, v.z, etc. It’s essential to recall
that the __getattr__ special method is only invoked by the interpreter when the
usual process fails to retrieve an attribute (i.e., when the named attribute cannot be
found in the instance, nor in the class or in its superclasses).

The last line of Example 22-3 exposes a minor issue with my code: trying to read a
missing attribute should raise AttributeError, and not KeyError as shown. When I
implemented the error handling to do that, the __getattr__ method became twice as
long, distracting from the most important logic I wanted to show. Given that users
would know that a FrozenJSON is built from mappings and lists, I think the KeyError
is not too confusing.

Data Wrangling with Dynamic Attributes | 839

Example 22-4. explore0.py: turn a JSON dataset into a FrozenJSON holding nested
FrozenJSON objects, lists, and simple types

from collections import abc

class FrozenJSON:
 """A read-only façade for navigating a JSON-like object
 using attribute notation
 """

 def __init__(self, mapping):
 self.__data = dict(mapping)

 def __getattr__(self, name):
 try:
 return getattr(self.__data, name)
 except AttributeError:
 return FrozenJSON.build(self.__data[name])

 def __dir__(self):
 return self.__data.keys()

 @classmethod
 def build(cls, obj):
 if isinstance(obj, abc.Mapping):
 return cls(obj)
 elif isinstance(obj, abc.MutableSequence):
 return [cls.build(item) for item in obj]
 else:
 return obj

Build a dict from the mapping argument. This ensures we get a mapping or
something that can be converted to one. The double-underscore prefix on
__data makes it a private attribute.

__getattr__ is called only when there’s no attribute with that name.

If name matches an attribute of the instance __data dict, return that. This is
how calls like feed.keys() are handled: the keys method is an attribute of the
__data dict.

840 | Chapter 22: Dynamic Attributes and Properties

5 The expression self.__data[name] is where a KeyError exception may occur. Ideally, it should be handled
and an AttributeError raised instead, because that’s what is expected from __getattr__. The diligent reader
is invited to code the error handling as an exercise.

6 The source of the data is JSON, and the only collection types in JSON data are dict and list.

Otherwise, fetch the item with the key name from self.__data, and return the
result of calling FrozenJSON.build() on that.5

Implementing __dir__ suports the dir() built-in, which in turns supports auto-
completion in the standard Python console as well as IPython, Jupyter Notebook,
etc. This simple code will enable recursive auto-completion based on the keys in
self.__data, because __getattr__ builds FrozenJSON instances on the fly—use‐
ful for interactive exploration of the data.

This is an alternate constructor, a common use for the @classmethod decorator.

If obj is a mapping, build a FrozenJSON with it. This is an example of goose typ‐
ing—see “Goose Typing” on page 442 if you need a refresher.

If it is a MutableSequence, it must be a list,6 so we build a list by passing each
item in obj recursively to .build().

If it’s not a dict or a list, return the item as it is.

A FrozenJSON instance has the __data private instance attribute stored under the
name _FrozenJSON__data, as explained in “Private and ‘Protected’ Attributes in
Python” on page 382. Attempts to retrieve attributes by other names will trigger
__getattr__. This method will first look if the self.__data dict has an attribute
(not a key!) by that name; this allows FrozenJSON instances to handle dict methods
such as items, by delegating to self.__data.items(). If self.__data doesn’t have
an attribute with the given name, __getattr__ uses name as a key to retrieve an item
from self.__data, and passes that item to FrozenJSON.build. This allows navigating
through nested structures in the JSON data, as each nested mapping is converted to
another FrozenJSON instance by the build class method.

Note that FrozenJSON does not transform or cache the original dataset. As we tra‐
verse the data, __getattr__ creates FrozenJSON instances again and again. That’s OK
for a dataset of this size, and for a script that will only be used to explore or convert
the data.

Data Wrangling with Dynamic Attributes | 841

Any script that generates or emulates dynamic attribute names from arbitrary sour‐
ces must deal with one issue: the keys in the original data may not be suitable
attribute names. The next section addresses this.

The Invalid Attribute Name Problem
The FrozenJSON code doesn’t handle attribute names that are Python keywords. For
example, if you build an object like this:

>>> student = FrozenJSON({'name': 'Jim Bo', 'class': 1982})

You won’t be able to read student.class because class is a reserved keyword in
Python:

>>> student.class
 File "<stdin>", line 1
 student.class
 ^
SyntaxError: invalid syntax

You can always do this, of course:

>>> getattr(student, 'class')
1982

But the idea of FrozenJSON is to provide convenient access to the data, so a better
solution is checking whether a key in the mapping given to FrozenJSON.__init__ is
a keyword, and if so, append an _ to it, so the attribute can be read like this:

>>> student.class_
1982

This can be achieved by replacing the one-liner __init__ from Example 22-4 with
the version in Example 22-5.

Example 22-5. explore1.py: append an _ to attribute names that are Python keywords

 def __init__(self, mapping):
 self.__data = {}
 for key, value in mapping.items():
 if keyword.iskeyword(key):
 key += '_'
 self.__data[key] = value

The keyword.iskeyword(…) function is exactly what we need; to use it, the key
word module must be imported, which is not shown in this snippet.

A similar problem may arise if a key in a JSON record is not a valid Python identifier:

>>> x = FrozenJSON({'2be':'or not'})
>>> x.2be

842 | Chapter 22: Dynamic Attributes and Properties

 File "<stdin>", line 1
 x.2be
 ^
SyntaxError: invalid syntax

Such problematic keys are easy to detect in Python 3 because the str class provides
the s.isidentifier() method, which tells you whether s is a valid Python identifier
according to the language grammar. But turning a key that is not a valid identifier
into a valid attribute name is not trivial. One solution would be to implement __geti
tem__ to allow attribute access using notation like x['2be']. For the sake of simplic‐
ity, I will not worry about this issue.

After giving some thought to the dynamic attribute names, let’s turn to another
essential feature of FrozenJSON: the logic of the build class method. Fro

zen.JSON.build is used by __getattr__ to return a different type of object depend‐
ing on the value of the attribute being accessed: nested structures are converted to
FrozenJSON instances or lists of FrozenJSON instances.

Instead of a class method, the same logic could be implemented as the __new__ spe‐
cial method, as we’ll see next.

Flexible Object Creation with __new__
We often refer to __init__ as the constructor method, but that’s because we adopted
jargon from other languages. In Python, __init__ gets self as the first argument,
therefore the object already exists when __init__ is called by the interpreter. Also,
__init__ cannot return anything. So it’s really an initializer, not a constructor.

When a class is called to create an instance, the special method that Python calls on
that class to construct an instance is __new__. It’s a class method, but gets special
treatment, so the @classmethod decorator is not applied to it. Python takes the
instance returned by __new__ and then passes it as the first argument self of
__init__. We rarely need to code __new__, because the implementation inherited
from object suffices for the vast majority of use cases.

If necessary, the __new__ method can also return an instance of a different class.
When that happens, the interpreter does not call __init__. In other words, Python’s
logic for building an object is similar to this pseudocode:

pseudocode for object construction
def make(the_class, some_arg):
 new_object = the_class.__new__(some_arg)
 if isinstance(new_object, the_class):
 the_class.__init__(new_object, some_arg)
 return new_object

the following statements are roughly equivalent

Data Wrangling with Dynamic Attributes | 843

x = Foo('bar')
x = make(Foo, 'bar')

Example 22-6 shows a variation of FrozenJSON where the logic of the former build
class method was moved to __new__.

Example 22-6. explore2.py: using __new__ instead of build to construct new objects
that may or may not be instances of FrozenJSON

from collections import abc
import keyword

class FrozenJSON:
 """A read-only façade for navigating a JSON-like object
 using attribute notation
 """

 def __new__(cls, arg):
 if isinstance(arg, abc.Mapping):
 return super().__new__(cls)
 elif isinstance(arg, abc.MutableSequence):
 return [cls(item) for item in arg]
 else:
 return arg

 def __init__(self, mapping):
 self.__data = {}
 for key, value in mapping.items():
 if keyword.iskeyword(key):
 key += '_'
 self.__data[key] = value

 def __getattr__(self, name):
 try:
 return getattr(self.__data, name)
 except AttributeError:
 return FrozenJSON(self.__data[name])

 def __dir__(self):
 return self.__data.keys()

As a class method, the first argument __new__ gets is the class itself, and the
remaining arguments are the same that __init__ gets, except for self.

The default behavior is to delegate to the __new__ of a superclass. In this case, we
are calling __new__ from the object base class, passing FrozenJSON as the only
argument.

The remaining lines of __new__ are exactly as in the old build method.

844 | Chapter 22: Dynamic Attributes and Properties

This was where FrozenJSON.build was called before; now we just call the
FrozenJSON class, which Python handles by calling FrozenJSON.__new__.

The __new__ method gets the class as the first argument because, usually, the created
object will be an instance of that class. So, in FrozenJSON.__new__, when the
expression super().__new__(cls) effectively calls object.__new__(FrozenJSON),
the instance built by the object class is actually an instance of FrozenJSON. The
__class__ attribute of the new instance will hold a reference to FrozenJSON, even
though the actual construction is performed by object.__new__, implemented in C,
in the guts of the interpreter.

The OSCON JSON dataset is structured in a way that is not helpful for interactive
exploration. For example, the event at index 40, titled 'There *Will* Be Bugs' has
two speakers, 3471 and 5199. Finding the names of the speakers is awkward, because
those are serial numbers and the Schedule.speakers list is not indexed by them. To
get each speaker, we must iterate over that list until we find a record with a matching
serial number. Our next task is restructuring the data to prepare for automatic
retrieval of linked records.

Computed Properties
We first saw the @property decorator in Chapter 11, in the section, “A Hashable Vec‐
tor2d” on page 374. In Example 11-7, I used two properties in Vector2d just to make
the x and y attributes read-only. Here we will see properties that compute values,
leading to a discussion of how to cache such values.

The records in the 'events' list of the OSCON JSON data contain integer serial
numbers pointing to records in the 'speakers' and 'venues' lists. For example, this
is the record for a conference talk (with an elided description):

{ "serial": 33950,
 "name": "There *Will* Be Bugs",
 "event_type": "40-minute conference session",
 "time_start": "2014-07-23 14:30:00",
 "time_stop": "2014-07-23 15:10:00",
 "venue_serial": 1449,
 "description": "If you're pushing the envelope of programming...",
 "website_url": "http://oscon.com/oscon2014/public/schedule/detail/33950",
 "speakers": [3471, 5199],
 "categories": ["Python"] }

We will implement an Event class with venue and speakers properties to return the
linked data automatically—in other words, “dereferencing” the serial number. Given
an Event instance, Example 22-7 shows the desired behavior.

Computed Properties | 845

Example 22-7. Reading venue and speakers returns Record objects

 >>> event
 <Event 'There *Will* Be Bugs'>
 >>> event.venue
 <Record serial=1449>
 >>> event.venue.name
 'Portland 251'
 >>> for spkr in event.speakers:
 ... print(f'{spkr.serial}: {spkr.name}')
 ...
 3471: Anna Martelli Ravenscroft
 5199: Alex Martelli

Given an Event instance…

…reading event.venue returns a Record object instead of a serial number.

Now it’s easy to get the name of the venue.

The event.speakers property returns a list of Record instances.

As usual, we will build the code step-by-step, starting with the Record class and a
function to read the JSON data and return a dict with Record instances.

Step 1: Data-Driven Attribute Creation
Example 22-8 shows the doctest to guide this first step.

Example 22-8. Test-driving schedule_v1.py (from Example 22-9)

 >>> records = load(JSON_PATH)
 >>> speaker = records['speaker.3471']
 >>> speaker
 <Record serial=3471>
 >>> speaker.name, speaker.twitter
 ('Anna Martelli Ravenscroft', 'annaraven')

load a dict with the JSON data.

The keys in records are strings built from the record type and serial number.

speaker is an instance of the Record class defined in Example 22-9.

Fields from the original JSON can be retrieved as Record instance attributes.

The code for schedule_v1.py is in Example 22-9.

846 | Chapter 22: Dynamic Attributes and Properties

Example 22-9. schedule_v1.py: reorganizing the OSCON schedule data

import json

JSON_PATH = 'data/osconfeed.json'

class Record:
 def __init__(self, **kwargs):
 self.__dict__.update(kwargs)

 def __repr__(self):
 return f'<{self.__class__.__name__} serial={self.serial!r}>'

def load(path=JSON_PATH):
 records = {}
 with open(path) as fp:
 raw_data = json.load(fp)
 for collection, raw_records in raw_data['Schedule'].items():
 record_type = collection[:-1]
 for raw_record in raw_records:
 key = f'{record_type}.{raw_record["serial"]}'
 records[key] = Record(**raw_record)
 return records

This is a common shortcut to build an instance with attributes created from key‐
word arguments (detailed explanation follows).

Use the serial field to build the custom Record representation shown in
Example 22-8.

load will ultimately return a dict of Record instances.

Parse the JSON, returning native Python objects: lists, dicts, strings, numbers,
etc.

Iterate over the four top-level lists named 'conferences', 'events', 'speak
ers', and 'venues'.

record_type is the list name without the last character, so speakers becomes
speaker. In Python ≥ 3.9 we can do this more explicitly with collection.remove
suffix('s')—see PEP 616—String methods to remove prefixes and suffixes.

Build the key in the format 'speaker.3471'.

Create a Record instance and save it in records with the key.

Computed Properties | 847

https://fpy.li/pep616

7 By the way, Bunch is the name of the class used by Alex Martelli to share this tip in a recipe from 2001 titled
“The simple but handy ‘collector of a bunch of named stuff’ class”.

The Record.__init__ method illustrates an old Python hack. Recall that the
__dict__ of an object is where its attributes are kept—unless __slots__ is declared
in the class, as we saw in “Saving Memory with __slots__” on page 384. So, updating
an instance __dict__ with a mapping is a quick way to create a bunch of attributes in
that instance.7

Depending on the application, the Record class may need to deal
with keys that are not valid attribute names, as we saw in “The
Invalid Attribute Name Problem” on page 842. Dealing with that
issue would distract from the key idea of this example, and is not a
problem in the dataset we are reading.

The definition of Record in Example 22-9 is so simple that you may be wondering
why I did not use it before, instead of the more complicated FrozenJSON. There are
two reasons. First, FrozenJSON works by recursively converting the nested mappings
and lists; Record doesn’t need that because our converted dataset doesn’t have map‐
pings nested in mappings or lists. The records contain only strings, integers, lists of
strings, and lists of integers. Second reason: FrozenJSON provides access to the
embedded __data dict attributes—which we used to invoke methods like .keys()—
and now we don’t need that functionality either.

The Python standard library provides classes similar to Record,
where each instance has an arbitrary set of attributes built from
keyword arguments given to __init__: types.SimpleNamespace,
argparse.Namespace, and multiprocessing.managers.Name

space. I wrote the simpler Record class to highlight the essential
idea: __init__ updating the instance __dict__.

After reorganizing the schedule dataset, we can enhance the Record class to automat‐
ically retrieve venue and speaker records referenced in an event record. We’ll use
properties to do that in the next examples.

Step 2: Property to Retrieve a Linked Record
The goal of this next version is: given an event record, reading its venue property will
return a Record. This is similar to what the Django ORM does when you access a
ForeignKey field: instead of the key, you get the linked model object.

848 | Chapter 22: Dynamic Attributes and Properties

https://fpy.li/22-4
https://fpy.li/22-5
https://fpy.li/22-6
https://fpy.li/22-7
https://fpy.li/22-7

We’ll start with the venue property. See the partial interaction in Example 22-10 as an
example.

Example 22-10. Extract from the doctests of schedule_v2.py

 >>> event = Record.fetch('event.33950')
 >>> event
 <Event 'There *Will* Be Bugs'>
 >>> event.venue
 <Record serial=1449>
 >>> event.venue.name
 'Portland 251'
 >>> event.venue_serial
 1449

The Record.fetch static method gets a Record or an Event from the dataset.

Note that event is an instance of the Event class.

Accessing event.venue returns a Record instance.

Now it’s easy to find out the name of an event.venue.

The Event instance also has a venue_serial attribute, from the JSON data.

Event is a subclass of Record adding a venue to retrieve linked records, and a special‐
ized __repr__ method.

The code for this section is in the schedule_v2.py module in the Fluent Python code
repository. The example has nearly 60 lines, so I’ll present it in parts, starting with the
enhanced Record class.

Example 22-11. schedule_v2.py: Record class with a new fetch method

import inspect
import json

JSON_PATH = 'data/osconfeed.json'

class Record:

 __index = None

 def __init__(self, **kwargs):
 self.__dict__.update(kwargs)

 def __repr__(self):
 return f'<{self.__class__.__name__} serial={self.serial!r}>'

Computed Properties | 849

https://fpy.li/22-8
https://fpy.li/code
https://fpy.li/code

 @staticmethod
 def fetch(key):
 if Record.__index is None:
 Record.__index = load()
 return Record.__index[key]

inspect will be used in load, listed in Example 22-13.

The __index private class attribute will eventually hold a reference to the dict
returned by load.

fetch is a staticmethod to make it explicit that its effect is not influenced by the
instance or class on which it is called.

Populate the Record.__index, if needed.

Use it to retrieve the record with the given key.

This is one example where the use of staticmethod makes sense.
The fetch method always acts on the Record.__index class
attribute, even if invoked from a subclass, like Event.fetch()—
which we’ll soon explore. It would be misleading to code it as a
class method because the cls first argument would not be used.

Now we get to the use of a property in the Event class, listed in Example 22-12.

Example 22-12. schedule_v2.py: the Event class

class Event(Record):

 def __repr__(self):
 try:
 return f'<{self.__class__.__name__} {self.name!r}>'
 except AttributeError:
 return super().__repr__()

 @property
 def venue(self):
 key = f'venue.{self.venue_serial}'
 return self.__class__.fetch(key)

850 | Chapter 22: Dynamic Attributes and Properties

Event extends Record.

If the instance has a name attribute, it is used to produce a custom representation.
Otherwise, delegate to the __repr__ from Record.

The venue property builds a key from the venue_serial attribute, and passes it
to the fetch class method, inherited from Record (the reason for using
self.__class__ is explained shortly).

The second line of the venue method of Example 22-12 returns self

.__class__.fetch(key). Why not simply call self.fetch(key)? The simpler form
works with the specific OSCON dataset because there is no event record with a
'fetch' key. But, if an event record had a key named 'fetch', then within that spe‐
cific Event instance, the reference self.fetch would retrieve the value of that field,
instead of the fetch class method that Event inherits from Record. This is a subtle
bug, and it could easily sneak through testing because it depends on the dataset.

When creating instance attribute names from data, there is always
the risk of bugs due to shadowing of class attributes—such as
methods—or data loss through accidental overwriting of existing
instance attributes. These problems may explain why Python dicts
are not like JavaScript objects in the first place.

If the Record class behaved more like a mapping, implementing a dynamic __geti
tem__ instead of a dynamic __getattr__, there would be no risk of bugs from over‐
writing or shadowing. A custom mapping is probably the Pythonic way to implement
Record. But if I took that road, we’d not be studying the tricks and traps of dynamic
attribute programming.

The final piece of this example is the revised load function in Example 22-13.

Example 22-13. schedule_v2.py: the load function

def load(path=JSON_PATH):
 records = {}
 with open(path) as fp:
 raw_data = json.load(fp)
 for collection, raw_records in raw_data['Schedule'].items():
 record_type = collection[:-1]
 cls_name = record_type.capitalize()
 cls = globals().get(cls_name, Record)
 if inspect.isclass(cls) and issubclass(cls, Record):
 factory = cls
 else:
 factory = Record

Computed Properties | 851

 for raw_record in raw_records:
 key = f'{record_type}.{raw_record["serial"]}'
 records[key] = factory(**raw_record)
 return records

So far, no changes from the load in schedule_v1.py (Example 22-9).

Capitalize the record_type to get a possible class name; e.g., 'event' becomes
'Event'.

Get an object by that name from the module global scope; get the Record class if
there’s no such object.

If the object just retrieved is a class, and is a subclass of Record…

…bind the factory name to it. This means factory may be any subclass of
Record, depending on the record_type.

Otherwise, bind the factory name to Record.

The for loop that creates the key and saves the records is the same as before,
except that…

…the object stored in records is constructed by factory, which may be Record
or a subclass like Event, selected according to the record_type.

Note that the only record_type that has a custom class is Event, but if classes named
Speaker or Venue are coded, load will automatically use those classes when building
and saving records, instead of the default Record class.

We’ll now apply the same idea to a new speakers property in the Events class.

Step 3: Property Overriding an Existing Attribute
The name of the venue property in Example 22-12 does not match a field name in
records of the "events" collection. Its data comes from a venue_serial field name.
In contrast, each record in the events collection has a speakers field with a list of
serial numbers. We want to expose that information as a speakers property in Event
instances, which returns a list of Record instances. This name clash requires some
special attention, as Example 22-14 reveals.

Example 22-14. schedule_v3.py: the speakers property

 @property
 def speakers(self):

852 | Chapter 22: Dynamic Attributes and Properties

8 This is actually a downside of Meyer’s Uniform Access Principle, which I mentioned in the opening of this
chapter. Read the optional “Soapbox” on page 875 if you’re interested in this discussion.

 spkr_serials = self.__dict__['speakers']
 fetch = self.__class__.fetch
 return [fetch(f'speaker.{key}')
 for key in spkr_serials]

The data we want is in a speakers attribute, but we must retrieve it directly from
the instance __dict__ to avoid a recursive call to the speakers property.

Return a list of all records with keys corresponding to the numbers in
spkr_serials.

Inside the speakers method, trying to read self.speakers will invoke the property
itself, quickly raising a RecursionError. However, if we read the same data via
self.__dict__['speakers'], Python’s usual algorithm for retrieving attributes is
bypassed, the property is not called, and the recursion is avoided. For this reason,
reading or writing data directly to an object’s __dict__ is a common Python meta‐
programming trick.

The interpreter evaluates obj.my_attr by first looking at the class
of obj. If the class has a property with the my_attr name, that
property shadows an instance attribute by the same name. Exam‐
ples in “Properties Override Instance Attributes” on page 861 will
demonstrate this, and Chapter 23 will reveal that a property is
implemented as a descriptor—a more powerful and general
abstraction.

As I coded the list comprehension in Example 22-14, my programmer’s lizard brain
thought: “This may be expensive.” Not really, because events in the OSCON dataset
have few speakers, so coding anything more complicated would be premature opti‐
mization. However, caching a property is a common need—and there are caveats. So
let’s see how to do that in the next examples.

Step 4: Bespoke Property Cache
Caching properties is a common need because there is an expectation that an expres‐
sion like event.venue should be inexpensive.8 Some form of caching could become
necessary if the Record.fetch method behind the Event properties needed to query a
database or a web API.

Computed Properties | 853

In the first edition Fluent Python, I coded the custom caching logic for the speakers
method, as shown in Example 22-15.

Example 22-15. Custom caching logic using hasattr disables key-sharing optimization

 @property
 def speakers(self):
 if not hasattr(self, '__speaker_objs'):
 spkr_serials = self.__dict__['speakers']
 fetch = self.__class__.fetch
 self.__speaker_objs = [fetch(f'speaker.{key}')
 for key in spkr_serials]
 return self.__speaker_objs

If the instance doesn’t have an attribute named __speaker_objs, fetch the
speaker objects and store them there.

Return self.__speaker_objs.

The handmade caching in Example 22-15 is straightforward, but creating an attribute
after the instance is initialized defeats the PEP 412—Key-Sharing Dictionary optimi‐
zation, as explained in “Practical Consequences of How dict Works” on page 102.
Depending on the size of the dataset, the difference in memory usage may be impor‐
tant.

A similar hand-rolled solution that works well with the key-sharing optimization
requires coding an __init__ for the Event class, to create the necessary
__speaker_objs initialized to None, and then checking for that in the speakers
method. See Example 22-16.

Example 22-16. Storage defined in __init__ to leverage key-sharing optimization

class Event(Record):

 def __init__(self, **kwargs):
 self.__speaker_objs = None
 super().__init__(**kwargs)

15 lines omitted...
 @property
 def speakers(self):
 if self.__speaker_objs is None:
 spkr_serials = self.__dict__['speakers']
 fetch = self.__class__.fetch
 self.__speaker_objs = [fetch(f'speaker.{key}')
 for key in spkr_serials]
 return self.__speaker_objs

854 | Chapter 22: Dynamic Attributes and Properties

https://fpy.li/pep412

Examples 22-15 and 22-16 illustrate simple caching techniques that are fairly com‐
mon in legacy Python codebases. However, in multithreaded programs, handmade
caches like those introduce race conditions that may lead to corrupted data. If two
threads are reading a property that was not previously cached, the first thread will
need to compute the data for the cache attribute (__speaker_objs in the examples)
and the second thread may read a cached value that is not yet complete.

Fortunately, Python 3.8 introduced the @functools.cached_property decorator,
which is thread safe. Unfortunately, it comes with a couple of caveats, explained next.

Step 5: Caching Properties with functools
The functools module provides three decorators for caching. We saw @cache and
@lru_cache in “Memoization with functools.cache” on page 320 (Chapter 9). Python
3.8 introduced @cached_property.

The functools.cached_property decorator caches the result of the method in an
instance attribute with the same name. For example, in Example 22-17, the value
computed by the venue method is stored in a venue attribute in self. After that,
when client code tries to read venue, the newly created venue instance attribute is
used instead of the method.

Example 22-17. Simple use of a @cached_property

 @cached_property
 def venue(self):
 key = f'venue.{self.venue_serial}'
 return self.__class__.fetch(key)

In “Step 3: Property Overriding an Existing Attribute” on page 852, we saw that a
property shadows an instance attribute by the same name. If that is true, how can
@cached_property work? If the property overrides the instance attribute, the venue
attribute will be ignored and the venue method will always be called, computing the
key and running fetch every time!

The answer is a bit sad: cached_property is a misnomer. The @cached_property
decorator does not create a full-fledged property, it creates a nonoverriding descriptor.
A descriptor is an object that manages the access to an attribute in another class. We
will dive into descriptors in Chapter 23. The property decorator is a high-level API
to create an overriding descriptor. Chapter 23 will include a through explanation
about overriding versus nonoverriding descriptors.

For now, let us set aside the underlying implementation and focus on the differences
between cached_property and property from a user’s point of view. Raymond Het‐
tinger explains them very well in the Python docs:

Computed Properties | 855

https://fpy.li/22-9

9 Source: @functools.cached_property documentation. I know Raymond Hettinger authored this explanation
because he wrote it as a response to an issue I filed: bpo42781—functools.cached_property docs should
explain that it is non-overriding. Hettinger is a major contributor to the official Python docs and standard
library. He also wrote the excellent “Descriptor HowTo Guide”, a key resource for Chapter 23.

The mechanics of cached_property() are somewhat different from property(). A
regular property blocks attribute writes unless a setter is defined. In contrast, a
cached_property allows writes.

The cached_property decorator only runs on lookups and only when an attribute of
the same name doesn’t exist. When it does run, the cached_property writes to the
attribute with the same name. Subsequent attribute reads and writes take precedence
over the cached_property method and it works like a normal attribute.

The cached value can be cleared by deleting the attribute. This allows the cached_prop
erty method to run again.9

Back to our Event class: the specific behavior of @cached_property makes it unsuita‐
ble to decorate speakers, because that method relies on an existing attribute also
named speakers, containing the serial numbers of the event speakers.

@cached_property has some important limitations:

• It cannot be used as a drop-in replacement to @property if the
decorated method already depends on an instance attribute
with the same name.

• It cannot be used in a class that defines __slots__.
• It defeats the key-sharing optimization of the instance
__dict__, because it creates an instance attribute after
__init__.

Despite these limitations, @cached_property addresses a common need in a simple
way, and it is thread safe. Its Python code is an example of using a reentrant lock.

The @cached_property documentation recommends an alternative solution that we
can use with speakers: stacking @property and @cache decorators, as shown in
Example 22-18.

Example 22-18. Stacking @property on @cache

 @property
 @cache
 def speakers(self):
 spkr_serials = self.__dict__['speakers']
 fetch = self.__class__.fetch

856 | Chapter 22: Dynamic Attributes and Properties

https://fpy.li/22-9
https://fpy.li/22-11
https://fpy.li/22-11
https://fpy.li/22-12
https://fpy.li/22-13
https://fpy.li/22-14
https://fpy.li/22-15

 return [fetch(f'speaker.{key}')
 for key in spkr_serials]

The order is important: @property goes on top…

…of @cache.

Recall from “Stacked Decorators” on page 322 the meaning of that syntax. The top
three lines of Example 22-18 are similar to:

speakers = property(cache(speakers))

The @cache is applied to speakers, returning a new function. That function then is
decorated by @property, which replaces it with a newly constructed property.

This wraps up our discussion of read-only properties and caching decorators, explor‐
ing the OSCON dataset. In the next section, we start a new series of examples creat‐
ing read/write properties.

Using a Property for Attribute Validation
Besides computing attribute values, properties are also used to enforce business rules
by changing a public attribute into an attribute protected by a getter and setter
without affecting client code. Let’s work through an extended example.

LineItem Take #1: Class for an Item in an Order
Imagine an app for a store that sells organic food in bulk, where customers can order
nuts, dried fruit, or cereals by weight. In that system, each order would hold a
sequence of line items, and each line item could be represented by an instance of a
class, as in Example 22-19.

Example 22-19. bulkfood_v1.py: the simplest LineItem class

class LineItem:

 def __init__(self, description, weight, price):
 self.description = description
 self.weight = weight
 self.price = price

 def subtotal(self):
 return self.weight * self.price

That’s nice and simple. Perhaps too simple. Example 22-20 shows a problem.

Using a Property for Attribute Validation | 857

10 Direct quote by Jeff Bezos in the Wall Street Journal story, “Birth of a Salesman” (October 15, 2011). Note that
as of 2021, you need a subscription to read the article.

Example 22-20. A negative weight results in a negative subtotal

 >>> raisins = LineItem('Golden raisins', 10, 6.95)
 >>> raisins.subtotal()
 69.5
 >>> raisins.weight = -20 # garbage in...
 >>> raisins.subtotal() # garbage out...
 -139.0

This is a toy example, but not as fanciful as you may think. Here is a story from the
early days of Amazon.com:

We found that customers could order a negative quantity of books! And we would
credit their credit card with the price and, I assume, wait around for them to ship the
books.

— Jeff Bezos, founder and CEO of Amazon.com10

How do we fix this? We could change the interface of LineItem to use a getter and a
setter for the weight attribute. That would be the Java way, and it’s not wrong.

On the other hand, it’s natural to be able to set the weight of an item by just assign‐
ing to it; and perhaps the system is in production with other parts already accessing
item.weight directly. In this case, the Python way would be to replace the data
attribute with a property.

LineItem Take #2: A Validating Property
Implementing a property will allow us to use a getter and a setter, but the interface of
LineItem will not change (i.e., setting the weight of a LineItem will still be written as
raisins.weight = 12).

Example 22-21 lists the code for a read/write weight property.

Example 22-21. bulkfood_v2.py: a LineItem with a weight property

class LineItem:

 def __init__(self, description, weight, price):
 self.description = description
 self.weight = weight
 self.price = price

 def subtotal(self):
 return self.weight * self.price

858 | Chapter 22: Dynamic Attributes and Properties

https://fpy.li/22-16

 @property
 def weight(self):
 return self.__weight

 @weight.setter
 def weight(self, value):
 if value > 0:
 self.__weight = value
 else:
 raise ValueError('value must be > 0')

Here the property setter is already in use, making sure that no instances with
negative weight can be created.

@property decorates the getter method.

All the methods that implement a property share the name of the public
attribute: weight.

The actual value is stored in a private attribute __weight.

The decorated getter has a .setter attribute, which is also a decorator; this ties
the getter and setter together.

If the value is greater than zero, we set the private __weight.

Otherwise, ValueError is raised.

Note how a LineItem with an invalid weight cannot be created now:

>>> walnuts = LineItem('walnuts', 0, 10.00)
Traceback (most recent call last):
 ...
ValueError: value must be > 0

Now we have protected weight from users providing negative values. Although buy‐
ers usually can’t set the price of an item, a clerical error or a bug may create a LineI
tem with a negative price. To prevent that, we could also turn price into a property,
but this would entail some repetition in our code.

Remember the Paul Graham quote from Chapter 17: “When I see patterns in my pro‐
grams, I consider it a sign of trouble.” The cure for repetition is abstraction. There are
two ways to abstract away property definitions: using a property factory or a descrip‐
tor class. The descriptor class approach is more flexible, and we’ll devote Chapter 23
to a full discussion of it. Properties are in fact implemented as descriptor classes

Using a Property for Attribute Validation | 859

themselves. But here we will continue our exploration of properties by implementing
a property factory as a function.

But before we can implement a property factory, we need to have a deeper under‐
standing of properties.

A Proper Look at Properties
Although often used as a decorator, the property built-in is actually a class. In
Python, functions and classes are often interchangeable, because both are callable and
there is no new operator for object instantiation, so invoking a constructor is no dif‐
ferent from invoking a factory function. And both can be used as decorators, as long
as they return a new callable that is a suitable replacement of the decorated callable.

This is the full signature of the property constructor:

property(fget=None, fset=None, fdel=None, doc=None)

All arguments are optional, and if a function is not provided for one of them, the cor‐
responding operation is not allowed by the resulting property object.

The property type was added in Python 2.2, but the @ decorator syntax appeared
only in Python 2.4, so for a few years, properties were defined by passing the accessor
functions as the first two arguments.

The “classic” syntax for defining properties without decorators is illustrated in
Example 22-22.

Example 22-22. bulkfood_v2b.py: same as Example 22-21, but without using
decorators

class LineItem:

 def __init__(self, description, weight, price):
 self.description = description
 self.weight = weight
 self.price = price

 def subtotal(self):
 return self.weight * self.price

 def get_weight(self):
 return self.__weight

 def set_weight(self, value):
 if value > 0:
 self.__weight = value
 else:
 raise ValueError('value must be > 0')

860 | Chapter 22: Dynamic Attributes and Properties

 weight = property(get_weight, set_weight)

A plain getter.

A plain setter.

Build the property and assign it to a public class attribute.

The classic form is better than the decorator syntax in some situations; the code of
the property factory we’ll discuss shortly is one example. On the other hand, in a class
body with many methods, the decorators make it explicit which are the getters and
setters, without depending on the convention of using get and set prefixes in their
names.

The presence of a property in a class affects how attributes in instances of that class
can be found in a way that may be surprising at first. The next section explains.

Properties Override Instance Attributes
Properties are always class attributes, but they actually manage attribute access in the
instances of the class.

In “Overriding Class Attributes” on page 389 we saw that when an instance and its
class both have a data attribute by the same name, the instance attribute overrides, or
shadows, the class attribute—at least when read through that instance.
Example 22-23 illustrates this point.

Example 22-23. Instance attribute shadows the class data attribute

>>> class Class:
... data = 'the class data attr'
... @property
... def prop(self):
... return 'the prop value'
...
>>> obj = Class()
>>> vars(obj)
{}
>>> obj.data
'the class data attr'
>>> obj.data = 'bar'
>>> vars(obj)
{'data': 'bar'}
>>> obj.data
'bar'
>>> Class.data
'the class data attr'

A Proper Look at Properties | 861

Define Class with two class attributes: the data attribute and the prop property.

vars returns the __dict__ of obj, showing it has no instance attributes.

Reading from obj.data retrieves the value of Class.data.

Writing to obj.data creates an instance attribute.

Inspect the instance to see the instance attribute.

Now reading from obj.data retrieves the value of the instance attribute. When
read from the obj instance, the instance data shadows the class data.

The Class.data attribute is intact.

Now, let’s try to override the prop attribute on the obj instance. Resuming the previ‐
ous console session, we have Example 22-24.

Example 22-24. Instance attribute does not shadow the class property (continued from
Example 22-23)

>>> Class.prop
<property object at 0x1072b7408>
>>> obj.prop
'the prop value'
>>> obj.prop = 'foo'
Traceback (most recent call last):
 ...
AttributeError: can't set attribute
>>> obj.__dict__['prop'] = 'foo'
>>> vars(obj)
{'data': 'bar', 'prop': 'foo'}
>>> obj.prop
'the prop value'
>>> Class.prop = 'baz'
>>> obj.prop
'foo'

Reading prop directly from Class retrieves the property object itself, without
running its getter method.

Reading obj.prop executes the property getter.

Trying to set an instance prop attribute fails.

Putting 'prop' directly in the obj.__dict__ works.

862 | Chapter 22: Dynamic Attributes and Properties

We can see that obj now has two instance attributes: data and prop.

However, reading obj.prop still runs the property getter. The property is not
shadowed by an instance attribute.

Overwriting Class.prop destroys the property object.

Now obj.prop retrieves the instance attribute. Class.prop is not a property any‐
more, so it no longer overrides obj.prop.

As a final demonstration, we’ll add a new property to Class, and see it overriding an
instance attribute. Example 22-25 picks up where Example 22-24 left off.

Example 22-25. New class property shadows the existing instance attribute (continued
from Example 22-24)

>>> obj.data
'bar'
>>> Class.data
'the class data attr'
>>> Class.data = property(lambda self: 'the "data" prop value')
>>> obj.data
'the "data" prop value'
>>> del Class.data
>>> obj.data
'bar'

obj.data retrieves the instance data attribute.

Class.data retrieves the class data attribute.

Overwrite Class.data with a new property.

obj.data is now shadowed by the Class.data property.

Delete the property.

obj.data now reads the instance data attribute again.

The main point of this section is that an expression like obj.data does not start the
search for data in obj. The search actually starts at obj.__class__, and only if there
is no property named data in the class, Python looks in the obj instance itself. This
applies to overriding descriptors in general, of which properties are just one example.
Further treatment of descriptors must wait for Chapter 23.

A Proper Look at Properties | 863

Now back to properties. Every Python code unit—modules, functions, classes, meth‐
ods—can have a docstring. The next topic is how to attach documentation to
properties.

Property Documentation
When tools such as the console help() function or IDEs need to display the docu‐
mentation of a property, they extract the information from the __doc__ attribute of
the property.

If used with the classic call syntax, property can get the documentation string as the
doc argument:

 weight = property(get_weight, set_weight, doc='weight in kilograms')

The docstring of the getter method—the one with the @property decorator itself—is
used as the documentation of the property as a whole. Figure 22-1 shows the help
screens generated from the code in Example 22-26.

Figure 22-1. Screenshots of the Python console when issuing the commands
help(Foo.bar) and help(Foo). Source code is in Example 22-26.

Example 22-26. Documentation for a property

class Foo:

 @property
 def bar(self):
 """The bar attribute"""
 return self.__dict__['bar']

 @bar.setter
 def bar(self, value):
 self.__dict__['bar'] = value

864 | Chapter 22: Dynamic Attributes and Properties

Now that we have these property essentials covered, let’s go back to the issue of pro‐
tecting both the weight and price attributes of LineItem so they only accept values
greater than zero—but without implementing two nearly identical pairs of getters/
setters by hand.

Coding a Property Factory
We’ll create a factory to create quantity properties—so named because the managed
attributes represent quantities that can’t be negative or zero in the application.
Example 22-27 shows the clean look of the LineItem class using two instances of
quantity properties: one for managing the weight attribute, the other for price.

Example 22-27. bulkfood_v2prop.py: the quantity property factory in use

class LineItem:
 weight = quantity('weight')
 price = quantity('price')

 def __init__(self, description, weight, price):
 self.description = description
 self.weight = weight
 self.price = price

 def subtotal(self):
 return self.weight * self.price

Use the factory to define the first custom property, weight, as a class attribute.

This second call builds another custom property, price.

Here the property is already active, making sure a negative or 0 weight is
rejected.

The properties are also in use here, retrieving the values stored in the instance.

Recall that properties are class attributes. When building each quantity property, we
need to pass the name of the LineItem attribute that will be managed by that specific
property. Having to type the word weight twice in this line is unfortunate:

 weight = quantity('weight')

But avoiding that repetition is complicated because the property has no way of know‐
ing which class attribute name will be bound to it. Remember: the righthand side of
an assignment is evaluated first, so when quantity() is invoked, the weight class
attribute doesn’t even exist.

Coding a Property Factory | 865

11 This code is adapted from “Recipe 9.21. Avoiding Repetitive Property Methods” from Python Cookbook, 3rd
ed., by David Beazley and Brian K. Jones (O’Reilly).

Improving the quantity property so that the user doesn’t need to
retype the attribute name is a nontrivial metaprogramming prob‐
lem. We’ll solve that problem in Chapter 23.

Example 22-28 lists the implementation of the quantity property factory.11

Example 22-28. bulkfood_v2prop.py: the quantity property factory

def quantity(storage_name):

 def qty_getter(instance):
 return instance.__dict__[storage_name]

 def qty_setter(instance, value):
 if value > 0:
 instance.__dict__[storage_name] = value
 else:
 raise ValueError('value must be > 0')

 return property(qty_getter, qty_setter)

The storage_name argument determines where the data for each property is
stored; for the weight, the storage name will be 'weight'.

The first argument of the qty_getter could be named self, but that would be
strange because this is not a class body; instance refers to the LineItem instance
where the attribute will be stored.

qty_getter references storage_name, so it will be preserved in the closure of this
function; the value is retrieved directly from the instance.__dict__ to bypass
the property and avoid an infinite recursion.

qty_setter is defined, also taking instance as first argument.

The value is stored directly in the instance.__dict__, again bypassing the
property.

Build a custom property object and return it.

866 | Chapter 22: Dynamic Attributes and Properties

https://fpy.li/pycook3

The bits of Example 22-28 that deserve careful study revolve around the stor
age_name variable. When you code each property in the traditional way, the name of
the attribute where you will store a value is hardcoded in the getter and setter meth‐
ods. But here, the qty_getter and qty_setter functions are generic, and they
depend on the storage_name variable to know where to get/set the managed attribute
in the instance __dict__. Each time the quantity factory is called to build a property,
the storage_name must be set to a unique value.

The functions qty_getter and qty_setter will be wrapped by the property object
created in the last line of the factory function. Later, when called to perform their
duties, these functions will read the storage_name from their closures to determine
where to retrieve/store the managed attribute values.

In Example 22-29, I create and inspect a LineItem instance, exposing the storage
attributes.

Example 22-29. bulkfood_v2prop.py: exploring properties and storage attributes

 >>> nutmeg = LineItem('Moluccan nutmeg', 8, 13.95)
 >>> nutmeg.weight, nutmeg.price
 (8, 13.95)
 >>> nutmeg.__dict__
 {'description': 'Moluccan nutmeg', 'weight': 8, 'price': 13.95}

Reading the weight and price through the properties shadowing the namesake
instance attributes.

Using vars to inspect the nutmeg instance: here we see the actual instance
attributes used to store the values.

Note how the properties built by our factory leverage the behavior described in
“Properties Override Instance Attributes” on page 861: the weight property overrides
the weight instance attribute so that every reference to self.weight or nut
meg.weight is handled by the property functions, and the only way to bypass the
property logic is to access the instance __dict__ directly.

The code in Example 22-28 may be a bit tricky, but it’s concise: it’s identical in length
to the decorated getter/setter pair defining just the weight property in
Example 22-21. The LineItem definition in Example 22-27 looks much better
without the noise of the getter/setters.

In a real system, that same kind of validation may appear in many fields, across sev‐
eral classes, and the quantity factory would be placed in a utility module to be used
over and over again. Eventually that simple factory could be refactored into a more

Coding a Property Factory | 867

12 The bloody scene is available on Youtube as I review this in October 2021.

extensible descriptor class, with specialized subclasses performing different valida‐
tions. We’ll do that in Chapter 23.

Now let us wrap up the discussion of properties with the issue of attribute deletion.

Handling Attribute Deletion
We can use the del statement to delete not only variables, but also attributes:

>>> class Demo:
... pass
...
>>> d = Demo()
>>> d.color = 'green'
>>> d.color
'green'
>>> del d.color
>>> d.color
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Demo' object has no attribute 'color'

In practice, deleting attributes is not something we do every day in Python, and the
requirement to handle it with a property is even more unusual. But it is supported,
and I can think of a silly example to demonstrate it.

In a property definition, the @my_property.deleter decorator wraps the method in
charge of deleting the attribute managed by the property. As promised, silly
Example 22-30 is inspired by the scene with the Black Knight from Monty Python
and the Holy Grail.12

Example 22-30. blackknight.py

class BlackKnight:

 def __init__(self):
 self.phrases = [
 ('an arm', "'Tis but a scratch."),
 ('another arm', "It's just a flesh wound."),
 ('a leg', "I'm invincible!"),
 ('another leg', "All right, we'll call it a draw.")
]

 @property
 def member(self):
 print('next member is:')

868 | Chapter 22: Dynamic Attributes and Properties

https://fpy.li/22-17

 return self.phrases[0][0]

 @member.deleter
 def member(self):
 member, text = self.phrases.pop(0)
 print(f'BLACK KNIGHT (loses {member}) -- {text}')

The doctests in blackknight.py are in Example 22-31.

Example 22-31. blackknight.py: doctests for Example 22-30 (the Black Knight never
concedes defeat)

 >>> knight = BlackKnight()
 >>> knight.member
 next member is:
 'an arm'
 >>> del knight.member
 BLACK KNIGHT (loses an arm) -- 'Tis but a scratch.
 >>> del knight.member
 BLACK KNIGHT (loses another arm) -- It's just a flesh wound.
 >>> del knight.member
 BLACK KNIGHT (loses a leg) -- I'm invincible!
 >>> del knight.member
 BLACK KNIGHT (loses another leg) -- All right, we'll call it a draw.

Using the classic call syntax instead of decorators, the fdel argument configures the
deleter function. For example, the member property would be coded like this in the
body of the BlackKnight class:

 member = property(member_getter, fdel=member_deleter)

If you are not using a property, attribute deletion can also be handled by implement‐
ing the lower-level __delattr__ special method, presented in “Special Methods for
Attribute Handling” on page 871. Coding a silly class with __delattr__ is left as an
exercise to the procrastinating reader.

Properties are a powerful feature, but sometimes simpler or lower-level alternatives
are preferable. In the final section of this chapter, we’ll review some of the core APIs
that Python offers for dynamic attribute programming.

Essential Attributes and Functions for Attribute Handling
Throughout this chapter, and even before in the book, we’ve used some of the built-
in functions and special methods Python provides for dealing with dynamic
attributes. This section gives an overview of them in one place, because their docu‐
mentation is scattered in the official docs.

Essential Attributes and Functions for Attribute Handling | 869

13 Alex Martelli points out that, although __slots__ can be coded as a list, it’s better to be explicit and always
use a tuple, because changing the list in the __slots__ after the class body is processed has no effect, so it
would be misleading to use a mutable sequence there.

Special Attributes that Affect Attribute Handling
The behavior of many of the functions and special methods listed in the following
sections depend on three special attributes:

__class__

A reference to the object’s class (i.e., obj.__class__ is the same as type(obj)).
Python looks for special methods such as __getattr__ only in an object’s class,
and not in the instances themselves.

__dict__

A mapping that stores the writable attributes of an object or class. An object that
has a __dict__ can have arbitrary new attributes set at any time. If a class has a
__slots__ attribute, then its instances may not have a __dict__. See __slots__
(next).

__slots__

An attribute that may be defined in a class to save memory. __slots__ is a tuple
of strings naming the allowed attributes.13 If the '__dict__' name is not in
__slots__, then the instances of that class will not have a __dict__ of their own,
and only the attributes listed in __slots__ will be allowed in those instances.
Recall “Saving Memory with __slots__” on page 384 for more.

Built-In Functions for Attribute Handling
These five built-in functions perform object attribute reading, writing, and
introspection:

dir([object])

Lists most attributes of the object. The official docs say dir is intended for inter‐
active use so it does not provide a comprehensive list of attributes, but an “inter‐
esting” set of names. dir can inspect objects implemented with or without a
__dict__. The __dict__ attribute itself is not listed by dir, but the __dict__
keys are listed. Several special attributes of classes, such as __mro__, __bases__,
and __name__, are not listed by dir either. You can customize the output of dir
by implementing the __dir__ special method, as we saw in Example 22-4. If the
optional object argument is not given, dir lists the names in the current scope.

870 | Chapter 22: Dynamic Attributes and Properties

https://fpy.li/22-18

getattr(object, name[, default])

Gets the attribute identified by the name string from the object. The main use
case is to retrieve attributes (or methods) whose names we don’t know before‐
hand. This may fetch an attribute from the object’s class or from a superclass. If
no such attribute exists, getattr raises AttributeError or returns the default
value, if given. One great example of using gettatr is in the Cmd.onecmd method
in the cmd package of the standard library, where it is used to get and execute a
user-defined command.

hasattr(object, name)

Returns True if the named attribute exists in the object, or can be somehow
fetched through it (by inheritance, for example). The documentation explains:
“This is implemented by calling getattr(object, name) and seeing whether it raises
an AttributeError or not.”

setattr(object, name, value)

Assigns the value to the named attribute of object, if the object allows it. This
may create a new attribute or overwrite an existing one.

vars([object])

Returns the __dict__ of object; vars can’t deal with instances of classes that
define __slots__ and don’t have a __dict__ (contrast with dir, which handles
such instances). Without an argument, vars() does the same as locals():
returns a dict representing the local scope.

Special Methods for Attribute Handling
When implemented in a user-defined class, the special methods listed here handle
attribute retrieval, setting, deletion, and listing.

Attribute access using either dot notation or the built-in functions getattr, hasattr,
and setattr triggers the appropriate special methods listed here. Reading and writ‐
ing attributes directly in the instance __dict__ does not trigger these special methods
—and that’s the usual way to bypass them if needed.

Section “3.3.11. Special method lookup” of the “Data model” chapter warns:

For custom classes, implicit invocations of special methods are only guaranteed to
work correctly if defined on an object’s type, not in the object’s instance dictionary.

In other words, assume that the special methods will be retrieved on the class itself,
even when the target of the action is an instance. For this reason, special methods are
not shadowed by instance attributes with the same name.

In the following examples, assume there is a class named Class, obj is an instance of
Class, and attr is an attribute of obj.

Essential Attributes and Functions for Attribute Handling | 871

https://fpy.li/22-19
https://fpy.li/22-20
https://fpy.li/22-21

For every one of these special methods, it doesn’t matter if the attribute access is done
using dot notation or one of the built-in functions listed in “Built-In Functions for
Attribute Handling” on page 870. For example, both obj.attr and getattr(obj,
'attr', 42) trigger Class.__getattribute__(obj, 'attr').

__delattr__(self, name)

Always called when there is an attempt to delete an attribute using the del state‐
ment; e.g., del obj.attr triggers Class.__delattr__(obj, 'attr'). If attr is a
property, its deleter method is never called if the class implements __delattr__.

__dir__(self)

Called when dir is invoked on the object, to provide a listing of attributes; e.g.,
dir(obj) triggers Class.__dir__(obj). Also used by tab-completion in all
modern Python consoles.

__getattr__(self, name)

Called only when an attempt to retrieve the named attribute fails, after the obj,
Class, and its superclasses are searched. The expressions obj.no_such_attr, get
attr(obj, 'no_such_attr'), and hasattr(obj, 'no_such_attr') may trigger
Class.__getattr__(obj, 'no_such_attr'), but only if an attribute by that
name cannot be found in obj or in Class and its superclasses.

__getattribute__(self, name)

Always called when there is an attempt to retrieve the named attribute directly
from Python code (the interpreter may bypass this in some cases, for example, to
get the __repr__ method). Dot notation and the getattr and hasattr built-ins
trigger this method. __getattr__ is only invoked after __getattribute__, and
only when __getattribute__ raises AttributeError. To retrieve attributes of
the instance obj without triggering an infinite recursion, implementations of
__getattribute__ should use super().__getattribute__(obj, name).

__setattr__(self, name, value)

Always called when there is an attempt to set the named attribute. Dot notation
and the setattr built-in trigger this method; e.g., both obj.attr = 42 and
setattr(obj, 'attr', 42) trigger Class.__setattr__(obj, 'attr', 42).

In practice, because they are unconditionally called and affect prac‐
tically every attribute access, the __getattribute__ and
__setattr__ special methods are harder to use correctly than
__getattr__, which only handles nonexisting attribute names.
Using properties or descriptors is less error prone than defining
these special methods.

872 | Chapter 22: Dynamic Attributes and Properties

This concludes our dive into properties, special methods, and other techniques for
coding dynamic attributes.

Chapter Summary
We started our coverage of dynamic attributes by showing practical examples of sim‐
ple classes to make it easier to deal with a JSON dataset. The first example was the
FrozenJSON class that converted nested dicts and lists into nested FrozenJSON instan‐
ces and lists of them. The FrozenJSON code demonstrated the use of the __getattr__
special method to convert data structures on the fly, whenever their attributes were
read. The last version of FrozenJSON showcased the use of the __new__ constructor
method to transform a class into a flexible factory of objects, not limited to instances
of itself.

We then converted the JSON dataset to a dict storing instances of a Record class.
The first rendition of Record was a few lines long and introduced the “bunch” idiom:
using self.__dict__.update(**kwargs) to build arbitrary attributes from keyword
arguments passed to __init__. The second iteration added the Event class, imple‐
menting automatic retrieval of linked records through properties. Computed prop‐
erty values sometimes require caching, and we covered a few ways of doing that.

After realizing that @functools.cached_property is not always applicable, we
learned about an alternative: combining @property on top of @functools.cache, in
that order.

Coverage of properties continued with the LineItem class, where a property was
deployed to protect a weight attribute from negative or zero values that make no
business sense. After a deeper look at property syntax and semantics, we created a
property factory to enforce the same validation on weight and price, without coding
multiple getters and setters. The property factory leveraged subtle concepts—such as
closures, and instance attribute overriding by properties—to provide an elegant
generic solution using the same number of lines as a single hand-coded property
definition.

Finally, we had a brief look at handling attribute deletion with properties, followed by
an overview of the key special attributes, built-in functions, and special methods that
support attribute metaprogramming in the core Python language.

Further Reading
The official documentation for the attribute handling and introspection built-in
functions is Chapter 2, “Built-in Functions” of The Python Standard Library. The
related special methods and the __slots__ special attribute are documented in The
Python Language Reference in “3.3.2. Customizing attribute access”. The semantics of

Chapter Summary | 873

https://fpy.li/22-22
https://fpy.li/22-23

how special methods are invoked bypassing instances is explained in “3.3.9. Special
method lookup”. In Chapter 4, “Built-in Types,” of The Python Standard Library,
“4.13. Special Attributes” covers __class__ and __dict__ attributes.

Python Cookbook, 3rd ed., by David Beazley and Brian K. Jones (O’Reilly) has several
recipes covering the topics of this chapter, but I will highlight three that are outstand‐
ing: “Recipe 8.8. Extending a Property in a Subclass” addresses the thorny issue of
overriding the methods inside a property inherited from a superclass; “Recipe 8.15.
Delegating Attribute Access” implements a proxy class showcasing most special
methods from “Special Methods for Attribute Handling” on page 871 in this book;
and the awesome “Recipe 9.21. Avoiding Repetitive Property Methods,” which was
the basis for the property factory function presented in Example 22-28.

Python in a Nutshell, 3rd ed., by Alex Martelli, Anna Ravenscroft, and Steve Holden
(O’Reilly) is rigorous and objective. They devote only three pages to properties, but
that’s because the book follows an axiomatic presentation style: the preceding 15
pages or so provide a thorough description of the semantics of Python classes from
the ground up, including descriptors, which are how properties are actually imple‐
mented under the hood. So by the time Martelli et al., get to properties, they pack a
lot of insights in those three pages—including what I selected to open this chapter.

Bertrand Meyer—quoted in the Uniform Access Principle definition in this chapter
opening—pioneered the Design by Contract methodology, designed the Eiffel lan‐
guage, and wrote the excellent Object-Oriented Software Construction, 2nd ed. (Pear‐
son). The first six chapters provide one of the best conceptual introductions to OO
analysis and design I’ve seen. Chapter 11 presents Design by Contract, and Chapter
35 offers Meyer’s assessments of some influential object-oriented languages: Simula,
Smalltalk, CLOS (the Common Lisp Object System), Objective-C, C++, and Java,
with brief comments on some others. Only in the last page of the book does he reveal
that the highly readable “notation” he uses as pseudocode is Eiffel.

874 | Chapter 22: Dynamic Attributes and Properties

https://fpy.li/22-24
https://fpy.li/22-24
https://fpy.li/22-25
https://fpy.li/pycook3
https://fpy.li/pynut3

Soapbox
Meyer’s Uniform Access Principle is aesthetically appealing. As a programmer using
an API, I shouldn’t have to care whether product.price simply fetches a data
attribute or performs a computation. As a consumer and a citizen, I do care: in e-
commerce today the value of product.price often depends on who is asking, so it’s
certainly not a mere data attribute. In fact, it’s common practice that the price is
lower if the query comes from outside the store—say, from a price-comparison
engine. This effectively punishes loyal customers who like to browse within a particu‐
lar store. But I digress.

The previous digression does raise a relevant point for programming: although the
Uniform Access Principle makes perfect sense in an ideal world, in reality, users of an
API may need to know whether reading product.price is potentially too expensive
or time-consuming. That’s a problem with programming abstractions in general: they
make it hard to reason about the runtime cost of evaluating an expression. On the
other hand, abstractions let users accomplish more with less code. It’s a trade-off. As
usual in matters of software engineering, Ward Cunningham’s original wiki hosts
insightful arguments about the merits of the Uniform Access Principle.

In object-oriented programming languages, application or violations of the Uniform
Access Principle often revolve around the syntax of reading public data attributes ver‐
sus invoking getter/setter methods.

Smalltalk and Ruby address this issue in a simple and elegant way: they don’t support
public data attributes at all. Every instance attribute in these languages is private, so
every access to them must be through methods. But their syntax makes this painless:
in Ruby, product.price invokes the price getter; in Smalltalk, it’s simply product
price.

At the other end of the spectrum, the Java language allows the programmer to choose
among four access-level modifiers—including the no-name default that the Java
Tutorial calls “package-private.”

The general practice does not agree with the syntax established by the Java designers,
though. Everybody in Java-land agrees that attributes should be private, and you
must spell it out every time, because it’s not the default. When all attributes are pri‐
vate, all access to them from outside the class must go through accessors. Java IDEs
include shortcuts for generating accessor methods automatically. Unfortunately, the
IDE is not so helpful when you must read the code six months later. It’s up to you to
wade through a sea of do-nothing accessors to find those that add value by imple‐
menting some business logic.

Further Reading | 875

https://fpy.li/22-26
https://fpy.li/22-27
https://fpy.li/22-28
https://fpy.li/22-28

14 Alex Martelli, Python in a Nutshell, 2nd ed. (O’Reilly), p. 101.

Alex Martelli speaks for the majority of the Python community when he calls acces‐
sors “goofy idioms” and then provides these examples that look very different but do
the same thing:14

someInstance.widgetCounter += 1
rather than...
someInstance.setWidgetCounter(someInstance.getWidgetCounter() + 1)

Sometimes when designing APIs, I’ve wondered whether every method that does not
take an argument (besides self), returns a value (other than None), and is a pure
function (i.e., has no side effects) should be replaced by a read-only property. In this
chapter, the LineItem.subtotal method (as in Example 22-27) would be a good can‐
didate to become a read-only property. Of course, this excludes methods that are
designed to change the object, such as my_list.clear(). It would be a terrible idea to
turn that into a property, so that merely accessing my_list.clear would delete the
contents of the list!

In the Pingo GPIO library, which I coauthored (mentioned in “The __missing__
Method” on page 91), much of the user-level API is based on properties. For example,
to read the current value of an analog pin, the user writes pin.value, and setting a
digital pin mode is written as pin.mode = OUT. Behind the scenes, reading an analog
pin value or setting a digital pin mode may involve a lot of code, depending on the
specific board driver. We decided to use properties in Pingo because we want the API
to be comfortable to use even in interactive environments like a Jupyter Notebook,
and we feel pin.mode = OUT is easier on the eyes and on the fingers than
pin.set_mode(OUT).

Although I find the Smalltalk and Ruby solution cleaner, I think the Python approach
makes more sense than the Java one. We are allowed to start simple, coding data
members as public attributes, because we know they can always be wrapped by prop‐
erties (or descriptors, which we’ll talk about in the next chapter).

__new__ Is Better than new

Another example of the Uniform Access Principle (or a variation of it) is the fact that
function calls and object instantiation use the same syntax in Python: my_obj =
foo(), where foo may be a class or any other callable.

Other languages influenced by C++ syntax have a new operator that makes instantia‐
tion look different than a call. Most of the time, the user of an API doesn’t care
whether foo is a function or a class. For years I was under the impression that
property was a function. In normal usage, it makes no difference.

876 | Chapter 22: Dynamic Attributes and Properties

https://fpy.li/22-29

15 The reasons I am about to mention are given in the Dr. Dobbs Journal article titled “Java’s new Considered
Harmful”, by Jonathan Amsterdam and in “Consider static factory methods instead of constructors,” which is
Item 1 of the award-winning book Effective Java, 3rd ed., by Joshua Bloch (Addison-Wesley).

There are many good reasons for replacing constructors with factories.15 A popular
motive is limiting the number of instances by returning previously built ones (as in
the Singleton pattern). A related use is caching expensive object construction. Also,
sometimes it’s convenient to return objects of different types, depending on the argu‐
ments given.

Coding a constructor is simpler; providing a factory adds flexibility at the expense of
more code. In languages that have a new operator, the designer of an API must decide
in advance whether to stick with a simple constructor or invest in a factory. If the ini‐
tial choice is wrong, the correction may be costly—all because new is an operator.

Sometimes it may also be convenient to go the other way, and replace a simple func‐
tion with a class.

In Python, classes and functions are interchangeable in many situations. Not only
because there’s no new operator, but also because there is the __new__ special method,
which can turn a class into a factory producing objects of different kinds (as we saw
in “Flexible Object Creation with __new__” on page 843) or returning prebuilt
instances instead of creating a new one every time.

This function-class duality would be easier to leverage if PEP 8 — Style Guide for
Python Code did not recommend CamelCase for class names. On the other hand,
dozens of classes in the standard library have lowercase names (e.g., property, str,
defaultdict, etc.). So maybe the use of lowercase class names is a feature, and not a
bug. But however we look at it, the inconsistent capitalization of classes in the Python
standard library poses a usability problem.

Although calling a function is not different from calling a class, it’s good to know
which is which because of another thing we can do with a class: subclassing. So I per‐
sonally use CamelCase in every class that I code, and I wish all classes in the Python
standard library used the same convention. I am looking at you, collections.Order
edDict and collections.defaultdict.

Further Reading | 877

https://fpy.li/22-30
https://fpy.li/22-30
https://fpy.li/22-31
https://fpy.li/22-31

1 Raymond Hettinger, Descriptor HowTo Guide.

CHAPTER 23

Attribute Descriptors

Learning about descriptors not only provides access to a larger toolset, it creates a
deeper understanding of how Python works and an appreciation for the elegance of its
design.

— Raymond Hettinger, Python core developer and guru1

Descriptors are a way of reusing the same access logic in multiple attributes. For
example, field types in ORMs, such as the Django ORM and SQLAlchemy, are
descriptors, managing the flow of data from the fields in a database record to Python
object attributes and vice versa.

A descriptor is a class that implements a dynamic protocol consisting of the __get__,
__set__, and __delete__ methods. The property class implements the full descrip‐
tor protocol. As usual with dynamic protocols, partial implementations are OK. In
fact, most descriptors we see in real code implement only __get__ and __set__, and
many implement only one of these methods.

Descriptors are a distinguishing feature of Python, deployed not only at the applica‐
tion level but also in the language infrastructure. User-defined functions are descrip‐
tors. We’ll see how the descriptor protocol allows methods to operate as bound or
unbound methods, depending on how they are called.

Understanding descriptors is key to Python mastery. This is what this chapter is
about.

In this chapter we’ll refactor the bulk food example we first saw in “Using a Property
for Attribute Validation” on page 857, replacing properties with descriptors. This will
make it easier to reuse the attribute validation logic across different classes. We’ll

879

https://fpy.li/descrhow

tackle the concepts of overriding and nonoverriding descriptors, and realize that
Python functions are descriptors. Finally we’ll see some tips about implementing
descriptors.

What’s New in This Chapter
The Quantity descriptor example in “LineItem Take #4: Automatic Naming of Stor‐
age Attributes” on page 887 was dramatically simplified thanks to the __set_name__
special method added to the descriptor protocol in Python 3.6.

I removed the property factory example formerly in “LineItem Take #4: Automatic
Naming of Storage Attributes” on page 887 because it became irrelevant: the point was
to show an alternative way of solving the Quantity problem, but with the addition of
__set_name__, the descriptor solution becomes much simpler.

The AutoStorage class that used to appear in “LineItem Take #5: A New Descriptor
Type” on page 889 is also gone because __set_name__ made it obsolete.

Descriptor Example: Attribute Validation
As we saw in “Coding a Property Factory” on page 865, a property factory is a way to
avoid repetitive coding of getters and setters by applying functional programming
patterns. A property factory is a higher-order function that creates a parameterized
set of accessor functions and builds a custom property instance from them, with clo‐
sures to hold settings like the storage_name. The object-oriented way of solving the
same problem is a descriptor class.

We’ll continue the series of LineItem examples where we left off, in “Coding a Prop‐
erty Factory” on page 865, by refactoring the quantity property factory into a Quan
tity descriptor class. This will make it easier to use.

LineItem Take #3: A Simple Descriptor
As we said in the introduction, a class implementing a __get__, a __set__, or a
__delete__ method is a descriptor. You use a descriptor by declaring instances of it
as class attributes of another class.

We’ll create a Quantity descriptor, and the LineItem class will use two instances of
Quantity: one for managing the weight attribute, the other for price. A diagram
helps, so take a look at Figure 23-1.

880 | Chapter 23: Attribute Descriptors

Figure 23-1. UML class diagram for LineItem using a descriptor class named Quan
tity. Underlined attributes in UML are class attributes. Note that weight and price are
instances of Quantity attached to the LineItem class, but LineItem instances also have
their own weight and price attributes where those values are stored.

Note that the word weight appears twice in Figure 23-1, because there are really two
distinct attributes named weight: one is a class attribute of LineItem, the other is an
instance attribute that will exist in each LineItem object. This also applies to price.

Terms to understand descriptors
Implementing and using descriptors involves several components, and it is useful to
be precise when naming those components. I will use the following terms and defini‐
tions as I describe the examples in this chapter. They will be easier to understand
once you see the code, but I wanted to put the definitions up front so you can refer
back to them when needed.

Descriptor class
A class implementing the descriptor protocol. That’s Quantity in Figure 23-1.

Managed class
The class where the descriptor instances are declared as class attributes. In
Figure 23-1, LineItem is the managed class.

Descriptor instance
Each instance of a descriptor class, declared as a class attribute of the managed
class. In Figure 23-1, each descriptor instance is represented by a composition
arrow with an underlined name (the underline means class attribute in UML).
The black diamonds touch the LineItem class, which contains the descriptor
instances.

Descriptor Example: Attribute Validation | 881

Managed instance
One instance of the managed class. In this example, LineItem instances are the
managed instances (they are not shown in the class diagram).

Storage attribute
An attribute of the managed instance that holds the value of a managed attribute
for that particular instance. In Figure 23-1, the LineItem instance attributes
weight and price are the storage attributes. They are distinct from the descriptor
instances, which are always class attributes.

Managed attribute
A public attribute in the managed class that is handled by a descriptor instance,
with values stored in storage attributes. In other words, a descriptor instance and
a storage attribute provide the infrastructure for a managed attribute.

It’s important to realize that Quantity instances are class attributes of LineItem. This
crucial point is highlighted by the mills and gizmos in Figure 23-2.

Figure 23-2. UML class diagram annotated with MGN (Mills & Gizmos Notation):
classes are mills that produce gizmos—the instances. The Quantity mill produces two
gizmos with round heads, which are attached to the LineItem mill: weight and price.
The LineItem mill produces rectangular gizmos that have their own weight and price
attributes where those values are stored.

882 | Chapter 23: Attribute Descriptors

2 Classes and instances are drawn as rectangles in UML class diagrams. There are visual differences, but instan‐
ces are rarely shown in class diagrams, so developers may not recognize them as such.

Introducing Mills & Gizmos Notation
After explaining descriptors many times, I realized UML is not very good at showing
relationships involving classes and instances, like the relationship between a managed
class and the descriptor instances.2 So I invented my own “language,” the Mills & Giz‐
mos Notation (MGN), which I use to annotate UML diagrams.

MGN is designed to make very clear the distinction between classes and instances.
See Figure 23-3. In MGN, a class is drawn as a “mill,” a complicated machine that
produces gizmos. Classes/mills are always machines with levers and dials. The gizmos
are the instances, and they look much simpler. When this book is rendered in color,
gizmos have the same color as the mill that made it.

Figure 23-3. MGN sketch showing the LineItem class making three instances, and Quan
tity making two. One instance of Quantity is retrieving a value stored in a LineItem
instance.

For this example, I drew LineItem instances as rows in a tabular invoice, with three
cells representing the three attributes (description, weight, and price). Because
Quantity instances are descriptors, they have a magnifying glass to __get__ values,
and a claw to __set__ values. When we get to metaclasses, you’ll thank me for these
doodles.

Enough doodling for now. Here is the code: Example 23-1 shows the Quantity
descriptor class, and Example 23-2 lists a new LineItem class using two instances of
Quantity.

Descriptor Example: Attribute Validation | 883

Example 23-1. bulkfood_v3.py: Quantity descriptor does not accept negative values

class Quantity:

 def __init__(self, storage_name):
 self.storage_name = storage_name

 def __set__(self, instance, value):
 if value > 0:
 instance.__dict__[self.storage_name] = value
 else:
 msg = f'{self.storage_name} must be > 0'
 raise ValueError(msg)

 def __get__(self, instance, owner):
 return instance.__dict__[self.storage_name]

Descriptor is a protocol-based feature; no subclassing is needed to implement
one.

Each Quantity instance will have a storage_name attribute: that’s the name of
the storage attribute to hold the value in the managed instances.

__set__ is called when there is an attempt to assign to the managed attribute.
Here, self is the descriptor instance (i.e., LineItem.weight or LineItem.price),
instance is the managed instance (a LineItem instance), and value is the value
being assigned.

We must store the attribute value directly into __dict__; calling set attr

(instance, self.storage_name) would trigger the __set__ method again,
leading to infinite recursion.

We need to implement __get__ because the name of the managed attribute may
not be the same as the storage_name. The owner argument will be explained
shortly.

Implementing __get__ is necessary because a user could write something like this:

class House:
 rooms = Quantity('number_of_rooms')

In the House class, the managed attribute is rooms, but the storage attribute is
number_of_rooms. Given a House instance named chaos_manor, reading and writing
chaos_manor.rooms goes through the Quantity descriptor instance attached to
rooms, but reading and writing chaos_manor.number_of_rooms bypasses the
descriptor.

884 | Chapter 23: Attribute Descriptors

Note that __get__ receives three arguments: self, instance, and owner. The owner
argument is a reference to the managed class (e.g., LineItem), and it’s useful if you
want the descriptor to support retrieving a class attribute—perhaps to emulate
Python’s default behavior of retrieving a class attribute when the name is not found
in the instance.

If a managed attribute, such as weight, is retrieved via the class like Line
Item.weight, the descriptor __get__ method receives None as the value for the
instance argument.

To support introspection and other metaprogramming tricks by the user, it’s a good
practice to make __get__ return the descriptor instance when the managed attribute
is accessed through the class. To do that, we’d code __get__ like this:

 def __get__(self, instance, owner):
 if instance is None:
 return self
 else:
 return instance.__dict__[self.storage_name]

Example 23-2 demonstrates the use of Quantity in LineItem.

Example 23-2. bulkfood_v3.py: Quantity descriptors manage attributes in LineItem

class LineItem:
 weight = Quantity('weight')
 price = Quantity('price')

 def __init__(self, description, weight, price):
 self.description = description
 self.weight = weight
 self.price = price

 def subtotal(self):
 return self.weight * self.price

The first descriptor instance will manage the weight attribute.

The second descriptor instance will manage the price attribute.

The rest of the class body is as simple and clean as the original code in bulk‐
food_v1.py (Example 22-19).

Descriptor Example: Attribute Validation | 885

3 White truffles cost thousands of dollars per pound. Disallowing the sale of truffles for $0.01 is left as an exer‐
cise for the enterprising reader. I know a person who actually bought an $1,800 encyclopedia of statistics for
$18 because of an error in an online store (not Amazon.com in this case).

The code in Example 23-2 works as intended, preventing the sale of truffles for $0:3

>>> truffle = LineItem('White truffle', 100, 0)
Traceback (most recent call last):
 ...
ValueError: value must be > 0

When coding descriptor __get__ and __set__ methods, keep in
mind what the self and instance arguments mean: self is the
descriptor instance, and instance is the managed instance.
Descriptors managing instance attributes should store values in the
managed instances. That’s why Python provides the instance
argument to the descriptor methods.

It may be tempting, but wrong, to store the value of each managed attribute in the
descriptor instance itself. In other words, in the __set__ method, instead of coding:

 instance.__dict__[self.storage_name] = value

the tempting, but bad, alternative would be:

 self.__dict__[self.storage_name] = value

To understand why this would be wrong, think about the meaning of the first two
arguments to __set__: self and instance. Here, self is the descriptor instance,
which is actually a class attribute of the managed class. You may have thousands of
LineItem instances in memory at one time, but you’ll only have two instances of the
descriptors: the class attributes LineItem.weight and LineItem.price. So anything
you store in the descriptor instances themselves is actually part of a LineItem class
attribute, and therefore is shared among all LineItem instances.

A drawback of Example 23-2 is the need to repeat the names of the attributes when
the descriptors are instantiated in the managed class body. It would be nice if the
LineItem class could be declared like this:

class LineItem:
 weight = Quantity()
 price = Quantity()

 # remaining methods as before

As it stands, Example 23-2 requires naming each Quantity explicitly, which is not
only inconvenient but dangerous. If a programmer copying and pasting code forgets
to edit both names and writes something like price = Quantity('weight'), the

886 | Chapter 23: Attribute Descriptors

4 More precisely, __set_name__ is called by type.__new__—the constructor of objects representing classes. The
type built-in is actually a metaclass, the default class of user-defined classes. This is hard to grasp at first, but
rest assured: Chapter 24 is devoted to the dynamic configuration of classes, including the concept of
metaclasses.

program will misbehave badly, clobbering the value of weight whenever the price is
set.

The problem is that—as we saw in Chapter 6—the righthand side of an assignment is
executed before the variable exists. The expression Quantity() is evaluated to create
a descriptor instance, and there is no way the code in the Quantity class can guess the
name of the variable to which the descriptor will be bound (e.g., weight or price).

Thankfully, the descriptor protocol now supports the aptly named __set_name__
special method. We’ll see how to use it next.

Automatic naming of a descriptor storage attribute used to be a
thorny issue. In the first edition of Fluent Python, I devoted several
pages and lines of code in this chapter and the next to presenting
different solutions, including the use of a class decorator, and then
metaclasses in Chapter 24. This was greatly simplified in Python
3.6.

LineItem Take #4: Automatic Naming of Storage Attributes
To avoid retyping the attribute name in the descriptor instances, we’ll implement
__set_name__ to set the storage_name of each Quantity instance. The __set_name__
special method was added to the descriptor protocol in Python 3.6. The interpreter
calls __set_name__ on each descriptor it finds in a class body—if the descriptor
implements it.4

In Example 23-3, the LineItem descriptor class doesn’t need an __init__. Instead,
__set_item__ saves the name of the storage attribute.

Example 23-3. bulkfood_v4.py: __set_name__ sets the name for each Quantity
descriptor instance

class Quantity:

 def __set_name__(self, owner, name):
 self.storage_name = name

 def __set__(self, instance, value):
 if value > 0:
 instance.__dict__[self.storage_name] = value

Descriptor Example: Attribute Validation | 887

 else:
 msg = f'{self.storage_name} must be > 0'
 raise ValueError(msg)

 # no __get__ needed

class LineItem:
 weight = Quantity()
 price = Quantity()

 def __init__(self, description, weight, price):
 self.description = description
 self.weight = weight
 self.price = price

 def subtotal(self):
 return self.weight * self.price

self is the descriptor instance (not the managed instance), owner is the managed
class, and name is the name of the attribute of owner to which this descriptor
instance was assigned in the class body of owner.

This is what the __init__ did in Example 23-1.

The __set__ method here is exactly the same as in Example 23-1.

Implementing __get__ is not necessary because the name of the storage attribute
matches the name of the managed attribute. The expression product.price gets
the price attribute directly from the LineItem instance.

Now we don’t need to pass the managed attribute name to the Quantity con‐
structor. That was the goal for this version.

Looking at Example 23-3, you may think that’s a lot of code just for managing a cou‐
ple of attributes, but it’s important to realize that the descriptor logic is now abstrac‐
ted into a separate code unit: the Quantity class. Usually we do not define a
descriptor in the same module where it’s used, but in a separate utility module
designed to be used across the application—even in many applications, if you are
developing a library or framework.

With this in mind, Example 23-4 better represents the typical usage of a descriptor.

Example 23-4. bulkfood_v4c.py: LineItem definition uncluttered; the Quantity
descriptor class now resides in the imported model_v4c module

import model_v4c as model

888 | Chapter 23: Attribute Descriptors

5 Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software, p. 326.

class LineItem:
 weight = model.Quantity()
 price = model.Quantity()

 def __init__(self, description, weight, price):
 self.description = description
 self.weight = weight
 self.price = price

 def subtotal(self):
 return self.weight * self.price

Import the model_v4c module where Quantity is implemented.

Put model.Quantity to use.

Django users will notice that Example 23-4 looks a lot like a model definition. It’s no
coincidence: Django model fields are descriptors.

Because descriptors are implemented as classes, we can leverage inheritance to reuse
some of the code we have for new descriptors. That’s what we’ll do in the following
section.

LineItem Take #5: A New Descriptor Type
The imaginary organic food store hits a snag: somehow a line item instance was cre‐
ated with a blank description, and the order could not be fulfilled. To prevent that,
we’ll create a new descriptor, NonBlank. As we design NonBlank, we realize it will be
very much like the Quantity descriptor, except for the validation logic.

This prompts a refactoring, producing Validated, an abstract class that overrides the
__set__ method, calling a validate method that must be implemented by sub‐
classes.

We’ll then rewrite Quantity, and implement NonBlank by inheriting from Validated
and just coding the validate methods.

The relationship among Validated, Quantity, and NonBlank is an application of the
template method as described in the Design Patterns classic:

A template method defines an algorithm in terms of abstract operations that subclasses
override to provide concrete behavior.5

Descriptor Example: Attribute Validation | 889

6 Slide #50 of Alex Martelli’s “Python Design Patterns” talk. Highly recommended.

In Example 23-5, Validated.__set__ is the template method and self.validate is
the abstract operation.

Example 23-5. model_v5.py: the Validated ABC

import abc

class Validated(abc.ABC):

 def __set_name__(self, owner, name):
 self.storage_name = name

 def __set__(self, instance, value):
 value = self.validate(self.storage_name, value)
 instance.__dict__[self.storage_name] = value

 @abc.abstractmethod
 def validate(self, name, value):
 """return validated value or raise ValueError"""

__set__ delegates validation to the validate method…

…then uses the returned value to update the stored value.

validate is an abstract method; this is the template method.

Alex Martelli prefers to call this design pattern Self-Delegation, and I agree it’s a more
descriptive name: the first line of __set__ self-delegates to validate.6

The concrete Validated subclasses in this example are Quantity and NonBlank,
shown in Example 23-6.

Example 23-6. model_v5.py: Quantity and NonBlank, concrete Validated subclasses

class Quantity(Validated):
 """a number greater than zero"""

 def validate(self, name, value):
 if value <= 0:
 raise ValueError(f'{name} must be > 0')
 return value

class NonBlank(Validated):
 """a string with at least one non-space character"""

890 | Chapter 23: Attribute Descriptors

https://fpy.li/23-1

 def validate(self, name, value):
 value = value.strip()
 if not value:
 raise ValueError(f'{name} cannot be blank')
 return value

Implementation of the template method required by the Validated.validate
abstract method.

If nothing is left after leading and trailing blanks are stripped, reject the value.

Requiring the concrete validate methods to return the validated value gives
them an opportunity to clean up, convert, or normalize the data received. In this
case, value is returned without leading or trailing blanks.

Users of model_v5.py don’t need to know all these details. What matters is that they
get to use Quantity and NonBlank to automate the validation of instance attributes.
See the latest LineItem class in Example 23-7.

Example 23-7. bulkfood_v5.py: LineItem using Quantity and NonBlank descriptors

import model_v5 as model

class LineItem:
 description = model.NonBlank()
 weight = model.Quantity()
 price = model.Quantity()

 def __init__(self, description, weight, price):
 self.description = description
 self.weight = weight
 self.price = price

 def subtotal(self):
 return self.weight * self.price

Import the model_v5 module, giving it a friendlier name.

Put model.NonBlank to use. The rest of the code is unchanged.

The LineItem examples we’ve seen in this chapter demonstrate a typical use of
descriptors to manage data attributes. Descriptors like Quantity are called overriding
descriptors because its __set__ method overrides (i.e., intercepts and overrules) the
setting of an instance attribute by the same name in the managed instance. However,
there are also nonoverriding descriptors. We’ll explore this distinction in detail in the
next section.

Descriptor Example: Attribute Validation | 891

Overriding Versus Nonoverriding Descriptors
Recall that there is an important asymmetry in the way Python handles attributes.
Reading an attribute through an instance normally returns the attribute defined in
the instance, but if there is no such attribute in the instance, a class attribute will be
retrieved. On the other hand, assigning to an attribute in an instance normally creates
the attribute in the instance, without affecting the class at all.

This asymmetry also affects descriptors, in effect creating two broad categories of
descriptors, depending on whether the __set__ method is implemented. If __set__
is present, the class is an overriding descriptor; otherwise, it is a nonoverriding
descriptor. These terms will make sense as we study descriptor behaviors in the next
examples.

Observing the different descriptor categories requires a few classes, so we’ll use the
code in Example 23-8 as our test bed for the following sections.

Every __get__ and __set__ method in Example 23-8 calls
print_args so their invocations are displayed in a readable way.
Understanding print_args and the auxiliary functions cls_name
and display is not important, so don’t get distracted by them.

Example 23-8. descriptorkinds.py: simple classes for studying descriptor overriding
behaviors

auxiliary functions for display only

def cls_name(obj_or_cls):
 cls = type(obj_or_cls)
 if cls is type:
 cls = obj_or_cls
 return cls.__name__.split('.')[-1]

def display(obj):
 cls = type(obj)
 if cls is type:
 return f'<class {obj.__name__}>'
 elif cls in [type(None), int]:
 return repr(obj)
 else:
 return f'<{cls_name(obj)} object>'

def print_args(name, *args):
 pseudo_args = ', '.join(display(x) for x in args)
 print(f'-> {cls_name(args[0])}.__{name}__({pseudo_args})')

essential classes for this example

892 | Chapter 23: Attribute Descriptors

class Overriding:
 """a.k.a. data descriptor or enforced descriptor"""

 def __get__(self, instance, owner):
 print_args('get', self, instance, owner)

 def __set__(self, instance, value):
 print_args('set', self, instance, value)

class OverridingNoGet:
 """an overriding descriptor without ``__get__``"""

 def __set__(self, instance, value):
 print_args('set', self, instance, value)

class NonOverriding:
 """a.k.a. non-data or shadowable descriptor"""

 def __get__(self, instance, owner):
 print_args('get', self, instance, owner)

class Managed:
 over = Overriding()
 over_no_get = OverridingNoGet()
 non_over = NonOverriding()

 def spam(self):
 print(f'-> Managed.spam({display(self)})')

An overriding descriptor class with __get__ and __set__.

The print_args function is called by every descriptor method in this example.

An overriding descriptor without a __get__ method.

No __set__ method here, so this is a nonoverriding descriptor.

The managed class, using one instance of each of the descriptor classes.

The spam method is here for comparison, because methods are also descriptors.

In the following sections, we will examine the behavior of attribute reads and writes
on the Managed class, and one instance of it, going through each of the different
descriptors defined.

Overriding Versus Nonoverriding Descriptors | 893

Overriding Descriptors
A descriptor that implements the __set__ method is an overriding descriptor, because
although it is a class attribute, a descriptor implementing __set__ will override
attempts to assign to instance attributes. This is how Example 23-3 was implemented.
Properties are also overriding descriptors: if you don’t provide a setter function, the
default __set__ from the property class will raise AttributeError to signal that the
attribute is read-only. Given the code in Example 23-8, experiments with an overrid‐
ing descriptor can be seen in Example 23-9.

Python contributors and authors use different terms when discus‐
sing these concepts. I adopted “overriding descriptor” from the
book Python in a Nutshell. The official Python documentation uses
“data descriptor,” but “overriding descriptor” highlights the special
behavior. Overriding descriptors are also called “enforced descrip‐
tors.” Synonyms for nonoverriding descriptors include “nondata
descriptors” or “shadowable descriptors.”

Example 23-9. Behavior of an overriding descriptor

>>> obj = Managed()
>>> obj.over
-> Overriding.__get__(<Overriding object>, <Managed object>, <class Managed>)
>>> Managed.over
-> Overriding.__get__(<Overriding object>, None, <class Managed>)
>>> obj.over = 7
-> Overriding.__set__(<Overriding object>, <Managed object>, 7)
>>> obj.over
-> Overriding.__get__(<Overriding object>, <Managed object>, <class Managed>)
>>> obj.__dict__['over'] = 8
>>> vars(obj)
{'over': 8}
>>> obj.over
-> Overriding.__get__(<Overriding object>, <Managed object>, <class Managed>)

Create Managed object for testing.

obj.over triggers the descriptor __get__ method, passing the managed instance
obj as the second argument.

Managed.over triggers the descriptor __get__ method, passing None as the sec‐
ond argument (instance).

Assigning to obj.over triggers the descriptor __set__ method, passing the value
7 as the last argument.

894 | Chapter 23: Attribute Descriptors

Reading obj.over still invokes the descriptor __get__ method.

Bypassing the descriptor, setting a value directly to the obj.__dict__.

Verify that the value is in the obj.__dict__, under the over key.

However, even with an instance attribute named over, the Managed.over
descriptor still overrides attempts to read obj.over.

Overriding Descriptor Without __get__
Properties and other overriding descriptors, such as Django model fields, implement
both __set__ and __get__, but it’s also possible to implement only __set__, as we
saw in Example 23-2. In this case, only writing is handled by the descriptor. Reading
the descriptor through an instance will return the descriptor object itself because
there is no __get__ to handle that access. If a namesake instance attribute is created
with a new value via direct access to the instance __dict__, the __set__ method will
still override further attempts to set that attribute, but reading that attribute will sim‐
ply return the new value from the instance, instead of returning the descriptor object.
In other words, the instance attribute will shadow the descriptor, but only when read‐
ing. See Example 23-10.

Example 23-10. Overriding descriptor without __get__

>>> obj.over_no_get
<__main__.OverridingNoGet object at 0x665bcc>
>>> Managed.over_no_get
<__main__.OverridingNoGet object at 0x665bcc>
>>> obj.over_no_get = 7
-> OverridingNoGet.__set__(<OverridingNoGet object>, <Managed object>, 7)
>>> obj.over_no_get
<__main__.OverridingNoGet object at 0x665bcc>
>>> obj.__dict__['over_no_get'] = 9
>>> obj.over_no_get
9
>>> obj.over_no_get = 7
-> OverridingNoGet.__set__(<OverridingNoGet object>, <Managed object>, 7)
>>> obj.over_no_get
9

This overriding descriptor doesn’t have a __get__ method, so reading
obj.over_no_get retrieves the descriptor instance from the class.

The same thing happens if we retrieve the descriptor instance directly from the
managed class.

Overriding Versus Nonoverriding Descriptors | 895

Trying to set a value to obj.over_no_get invokes the __set__ descriptor
method.

Because our __set__ doesn’t make changes, reading obj.over_no_get again
retrieves the descriptor instance from the managed class.

Going through the instance __dict__ to set an instance attribute named
over_no_get.

Now that over_no_get instance attribute shadows the descriptor, but only for
reading.

Trying to assign a value to obj.over_no_get still goes through the descriptor set.

But for reading, that descriptor is shadowed as long as there is a namesake
instance attribute.

Nonoverriding Descriptor
A descriptor that does not implement __set__ is a nonoverriding descriptor. Setting
an instance attribute with the same name will shadow the descriptor, rendering
it ineffective for handling that attribute in that specific instance. Methods and @func
tools.cached_property are implemented as nonoverriding descriptors.
Example 23-11 shows the operation of a nonoverriding descriptor.

Example 23-11. Behavior of a nonoverriding descriptor

>>> obj = Managed()
>>> obj.non_over
-> NonOverriding.__get__(<NonOverriding object>, <Managed object>, <class Managed>)
>>> obj.non_over = 7
>>> obj.non_over
7
>>> Managed.non_over
-> NonOverriding.__get__(<NonOverriding object>, None, <class Managed>)
>>> del obj.non_over
>>> obj.non_over
-> NonOverriding.__get__(<NonOverriding object>, <Managed object>, <class Managed>)

obj.non_over triggers the descriptor __get__ method, passing obj as the second
argument.

Managed.non_over is a nonoverriding descriptor, so there is no __set__ to inter‐
fere with this assignment.

896 | Chapter 23: Attribute Descriptors

The obj now has an instance attribute named non_over, which shadows the
namesake descriptor attribute in the Managed class.

The Managed.non_over descriptor is still there, and catches this access via the
class.

If the non_over instance attribute is deleted…

…then reading obj.non_over hits the __get__ method of the descriptor in the
class, but note that the second argument is the managed instance.

In the previous examples, we saw several assignments to an instance attribute with
the same name as a descriptor, and different results according to the presence of a
__set__ method in the descriptor.

The setting of attributes in the class cannot be controlled by descriptors attached to
the same class. In particular, this means that the descriptor attributes themselves can
be clobbered by assigning to the class, as the next section explains.

Overwriting a Descriptor in the Class
Regardless of whether a descriptor is overriding or not, it can be overwritten by
assignment to the class. This is a monkey-patching technique, but in Example 23-12
the descriptors are replaced by integers, which would effectively break any class that
depended on the descriptors for proper operation.

Example 23-12. Any descriptor can be overwritten on the class itself

>>> obj = Managed()
>>> Managed.over = 1
>>> Managed.over_no_get = 2
>>> Managed.non_over = 3
>>> obj.over, obj.over_no_get, obj.non_over
(1, 2, 3)

Create a new instance for later testing.

Overwrite the descriptor attributes in the class.

The descriptors are really gone.

Example 23-12 reveals another asymmetry regarding reading and writing attributes:
although the reading of a class attribute can be controlled by a descriptor with
__get__ attached to the managed class, the writing of a class attribute cannot be han‐
dled by a descriptor with __set__ attached to the same class.

Overriding Versus Nonoverriding Descriptors | 897

In order to control the setting of attributes in a class, you have to
attach descriptors to the class of the class—in other words, the met‐
aclass. By default, the metaclass of user-defined classes is type, and
you cannot add attributes to type. But in Chapter 24, we’ll create
our own metaclasses.

Let’s now focus on how descriptors are used to implement methods in Python.

Methods Are Descriptors
A function within a class becomes a bound method when invoked on an instance
because all user-defined functions have a __get__ method, therefore they operate as
descriptors when attached to a class. Example 23-13 demonstrates reading the spam
method from the Managed class introduced in Example 23-8.

Example 23-13. A method is a nonoverriding descriptor

>>> obj = Managed()
>>> obj.spam
<bound method Managed.spam of <descriptorkinds.Managed object at 0x74c80c>>
>>> Managed.spam
<function Managed.spam at 0x734734>
>>> obj.spam = 7
>>> obj.spam
7

Reading from obj.spam retrieves a bound method object.

But reading from Managed.spam retrieves a function.

Assigning a value to obj.spam shadows the class attribute, rendering the spam
method inaccessible from the obj instance.

Functions do not implement __set__, therefore they are nonoverriding descriptors,
as the last line of Example 23-13 shows.

The other key takeaway from Example 23-13 is that obj.spam and Managed.spam
retrieve different objects. As usual with descriptors, the __get__ of a function returns
a reference to itself when the access happens through the managed class. But when
the access goes through an instance, the __get__ of the function returns a bound
method object: a callable that wraps the function and binds the managed instance
(e.g., obj) to the first argument of the function (i.e., self), like the functools.par
tial function does (as seen in “Freezing Arguments with functools.partial” on page
247). For a deeper understanding of this mechanism, take a look at Example 23-14.

898 | Chapter 23: Attribute Descriptors

Example 23-14. method_is_descriptor.py: a Text class, derived from UserString

import collections

class Text(collections.UserString):

 def __repr__(self):
 return 'Text({!r})'.format(self.data)

 def reverse(self):
 return self[::-1]

Now let’s investigate the Text.reverse method. See Example 23-15.

Example 23-15. Experiments with a method

 >>> word = Text('forward')
 >>> word
 Text('forward')
 >>> word.reverse()
 Text('drawrof')
 >>> Text.reverse(Text('backward'))
 Text('drawkcab')
 >>> type(Text.reverse), type(word.reverse)
 (<class 'function'>, <class 'method'>)
 >>> list(map(Text.reverse, ['repaid', (10, 20, 30), Text('stressed')]))
 ['diaper', (30, 20, 10), Text('desserts')]
 >>> Text.reverse.__get__(word)
 <bound method Text.reverse of Text('forward')>
 >>> Text.reverse.__get__(None, Text)
 <function Text.reverse at 0x101244e18>
 >>> word.reverse
 <bound method Text.reverse of Text('forward')>
 >>> word.reverse.__self__
 Text('forward')
 >>> word.reverse.__func__ is Text.reverse
 True

The repr of a Text instance looks like a Text constructor call that would make an
equal instance.

The reverse method returns the text spelled backward.

A method called on the class works as a function.

Note the different types: a function and a method.

Methods Are Descriptors | 899

7 A __delete__ method is also provided by the property decorator, even if no deleter method is defined by
you.

Text.reverse operates as a function, even working with objects that are not
instances of Text.

Any function is a nonoverriding descriptor. Calling its __get__ with an instance
retrieves a method bound to that instance.

Calling the function’s __get__ with None as the instance argument retrieves the
function itself.

The expression word.reverse actually invokes Text.reverse.__get__(word),
returning the bound method.

The bound method object has a __self__ attribute holding a reference to the
instance on which the method was called.

The __func__ attribute of the bound method is a reference to the original func‐
tion attached to the managed class.

The bound method object also has a __call__ method, which handles the actual
invocation. This method calls the original function referenced in __func__, passing
the __self__ attribute of the method as the first argument. That’s how the implicit
binding of the conventional self argument works.

The way functions are turned into bound methods is a prime example of how
descriptors are used as infrastructure in the language.

After this deep dive into how descriptors and methods work, let’s go through some
practical advice about their use.

Descriptor Usage Tips
The following list addresses some practical consequences of the descriptor character‐
istics just described:

Use property to keep it simple
The property built-in creates overriding descriptors implementing __set__ and
__get__ even if you do not define a setter method.7 The default __set__ of a
property raises AttributeError: can't set attribute, so a property is the
easiest way to create a read-only attribute, avoiding the issue described next.

900 | Chapter 23: Attribute Descriptors

8 Python is not consistent in such messages. Trying to change the c.real attribute of a complex number gets
AttributeError: readonly attribute, but an attempt to change c.conjugate (a method of complex),
results in AttributeError: 'complex' object attribute 'conjugate' is read-only. Even the spelling
of “read-only” is different.

9 However, recall that creating instance attributes after the __init__ method runs defeats the key-sharing
memory optimization, as discussed in from “Practical Consequences of How dict Works” on page 102.

Read-only descriptors require __set__
If you use a descriptor class to implement a read-only attribute, you must
remember to code both __get__ and __set__, otherwise setting a namesake
attribute on an instance will shadow the descriptor. The __set__ method of a
read-only attribute should just raise AttributeError with a suitable message.8

Validation descriptors can work with __set__ only
In a descriptor designed only for validation, the __set__ method should check
the value argument it gets, and if valid, set it directly in the instance __dict__
using the descriptor instance name as key. That way, reading the attribute with
the same name from the instance will be as fast as possible, because it will not
require a __get__. See the code for Example 23-3.

Caching can be done efficiently with __get__ only
If you code just the __get__ method, you have a nonoverriding descriptor. These
are useful to make some expensive computation and then cache the result by set‐
ting an attribute by the same name on the instance.9 The namesake instance
attribute will shadow the descriptor, so subsequent access to that attribute will
fetch it directly from the instance __dict__ and not trigger the descriptor
__get__ anymore. The @functools.cached_property decorator actually pro‐
duces a nonoverriding descriptor.

Nonspecial methods can be shadowed by instance attributes
Because functions and methods only implement __get__, they are nonoverriding
descriptors. A simple assignment like my_obj.the_method = 7 means that fur‐
ther access to the_method through that instance will retrieve the number 7—
without affecting the class or other instances. However, this issue does not inter‐
fere with special methods. The interpreter only looks for special methods in the
class itself, in other words, repr(x) is executed as x.__class__.__repr__(x), so
a __repr__ attribute defined in x has no effect on repr(x). For the same reason,
the existence of an attribute named __getattr__ in an instance will not subvert
the usual attribute access algorithm.

The fact that nonspecial methods can be overridden so easily in instances may sound
fragile and error prone, but I personally have never been bitten by this in more than
20 years of Python coding. On the other hand, if you are doing a lot of dynamic

Descriptor Usage Tips | 901

10 Customizing the help text for each descriptor instance is surprisingly hard. One solution requires dynamically
building a wrapper class for each descriptor instance.

attribute creation, where the attribute names come from data you don’t control (as
we did in the earlier parts of this chapter), then you should be aware of this and per‐
haps implement some filtering or escaping of the dynamic attribute names to pre‐
serve your sanity.

The FrozenJSON class in Example 22-5 is safe from instance
attribute shadowing methods because its only methods are special
methods and the build class method. Class methods are safe as
long as they are always accessed through the class, as I did with
FrozenJSON.build in Example 22-5—later replaced by __new__ in
Example 22-6. The Record and Event classes presented in “Com‐
puted Properties” on page 845 are also safe: they implement only
special methods, static methods, and properties. Properties are
overriding descriptors, so they are not shadowed by instance
attributes.

To close this chapter, we’ll cover two features we saw with properties that we have
not addressed in the context of descriptors: documentation and handling attempts to
delete a managed attribute.

Descriptor Docstring and Overriding Deletion
The docstring of a descriptor class is used to document every instance of the descrip‐
tor in the managed class. Figure 23-4 shows the help displays for the LineItem class
with the Quantity and NonBlank descriptors from Examples 23-6 and 23-7.

That is somewhat unsatisfactory. In the case of LineItem, it would be good to add, for
example, the information that weight must be in kilograms. That would be trivial
with properties, because each property handles a specific managed attribute. But with
descriptors, the same Quantity descriptor class is used for weight and price.10

The second detail we discussed with properties, but have not addressed with descrip‐
tors, is handling attempts to delete a managed attribute. That can be done by imple‐
menting a __delete__ method alongside or instead of the usual __get__ and/or
__set__ in the descriptor class. I deliberately omitted coverage of __delete__
because I believe real-world usage is rare. If you need this, please see the “Implement‐
ing Descriptors” section of the Python Data Model documentation. Coding a silly
descriptor class with __delete__ is left as an exercise to the leisurely reader.

902 | Chapter 23: Attribute Descriptors

https://fpy.li/23-2
https://fpy.li/23-2
https://fpy.li/dtmodel

Figure 23-4. Screenshots of the Python console when issuing the commands help(LineI
tem.weight) and help(LineItem).

Chapter Summary
The first example of this chapter was a continuation of the LineItem examples from
Chapter 22. In Example 23-2, we replaced properties with descriptors. We saw that a
descriptor is a class that provides instances that are deployed as attributes in the man‐
aged class. Discussing this mechanism required special terminology, introducing
terms such as managed instance and storage attribute.

In “LineItem Take #4: Automatic Naming of Storage Attributes” on page 887, we
removed the requirement that Quantity descriptors were declared with an explicit
storage_name, which was redundant and error prone. The solution was to imple‐
ment the __set_name__ special method in Quantity, to save the name of the man‐
aged property as self.storage_name.

“LineItem Take #5: A New Descriptor Type” on page 889 showed how to subclass an
abstract descriptor class to share code while building specialized descriptors with
some common functionality.

Chapter Summary | 903

We then looked at the different behaviors of descriptors providing or omitting the
__set__ method, making the crucial distinction between overriding and nonoverrid‐
ing descriptors, a.k.a. data and nondata descriptors. Through detailed testing we
uncovered when descriptors are in control and when they are shadowed, bypassed, or
overwritten.

Following that, we studied a particular category of nonoverriding descriptors: meth‐
ods. Console experiments revealed how a function attached to a class becomes a
method when accessed through an instance, by leveraging the descriptor protocol.

To conclude the chapter, “Descriptor Usage Tips” on page 900 presented practical
tips, and “Descriptor Docstring and Overriding Deletion” on page 902 provided a
brief look at how to document descriptors.

As noted in “What’s New in This Chapter” on page 880, several
examples in this chapter became much simpler thanks to the
__set_name__ special method of the descriptor protocol, added in
Python 3.6. That’s language evolution!

Further Reading
Besides the obligatory reference to the “Data Model” chapter, Raymond Hettinger’s
“Descriptor HowTo Guide” is a valuable resource—part of the HowTo collection in
the official Python documentation.

As usual with Python object model subjects, Martelli, Ravenscroft, and Holden’s
Python in a Nutshell, 3rd ed. (O’Reilly) is authoritative and objective. Martelli also
has a presentation titled “Python’s Object Model,” which covers properties and
descriptors in depth (see the slides and video).

Beware that any coverage of descriptors written or recorded before
PEP 487 was adopted in 2016 is likely to contain examples that are
needlessly complicated today, because __set_name__ was not sup‐
ported in Python versions prior to 3.6.

For more practical examples, Python Cookbook, 3rd ed., by David Beazley and Brian
K. Jones (O’Reilly), has many recipes illustrating descriptors, of which I want to
highlight “6.12. Reading Nested and Variable-Sized Binary Structures,” “8.10. Using
Lazily Computed Properties,” “8.13. Implementing a Data Model or Type System,”
and “9.9. Defining Decorators As Classes.” The last recipe of which addresses deep
issues with the interaction of function decorators, descriptors, and methods,
explaining how a function decorator implemented as a class with __call__ also

904 | Chapter 23: Attribute Descriptors

https://fpy.li/dtmodel
https://fpy.li/23-3
https://fpy.li/23-4
https://fpy.li/23-5
https://fpy.li/23-6

needs to implement __get__ if it wants to work with decorating methods as well as
functions.

PEP 487—Simpler customization of class creation introduced the __set_name__ spe‐
cial method, and includes an example of a validating descriptor.

Soapbox

The Design of self

The requirement to explicitly declare self as a first argument in methods is a contro‐
versial design decision in Python. After 23 years using the language, I am used to it. I
think that decision is an example of “worse is better”: a design philosophy described
by computer scientist Richard P. Gabriel in “The Rise of Worse is Better”. The first
priority of this philosophy is “simplicity,” which Gabriel presents as:

The design must be simple, both in implementation and interface. It is more impor‐
tant for the implementation to be simple than the interface. Simplicity is the most
important consideration in a design.

Python’s explicit self embodies that design philosophy. The implementation is sim‐
ple—elegant even—at the expense of the user interface: a method signature like def
zfill(self, width): doesn’t visually match the invocation label.zfill(8).

Modula-3 introduced that convention with the same identifier self. But there is a
key difference: in Modula-3, interfaces are declared separately from their implemen‐
tation, and in the interface declaration the self argument is omitted, so from the
user’s perspective, a method appears in an interface declaration with the same explicit
parameters used to call it.

Over time, Python’s error messages related to method arguments became clearer. For
a user-defined method with one argument besides self, if the user invokes
obj.meth(), Python 2.7 raised:

TypeError: meth() takes exactly 2 arguments (1 given)

In Python 3, the confusing argument count is not mentioned, and the missing argu‐
ment is named:

TypeError: meth() missing 1 required positional argument: 'x'

Besides the use of self as an explicit argument, the requirement to qualify every
access to instance attributes with self is also criticized. See, for example, A. M. Kuch‐
ling’s famous “Python Warts” post (archived); Kuchling himself is not so bothered by
the self qualifier, but he mentions it—probably echoing opinions from the
comp.lang.python group. I personally don’t mind typing the self qualifier: it’s good
to distinguish local variables from attributes. My issue is with the use of self in the
def statement.

Further Reading | 905

https://fpy.li/pep487
https://fpy.li/23-7
https://fpy.li/23-8
https://fpy.li/23-9

Anyone who is unhappy about the explicit self in Python can feel a lot better by con‐
sidering the baffling semantics of the implicit this in JavaScript. Guido had some
good reasons to make self work as it does, and he wrote about them in “Adding Sup‐
port for User-Defined Classes”, a post on his blog, The History of Python.

906 | Chapter 23: Attribute Descriptors

https://fpy.li/23-10
https://fpy.li/23-11
https://fpy.li/23-11

1 Quote from Chapter 2, “Expression” of The Elements of Programming Style, 2nd ed. (McGraw-Hill), page 10.

2 That doesn’t mean PEP 487 broke code that used those features. It just means that some code that used class
decorators or metaclasses prior to Python 3.6 can now be refactored to use plain classes, resulting in simpler
and possibly more efficient code.

CHAPTER 24

Class Metaprogramming

Everyone knows that debugging is twice as hard as writing a program in the first place.
So if you’re as clever as you can be when you write it, how will you ever debug it?

—Brian W. Kernighan and P. J. Plauger, The Elements of Programming Style1

Class metaprogramming is the art of creating or customizing classes at runtime.
Classes are first-class objects in Python, so a function can be used to create a new
class at any time, without using the class keyword. Class decorators are also func‐
tions, but designed to inspect, change, and even replace the decorated class with
another class. Finally, metaclasses are the most advanced tool for class metaprogram‐
ming: they let you create whole new categories of classes with special traits, such as
the abstract base classes we’ve already seen.

Metaclasses are powerful, but hard to justify and even harder to get right. Class deco‐
rators solve many of the same problems and are easier to understand. Furthermore,
Python 3.6 implemented PEP 487—Simpler customization of class creation, provid‐
ing special methods supporting tasks that previously required metaclasses or class
decorators.2

This chapter presents the class metaprogramming techniques in ascending order of
complexity.

907

https://fpy.li/pep487

This is an exciting topic, and it’s easy to get carried away. So I must
offer this advice.
For the sake of readability and maintainability, you should proba‐
bly avoid the techniques described in this chapter in application
code.
On the other hand, these are the tools of the trade if you want to
write the next great Python framework.

What’s New in This Chapter
All the code in the “Class Metaprogramming” chapter of the first edition of Fluent
Python still runs correctly. However, some of the previous examples no longer repre‐
sent the simplest solutions in light of new features added since Python 3.6.

I replaced those examples with different ones, highlighting Python’s new metaprog‐
ramming features or adding further requirements to justify the use of the more
advanced techniques. Some of the new examples leverage type hints to provide class
builders similar to the @dataclass decorator and typing.NamedTuple.

“Metaclasses in the Real World” on page 947 is a new section with some high-level con‐
siderations about the applicability of metaclasses.

Some of the best refactorings are removing code made redundant
by newer and simpler ways of solving the same problems. This
applies to production code as well as books.

We’ll get started by reviewing attributes and methods defined in the Python Data
Model for all classes.

Classes as Objects
Like most program entities in Python, classes are also objects. Every class has a num‐
ber of attributes defined in the Python Data Model, documented in “4.13. Special
Attributes” of the “Built-in Types” chapter in The Python Standard Library. Three of
those attributes appeared several times in this book already: __class__, __name__,
and __mro__. Other class standard attributes are:

cls.__bases__

The tuple of base classes of the class.

908 | Chapter 24: Class Metaprogramming

https://fpy.li/24-1
https://fpy.li/24-1

cls.__qualname__

The qualified name of a class or function, which is a dotted path from the global
scope of the module to the class definition. This is relevant when the class is
defined inside another class. For example, in a Django model class such as Ox,
there is an inner class called Meta. The __qualname__ of Meta is Ox.Meta, but its
__name__ is just Meta. The specification for this attribute is PEP 3155—Qualified
name for classes and functions.

cls.__subclasses__()

This method returns a list of the immediate subclasses of the class. The imple‐
mentation uses weak references to avoid circular references between the super‐
class and its subclasses—which hold a strong reference to the superclasses in
their __bases__ attribute. The method lists subclasses currently in memory. Sub‐
classes in modules not yet imported will not appear in the result.

cls.mro()

The interpreter calls this method when building a class to obtain the tuple of
superclasses stored in the __mro__ attribute of the class. A metaclass can override
this method to customize the method resolution order of the class under
construction.

None of the attributes mentioned in this section are listed by the
dir(…) function.

Now, if a class is an object, what is the class of a class?

type: The Built-In Class Factory
We usually think of type as a function that returns the class of an object, because
that’s what type(my_object) does: it returns my_object.__class__.

However, type is a class that creates a new class when invoked with three arguments.

Consider this simple class:

class MyClass(MySuperClass, MyMixin):
 x = 42

 def x2(self):
 return self.x * 2

Using the type constructor, you can create MyClass at runtime with this code:

type: The Built-In Class Factory | 909

https://fpy.li/24-2
https://fpy.li/24-3
https://fpy.li/24-3

MyClass = type('MyClass',
 (MySuperClass, MyMixin),
 {'x': 42, 'x2': lambda self: self.x * 2},
)

That type call is functionally equivalent to the previous class MyClass… block
statement.

When Python reads a class statement, it calls type to build the class object with
these parameters:

name

The identifier that appears after the class keyword, e.g., MyClass.

bases

The tuple of superclasses given in parentheses after the class identifier, or
(object,) if superclasses are not mentioned in the class statement.

dict

A mapping of attribute names to values. Callables become methods, as we saw in
“Methods Are Descriptors” on page 898. Other values become class attributes.

The type constructor accepts optional keyword arguments, which
are ignored by type itself, but are passed untouched into
__init_subclass__, which must consume them. We’ll study that
special method in “Introducing __init_subclass__” on page 914, but
I won’t cover the use of keyword arguments. For more, please read
PEP 487—Simpler customization of class creation.

The type class is a metaclass: a class that builds classes. In other words, instances of
the type class are classes. The standard library provides a few other metaclasses, but
type is the default:

>>> type(7)
<class 'int'>
>>> type(int)
<class 'type'>
>>> type(OSError)
<class 'type'>
>>> class Whatever:
... pass
...
>>> type(Whatever)
<class 'type'>

We’ll build custom metaclasses in “Metaclasses 101” on page 931.

Next, we’ll use the type built-in to make a function that builds classes.

910 | Chapter 24: Class Metaprogramming

https://fpy.li/pep487

A Class Factory Function
The standard library has a class factory function that appears several times in this
book: collections.namedtuple. In Chapter 5 we also saw typing.NamedTuple and
@dataclass. All of these class builders leverage techniques covered in this chapter.

We’ll start with a super simple factory for classes of mutable objects—the simplest
possible replacement for @dataclass.

Suppose I’m writing a pet shop application and I want to store data for dogs as simple
records. But I don’t want to write boilerplate like this:

class Dog:
 def __init__(self, name, weight, owner):
 self.name = name
 self.weight = weight
 self.owner = owner

Boring…each field name appears three times, and that boilerplate doesn’t even buy
us a nice repr:

>>> rex = Dog('Rex', 30, 'Bob')
>>> rex
<__main__.Dog object at 0x2865bac>

Taking a hint from collections.namedtuple, let’s create a record_factory that cre‐
ates simple classes like Dog on the fly. Example 24-1 shows how it should work.

Example 24-1. Testing record_factory, a simple class factory

 >>> Dog = record_factory('Dog', 'name weight owner')
 >>> rex = Dog('Rex', 30, 'Bob')
 >>> rex
 Dog(name='Rex', weight=30, owner='Bob')
 >>> name, weight, _ = rex
 >>> name, weight
 ('Rex', 30)
 >>> "{2}'s dog weighs {1}kg".format(*rex)
 "Bob's dog weighs 30kg"
 >>> rex.weight = 32
 >>> rex
 Dog(name='Rex', weight=32, owner='Bob')
 >>> Dog.__mro__
 (<class 'factories.Dog'>, <class 'object'>)

Factory can be called like namedtuple: class name, followed by attribute names
separated by spaces in a single string.

Nice repr.

A Class Factory Function | 911

3 Thanks to my friend J. S. O. Bueno for contributing to this example.

Instances are iterable, so they can be conveniently unpacked on assignment…

…or when passing to functions like format.

A record instance is mutable.

The newly created class inherits from object—no relationship to our factory.

The code for record_factory is in Example 24-2.3

Example 24-2. record_factory.py: a simple class factory

from typing import Union, Any
from collections.abc import Iterable, Iterator

FieldNames = Union[str, Iterable[str]]

def record_factory(cls_name: str, field_names: FieldNames) -> type[tuple]:

 slots = parse_identifiers(field_names)

 def __init__(self, *args, **kwargs) -> None:
 attrs = dict(zip(self.__slots__, args))
 attrs.update(kwargs)
 for name, value in attrs.items():
 setattr(self, name, value)

 def __iter__(self) -> Iterator[Any]:
 for name in self.__slots__:
 yield getattr(self, name)

 def __repr__(self):
 values = ', '.join(f'{name}={value!r}'
 for name, value in zip(self.__slots__, self))
 cls_name = self.__class__.__name__
 return f'{cls_name}({values})'

 cls_attrs = dict(
 __slots__=slots,
 __init__=__init__,
 __iter__=__iter__,
 __repr__=__repr__,
)

 return type(cls_name, (object,), cls_attrs)

912 | Chapter 24: Class Metaprogramming

4 I did not add type hints to the arguments because the actual types are Any. I put the return type hint because
otherwise Mypy will not check inside the method.

def parse_identifiers(names: FieldNames) -> tuple[str, ...]:
 if isinstance(names, str):
 names = names.replace(',', ' ').split()
 if not all(s.isidentifier() for s in names):
 raise ValueError('names must all be valid identifiers')
 return tuple(names)

User can provide field names as a single string or an iterable of strings.

Accept arguments like the first two of collections.namedtuple; return a type—
i.e., a class that behaves like a tuple.

Build a tuple of attribute names; this will be the __slots__ attribute of the new
class.

This function will become the __init__ method in the new class. It accepts posi‐
tional and/or keyword arguments.4

Yield the field values in the order given by __slots__.

Produce the nice repr, iterating over __slots__ and self.

Assemble a dictionary of class attributes.

Build and return the new class, calling the type constructor.

Convert names separated by spaces or commas to list of str.

Example 24-2 is the first time we’ve seen type in a type hint. If the annotation was
just -> type, that would mean that record_factory returns a class—and it would be
correct. But the annotation -> type[tuple] is more precise: it says the returned class
will be a subclass of tuple.

The last line of record_factory in Example 24-2 builds a class named by the value of
cls_name, with object as its single immediate base class, and with a namespace
loaded with __slots__, __init__, __iter__, and __repr__, of which the last three
are instance methods.

We could have named the __slots__ class attribute anything else, but then we’d have
to implement __setattr__ to validate the names of attributes being assigned,

A Class Factory Function | 913

because for our record-like classes we want the set of attributes to be always the same
and in the same order. However, recall that the main feature of __slots__ is saving
memory when you are dealing with millions of instances, and using __slots__ has
some drawbacks, discussed in “Saving Memory with __slots__” on page 384.

Instances of classes created by record_factory are not serializable
—that is, they can’t be exported with the dump function from the
pickle module. Solving this problem is beyond the scope of this
example, which aims to show the type class in action in a simple
use case. For the full solution, study the source code for
collections.namedtuple; search for the word “pickling.”

Now let’s see how to emulate more modern class builders like typing.NamedTuple,
which takes a user-defined class written as a class statement, and automatically
enhances it with more functionality.

Introducing __init_subclass__
Both __init_subclass__ and __set_name__ were proposed in PEP 487—Simpler
customization of class creation. We saw the __set_name__ special method for
descriptors for the first time in “LineItem Take #4: Automatic Naming of Storage
Attributes” on page 887. Now let’s study __init_subclass__.

In Chapter 5, we saw that typing.NamedTuple and @dataclass let programmers use
the class statement to specify attributes for a new class, which is then enhanced by
the class builder with the automatic addition of essential methods like __init__,
__repr__, __eq__, etc.

Both of these class builders read type hints in the user’s class statement to enhance
the class. Those type hints also allow static type checkers to validate code that sets or
gets those attributes. However, NamedTuple and @dataclass do not take advantage
of the type hints for attribute validation at runtime. The Checked class in the next
example does.

It is not possible to support every conceivable static type hint for
runtime type checking, which is probably why typing.NamedTuple
and @dataclass don’t even try it. However, some types that are
also concrete classes can be used with Checked. This includes sim‐
ple types often used for field contents, such as str, int, float, and
bool, as well as lists of those types.

Example 24-3 shows how to use Checked to build a Movie class.

914 | Chapter 24: Class Metaprogramming

https://fpy.li/24-4
https://fpy.li/pep487
https://fpy.li/pep487

5 That’s true for any object, except when its class overrides the __str__ or __repr__ methods inherited from
object with broken implementations.

6 This solution avoids using None as a default. Avoiding null values is a good idea. They are hard to avoid in
general, but easy in some cases. In Python as well as SQL, I prefer to represent missing data in a text field with
an empty string instead of None or NULL. Learning Go reinforced this idea: variables and struct fields of primi‐
tive types in Go are initialized by default with a “zero value.” See “Zero values” in the online Tour of Go if you
are curious.

Example 24-3. initsub/checkedlib.py: doctest for creating a Movie subclass of Checked

 >>> class Movie(Checked):
 ... title: str
 ... year: int
 ... box_office: float
 ...
 >>> movie = Movie(title='The Godfather', year=1972, box_office=137)
 >>> movie.title
 'The Godfather'
 >>> movie
 Movie(title='The Godfather', year=1972, box_office=137.0)

Movie inherits from Checked—which we’ll define later in Example 24-5.

Each attribute is annotated with a constructor. Here I used built-in types.

Movie instances must be created using keyword arguments.

In return, you get a nice __repr__.

The constructors used as the attribute type hints may be any callable that takes zero
or one argument and returns a value suitable for the intended field type, or rejects the
argument by raising TypeError or ValueError.

Using built-in types for the annotations in Example 24-3 means the values must be
acceptable by the constructor of the type. For int, this means any x such that int(x)
returns an int. For str, anything goes at runtime, because str(x) works with any x
in Python.5

When called with no arguments, the constructor should return a default value of its
type.6

This is standard behavior for Python’s built-in constructors:

>>> int(), float(), bool(), str(), list(), dict(), set()
(0, 0.0, False, '', [], {}, set())

Introducing __init_subclass__ | 915

https://fpy.li/24-5
https://fpy.li/24-6

In a Checked subclass like Movie, missing parameters create instances with default
values returned by the field constructors. For example:

 >>> Movie(title='Life of Brian')
 Movie(title='Life of Brian', year=0, box_office=0.0)

The constructors are used for validation during instantiation and when an attribute is
set directly on an instance:

 >>> blockbuster = Movie(title='Avatar', year=2009, box_office='billions')
 Traceback (most recent call last):
 ...
 TypeError: 'billions' is not compatible with box_office:float
 >>> movie.year = 'MCMLXXII'
 Traceback (most recent call last):
 ...
 TypeError: 'MCMLXXII' is not compatible with year:int

Checked Subclasses and Static Type Checking

In a .py source file with a movie instance of Movie, as defined in
Example 24-3, Mypy flags this assignment as a type error:

movie.year = 'MCMLXXII'

However, Mypy can’t detect type errors in this constructor call:
blockbuster = Movie(title='Avatar', year='MMIX')

That’s because Movie inherits Checked.__init__, and the signature
of that method must accept any keyword arguments to support
arbitrary user-defined classes.
On the other hand, if you declare a Checked subclass field with the
type hint list[float], Mypy can flag assignments of lists with
incompatible contents, but Checked will ignore the type parameter
and treat that the same as list.

Now let’s look at the implementation of checkedlib.py. The first class is the Field
descriptor, as shown in Example 24-4.

Example 24-4. initsub/checkedlib.py: the Field descriptor class

from collections.abc import Callable
from typing import Any, NoReturn, get_type_hints

class Field:
 def __init__(self, name: str, constructor: Callable) -> None:
 if not callable(constructor) or constructor is type(None):
 raise TypeError(f'{name!r} type hint must be callable')
 self.name = name

916 | Chapter 24: Class Metaprogramming

7 I believe that callable should be made suitable for type hinting. As of May 6, 2021, this is an open issue.

 self.constructor = constructor

 def __set__(self, instance: Any, value: Any) -> None:
 if value is ...:
 value = self.constructor()
 else:
 try:
 value = self.constructor(value)
 except (TypeError, ValueError) as e:
 type_name = self.constructor.__name__
 msg = f'{value!r} is not compatible with {self.name}:{type_name}'
 raise TypeError(msg) from e
 instance.__dict__[self.name] = value

Recall that since Python 3.9, the Callable type for annotations is the ABC in
collections.abc, and not the deprecated typing.Callable.

This is a minimal Callable type hint; the parameter type and return type for
constructor are both implicitly Any.

For runtime checking, we use the callable built-in.7 The test against
type(None) is necessary because Python reads None in a type as NoneType, the
class of None (therefore callable), but a useless constructor that only returns None.

If Checked.__init__ sets the value as ... (the Ellipsis built-in object), we call
the constructor with no arguments.

Otherwise, call the constructor with the given value.

If constructor raises either of these exceptions, we raise TypeError with a help‐
ful message including the names of the field and constructor; e.g., 'MMIX' is
not compatible with year:int.

If no exceptions were raised, the value is stored in the instance.__dict__.

In __set__, we need to catch TypeError and ValueError because built-in construc‐
tors may raise either of them, depending on the argument. For example, float(None)
raises TypeError, but float('A') raises ValueError. On the other hand, float('8')
raises no error and returns 8.0. I hereby declare that this is a feature and not a bug of
this toy example.

Introducing __init_subclass__ | 917

https://fpy.li/24-7

In “LineItem Take #4: Automatic Naming of Storage Attributes”
on page 887, we saw the handy __set_name__ special method for
descriptors. We don’t need it in the Field class because the
descriptors are not instantiated in client source code; the user
declares types that are constructors, as we saw in the Movie class
(Example 24-3). Instead, the Field descriptor instances are created
at runtime by the Checked.__init_subclass__ method, which
we’ll see in Example 24-5.

Now let’s focus on the Checked class. I split it in two listings. Example 24-5 shows the
top of the class, which includes the most important methods in this example. The
remaining methods are in Example 24-6.

Example 24-5. initsub/checkedlib.py: the most important methods of the Checked class

class Checked:
 @classmethod
 def _fields(cls) -> dict[str, type]:
 return get_type_hints(cls)

 def __init_subclass__(subclass) -> None:
 super().__init_subclass__()
 for name, constructor in subclass._fields().items():
 setattr(subclass, name, Field(name, constructor))

 def __init__(self, **kwargs: Any) -> None:
 for name in self._fields():
 value = kwargs.pop(name, ...)
 setattr(self, name, value)
 if kwargs:
 self.__flag_unknown_attrs(*kwargs)

I wrote this class method to hide the call to typing.get_type_hints from the
rest of the class. If I need to support Python ≥ 3.10 only, I’d call
inspect.get_annotations instead. Review “Problems with Annotations at Run‐
time” on page 538 for the issues with those functions.

__init_subclass__ is called when a subclass of the current class is defined. It
gets that new subclass as its first argument—which is why I named the argument
subclass instead of the usual cls. For more on this, see “__init_subclass__ Is
Not a Typical Class Method” on page 919.

super().__init_subclass__() is not strictly necessary, but should be invoked
to play nice with other classes that might implement .__init_subclass__() in

918 | Chapter 24: Class Metaprogramming

8 As mentioned in “Loops, Sentinels, and Poison Pills” on page 721, the Ellipsis object is a convenient and
safe sentinel value. It has been around for a long time, but recently people are finding more uses for it, as we
see in type hints and NumPy.

the same inheritance graph. See “Multiple Inheritance and Method Resolution
Order” on page 494.

Iterate over each field name and constructor…

…creating an attribute on subclass with that name bound to a Field descriptor
parameterized with name and constructor.

For each name in the class fields…

…get the corresponding value from kwargs and remove it from kwargs.
Using ... (the Ellipsis object) as default allows us to distinguish between argu‐
ments given the value None from arguments that were not given.8

This setattr call triggers Checked.__setattr__, shown in Example 24-6.

If there are remaining items in kwargs, their names do not match any of the
declared fields, and __init__ will fail.

The error is reported by __flag_unknown_attrs, listed in Example 24-6. It takes
a *names argument with the unknown attribute names. I used a single asterisk in
*kwargs to pass its keys as a sequence of arguments.

__init_subclass__ Is Not a Typical Class Method
The @classmethod decorator is never used with __init_subclass__, but that doesn’t
mean much, because the __new__ special method behaves as a class method even
without @classmethod. The first argument that Python passes to __init_subclass__
is a class. However, it is never the class where __init_subclass__ is implemented: it
is a newly defined subclass of that class. That’s unlike __new__ and every other class
method that I know about. Therefore, I think __init_subclass__ is not a class
method in the usual sense, and it is misleading to name the first argument cls. The
__init_suclass__ documentation names the argument cls but explains: “…called
whenever the containing class is subclassed. cls is then the new subclass.”

Now let’s see the remaining methods of the Checked class, continuing from
Example 24-5. Note that I prepended _ to the _fields and _asdict method names

Introducing __init_subclass__ | 919

https://fpy.li/24-8

9 The subtle concept of an overriding descriptor was explained in “Overriding Descriptors” on page 894.

for the same reason the collections.namedtuple API does: to reduce the chance of
name clashes with user-defined field names.

Example 24-6. initsub/checkedlib.py: remaining methods of the Checked class

 def __setattr__(self, name: str, value: Any) -> None:
 if name in self._fields():
 cls = self.__class__
 descriptor = getattr(cls, name)
 descriptor.__set__(self, value)
 else:
 self.__flag_unknown_attrs(name)

 def __flag_unknown_attrs(self, *names: str) -> NoReturn:
 plural = 's' if len(names) > 1 else ''
 extra = ', '.join(f'{name!r}' for name in names)
 cls_name = repr(self.__class__.__name__)
 raise AttributeError(f'{cls_name} object has no attribute{plural} {extra}')

 def _asdict(self) -> dict[str, Any]:
 return {
 name: getattr(self, name)
 for name, attr in self.__class__.__dict__.items()
 if isinstance(attr, Field)
 }

 def __repr__(self) -> str:
 kwargs = ', '.join(
 f'{key}={value!r}' for key, value in self._asdict().items()
)
 return f'{self.__class__.__name__}({kwargs})'

Intercept all attempts to set an instance attribute. This is needed to prevent set‐
ting an unknown attribute.

If the attribute name is known, fetch the corresponding descriptor.

Usually we don’t need to call the descriptor __set__ explicitly. It was necessary
in this case because __setattr__ intercepts all attempts to set an attribute on the
instance, including in the presence of an overriding descriptor such as Field.9

Otherwise, the attribute name is unknown, and an exception will be raised by
__flag_unknown_attrs.

920 | Chapter 24: Class Metaprogramming

Build a helpful error message listing all unexpected arguments, and raise Attribu
teError. This is a rare example of the NoReturn special type, covered in “NoRe‐
turn” on page 294.

Create a dict from the attributes of a Movie object. I’d call this method
_as_dict, but I followed the convention started by the _asdict method in col
lections.namedtuple.

Implementing a nice __repr__ is the main reason for having _asdict in this
example.

The Checked example illustrates how to handle overriding descriptors when imple‐
menting __setattr__ to block arbitrary attribute setting after instantiation. It is
debatable whether implementing __setattr__ is worthwhile in this example.
Without it, setting movie.director = 'Greta Gerwig' would succeed, but the
director attribute would not be checked in any way, and would not appear in the
__repr__ nor would it be included in the dict returned by _asdict—both defined in
Example 24-6.

In record_factory.py (Example 24-2) I solved this issue using the __slots__ class
attribute. However, this simpler solution is not viable in this case, as explained next.

Why __init_subclass__ Cannot Configure __slots__
The __slots__ attribute is only effective if it is one of the entries in the class name‐
space passed to type.__new__. Adding __slots__ to an existing class has no effect.
Python invokes __init_subclass__ only after the class is built—by then it’s too late
to configure __slots__. A class decorator can’t configure __slots__ either, because
it is applied even later than __init_subclass__. We’ll explore these timing issues in
“What Happens When: Import Time Versus Runtime” on page 925.

To configure __slots__ at runtime, your own code must build the class namespace
passed as the last argument of type.__new__. To do that, you can write a class factory
function, like record_factory.py, or you can take the nuclear option and implement a
metaclass. We will see how to dynamically configure __slots__ in “Metaclasses 101”
on page 931.

Before PEP 487 simplified the customization of class creation with __init_sub
class__ in Python 3.7, similar functionality had to be implemented using a class dec‐
orator. That’s the focus of the next section.

Introducing __init_subclass__ | 921

https://fpy.li/pep487

10 This rationale appears in the abstract of PEP 557–Data Classes to explain why it was implemented as a class
decorator.

Enhancing Classes with a Class Decorator
A class decorator is a callable that behaves similarly to a function decorator: it gets
the decorated class as an argument, and should return a class to replace the decorated
class. Class decorators often return the decorated class itself, after injecting more
methods in it via attribute assignment.

Probably the most common reason to choose a class decorator over the simpler
__init_subclass__ is to avoid interfering with other class features, such as inheri‐
tance and metaclasses.10

In this section, we’ll study checkeddeco.py, which provides the same service as check‐
edlib.py, but using a class decorator. As usual, we’ll start by looking at a usage exam‐
ple, extracted from the doctests in checkeddeco.py (Example 24-7).

Example 24-7. checkeddeco.py: creating a Movie class decorated with @checked

 >>> @checked
 ... class Movie:
 ... title: str
 ... year: int
 ... box_office: float
 ...
 >>> movie = Movie(title='The Godfather', year=1972, box_office=137)
 >>> movie.title
 'The Godfather'
 >>> movie
 Movie(title='The Godfather', year=1972, box_office=137.0)

The only difference between Example 24-7 and Example 24-3 is the way the Movie
class is declared: it is decorated with @checked instead of subclassing Checked. Other‐
wise, the external behavior is the same, including the type validation and default
value assignments shown after Example 24-3 in “Introducing __init_subclass__” on
page 914.

Now let’s look at the implementation of checkeddeco.py. The imports and Field class
are the same as in checkedlib.py, listed in Example 24-4. There is no other class, only
functions in checkeddeco.py.

The logic previously implemented in __init_subclass__ is now part of the checked
function—the class decorator listed in Example 24-8.

922 | Chapter 24: Class Metaprogramming

https://fpy.li/24-9

Example 24-8. checkeddeco.py: the class decorator

def checked(cls: type) -> type:
 for name, constructor in _fields(cls).items():
 setattr(cls, name, Field(name, constructor))

 cls._fields = classmethod(_fields) # type: ignore

 instance_methods = (
 __init__,
 __repr__,
 __setattr__,
 _asdict,
 __flag_unknown_attrs,
)
 for method in instance_methods:
 setattr(cls, method.__name__, method)

 return cls

Recall that classes are instances of type. These type hints strongly suggest this is a
class decorator: it takes a class and returns a class.

_fields is a top-level function defined later in the module (in Example 24-9).

Replacing each attribute returned by _fields with a Field descriptor instance is
what __init_subclass__ did in Example 24-5. Here there is more work to do…

Build a class method from _fields, and add it to the decorated class. The type:
ignore comment is needed because Mypy complains that type has no _fields
attribute.

Module-level functions that will become instance methods of the decorated class.

Add each of the instance_methods to cls.

Return the decorated cls, fulfilling the essential contract of a class decorator.

Enhancing Classes with a Class Decorator | 923

Every top-level function in checkeddeco.py is prefixed with an underscore, except the
checked decorator. This naming convention makes sense for a couple of reasons:

• checked is part of the public interface of the checkeddeco.py module, but the
other functions are not.

• The functions in Example 24-9 will be injected in the decorated class, and the
leading _ reduces the chance of naming conflicts with user-defined attributes and
methods of the decorated class.

The rest of checkeddeco.py is listed in Example 24-9. Those module-level functions
have the same code as the corresponding methods of the Checked class of checked‐
lib.py. They were explained in Examples 24-5 and 24-6.

Note that the _fields function does double duty in checkeddeco.py. It is used as a
regular function in the first line of the checked decorator, and it will also be injected
as a class method of the decorated class.

Example 24-9. checkeddeco.py: the methods to be injected in the decorated class

def _fields(cls: type) -> dict[str, type]:
 return get_type_hints(cls)

def __init__(self: Any, **kwargs: Any) -> None:
 for name in self._fields():
 value = kwargs.pop(name, ...)
 setattr(self, name, value)
 if kwargs:
 self.__flag_unknown_attrs(*kwargs)

def __setattr__(self: Any, name: str, value: Any) -> None:
 if name in self._fields():
 cls = self.__class__
 descriptor = getattr(cls, name)
 descriptor.__set__(self, value)
 else:
 self.__flag_unknown_attrs(name)

def __flag_unknown_attrs(self: Any, *names: str) -> NoReturn:
 plural = 's' if len(names) > 1 else ''
 extra = ', '.join(f'{name!r}' for name in names)
 cls_name = repr(self.__class__.__name__)
 raise AttributeError(f'{cls_name} has no attribute{plural} {extra}')

def _asdict(self: Any) -> dict[str, Any]:
 return {
 name: getattr(self, name)
 for name, attr in self.__class__.__dict__.items()
 if isinstance(attr, Field)

924 | Chapter 24: Class Metaprogramming

11 Contrast with the import statement in Java, which is just a declaration to let the compiler know that certain
packages are required.

 }

def __repr__(self: Any) -> str:
 kwargs = ', '.join(
 f'{key}={value!r}' for key, value in self._asdict().items()
)
 return f'{self.__class__.__name__}({kwargs})'

The checkeddeco.py module implements a simple but usable class decorator. Python’s
@dataclass does a lot more. It supports many configuration options, adds more
methods to the decorated class, handles or warns about conflicts with user-defined
methods in the decorated class, and even traverses the __mro__ to collect user-
defined attributes declared in the superclasses of the decorated class. The source code
of the dataclasses package in Python 3.9 is more than 1,200 lines long.

For metaprogramming classes, we must be aware of when the Python interpreter
evaluates each block of code during the construction of a class. This is covered next.

What Happens When: Import Time Versus Runtime
Python programmers talk about “import time” versus “runtime,” but the terms are
not strictly defined and there is a gray area between them.

At import time, the interpreter:

1. Parses the source code of a .py module in one pass from top to bottom. This is
when a SyntaxError may occur.

2. Compiles the bytecode to be executed.
3. Executes the top-level code of the compiled module.

If there is an up-to-date .pyc file available in the local __pycache__, parsing and
compiling are skipped because the bytecode is ready to run.

Although parsing and compiling are definitely “import time” activities, other things
may happen at that time, because almost every statement in Python is executable in
the sense that they can potentially run user code and may change the state of the user
program.

In particular, the import statement is not merely a declaration,11 but it actually runs
all the top-level code of a module when it is imported for the first time in the process.
Further imports of the same module will use a cache, and then the only effect will be
binding the imported objects to names in the client module. That top-level code may

What Happens When: Import Time Versus Runtime | 925

https://fpy.li/24-10

12 I’m not saying opening a database connection just because a module is imported is a good idea, only pointing
out it can be done.

do anything, including actions typical of “runtime,” such as writing to a log or con‐
necting to a database.12 That’s why the border between “import time” and “runtime”
is fuzzy: the import statement can trigger all sorts of “runtime” behavior. Conversely,
“import time” can also happen deep inside runtime, because the import statement
and the __import__() built-in can be used inside any regular function.

This is all rather abstract and subtle, so let’s do some experiments to see what hap‐
pens when.

Evaluation Time Experiments
Consider an evaldemo.py script that uses a class decorator, a descriptor, and a class
builder based on __init_subclass__, all defined in a builderlib.py module. The
modules have several print calls to show what happens under the covers. Otherwise,
they don’t perform anything useful. The goal of these experiments is to observe the
order in which these print calls happen.

Applying a class decorator and a class builder with __init_sub
class__ together in single class is likely a sign of overengineering
or desperation. This unusual combination is useful in these experi‐
ments to show the timing of the changes that a class decorator and
__init_subclass__ can apply to a class.

Let’s start by checking out builderlib.py, split into two parts: Example 24-10 and
Example 24-11.

Example 24-10. builderlib.py: top of the module

print('@ builderlib module start')

class Builder:
 print('@ Builder body')

 def __init_subclass__(cls):
 print(f'@ Builder.__init_subclass__({cls!r})')

 def inner_0(self):
 print(f'@ SuperA.__init_subclass__:inner_0({self!r})')

 cls.method_a = inner_0

 def __init__(self):

926 | Chapter 24: Class Metaprogramming

 super().__init__()
 print(f'@ Builder.__init__({self!r})')

def deco(cls):
 print(f'@ deco({cls!r})')

 def inner_1(self):
 print(f'@ deco:inner_1({self!r})')

 cls.method_b = inner_1
 return cls

This is a class builder to implement…

…an __init_subclass__ method.

Define a function to be added to the subclass in the assignment below.

A class decorator.

Function to be added to the decorated class.

Return the class received as an argument.

Continuing with builderlib.py in Example 24-11…

Example 24-11. builderlib.py: bottom of the module

class Descriptor:
 print('@ Descriptor body')

 def __init__(self):
 print(f'@ Descriptor.__init__({self!r})')

 def __set_name__(self, owner, name):
 args = (self, owner, name)
 print(f'@ Descriptor.__set_name__{args!r}')

 def __set__(self, instance, value):
 args = (self, instance, value)
 print(f'@ Descriptor.__set__{args!r}')

 def __repr__(self):
 return '<Descriptor instance>'

print('@ builderlib module end')

What Happens When: Import Time Versus Runtime | 927

A descriptor class to demonstrate when…

…a descriptor instance is created, and when…

…__set_name__ will be invoked during the owner class construction.

Like the other methods, this __set__ doesn’t do anything except display its argu‐
ments.

If you import builderlib.py in the Python console, this is what you get:

>>> import builderlib
@ builderlib module start
@ Builder body
@ Descriptor body
@ builderlib module end

Note that the lines printed by builderlib.py are prefixed with @.

Now let’s turn to evaldemo.py, which will trigger special methods in builderlib.py
(Example 24-12).

Example 24-12. evaldemo.py: script to experiment with builderlib.py

#!/usr/bin/env python3

from builderlib import Builder, deco, Descriptor

print('# evaldemo module start')

@deco
class Klass(Builder):
 print('# Klass body')

 attr = Descriptor()

 def __init__(self):
 super().__init__()
 print(f'# Klass.__init__({self!r})')

 def __repr__(self):
 return '<Klass instance>'

def main():
 obj = Klass()
 obj.method_a()
 obj.method_b()
 obj.attr = 999

928 | Chapter 24: Class Metaprogramming

if __name__ == '__main__':
 main()

print('# evaldemo module end')

Apply a decorator.

Subclass Builder to trigger its __init_subclass__.

Instantiate the descriptor.

This will only be called if the module is run as the main program.

The print calls in evaldemo.py show a # prefix. If you open the console again and
import evaldemo.py, Example 24-13 is the output.

Example 24-13. Console experiment with evaldemo.py

>>> import evaldemo
@ builderlib module start
@ Builder body
@ Descriptor body
@ builderlib module end
evaldemo module start
Klass body
@ Descriptor.__init__(<Descriptor instance>)
@ Descriptor.__set_name__(<Descriptor instance>,
 <class 'evaldemo.Klass'>, 'attr')
@ Builder.__init_subclass__(<class 'evaldemo.Klass'>)
@ deco(<class 'evaldemo.Klass'>)
evaldemo module end

The top four lines are the result of from builderlib import… . They will not
appear if you didn’t close the console after the previous experiment, because buil‐
derlib.py is already loaded.

This signals that Python started reading the body of Klass. At this point, the
class object does not exist yet.

The descriptor instance is created and bound to attr in the namespace that
Python will pass to the default class object constructor: type.__new__.

At this point, Python’s built-in type.__new__ has created the Klass object and
calls __set_name__ on each descriptor instance of descriptor classes that provide
that method, passing Klass as the owner argument.

What Happens When: Import Time Versus Runtime | 929

type.__new__ then calls __init_subclass__ on the superclass of Klass, passing
Klass as the single argument.

When type.__new__ returns the class object, Python applies the decorator.
In this example, the class returned by deco is bound to Klass in the module
namespace.

The implementation of type.__new__ is written in C. The behavior I just described is
documented in the “Creating the class object” section of Python’s “Data Model” ref‐
erence.

Note that the main() function of evaldemo.py (Example 24-12) was not executed in
the console session (Example 24-13), therefore no instance of Klass was created. All
the action we saw was triggered by “import time” operations: importing builderlib
and defining Klass.

If you run evaldemo.py as a script, you will see the same output as Example 24-13
with extra lines right before the end. The extra lines are the result of running main()
(Example 24-14).

Example 24-14. Running evaldemo.py as a program

$./evaldemo.py
[... 9 lines omitted ...]
@ deco(<class '__main__.Klass'>)
@ Builder.__init__(<Klass instance>)
Klass.__init__(<Klass instance>)
@ SuperA.__init_subclass__:inner_0(<Klass instance>)
@ deco:inner_1(<Klass instance>)
@ Descriptor.__set__(<Descriptor instance>, <Klass instance>, 999)
evaldemo module end

The top 10 lines—including this one—are the same as shown in Example 24-13.

Triggered by super().__init__() in Klass.__init__.

Triggered by obj.method_a() in main; method_a was injected by
SuperA.__init_subclass__.

Triggered by obj.method_b() in main; method_b was injected by deco.

Triggered by obj.attr = 999 in main.

A base class with __init_subclass__ and a class decorator are powerful tools, but
they are limited to working with a class already built by type.__new__ under the

930 | Chapter 24: Class Metaprogramming

https://fpy.li/24-11
https://fpy.li/dtmodel

13 Message to comp.lang.python, subject: “Acrimony in c.l.p.”. This is another part of the same message from
December 23, 2002, quoted in the Preface. The TimBot was inspired that day.

covers. In the rare occasions when you need to adjust the arguments passed to
type.__new__, you need a metaclass. That’s the final destination of this chapter—and
this book.

Metaclasses 101
[Metaclasses] are deeper magic than 99% of users should ever worry about. If you
wonder whether you need them, you don’t (the people who actually need them know
with certainty that they need them, and don’t need an explanation about why).

—Tim Peters, inventor of the Timsort algorithm and prolific Python contributor13

A metaclass is a class factory. In contrast with record_factory from Example 24-2, a
metaclass is written as a class. In other words, a metaclass is a class whose instances
are classes. Figure 24-1 depicts a metaclass using the Mills & Gizmos Notation: a mill
producing another mill.

Figure 24-1. A metaclass is a class that builds classes.

Consider the Python object model: classes are objects, therefore each class must be an
instance of some other class. By default, Python classes are instances of type. In other
words, type is the metaclass for most built-in and user-defined classes:

>>> str.__class__
<class 'type'>
>>> from bulkfood_v5 import LineItem
>>> LineItem.__class__
<class 'type'>

Metaclasses 101 | 931

https://fpy.li/24-12

>>> type.__class__
<class 'type'>

To avoid infinite regress, the class of type is type, as the last line shows.

Note that I am not saying that str or LineItem are subclasses of type. What I am
saying is that str and LineItem are instances of type. They all are subclasses of
object. Figure 24-2 may help you confront this strange reality.

Figure 24-2. Both diagrams are true. The left one emphasizes that str, type, and LineI
tem are subclasses of object. The right one makes it clear that str, object, and LineI
tem are instances type, because they are all classes.

The classes object and type have a unique relationship: object is
an instance of type, and type is a subclass of object. This relation‐
ship is “magic”: it cannot be expressed in Python because either
class would have to exist before the other could be defined. The fact
that type is an instance of itself is also magical.

The next snippet shows that the class of collections.Iterable is abc.ABCMeta.
Note that Iterable is an abstract class, but ABCMeta is a concrete class—after all,
Iterable is an instance of ABCMeta:

>>> from collections.abc import Iterable
>>> Iterable.__class__
<class 'abc.ABCMeta'>
>>> import abc
>>> from abc import ABCMeta
>>> ABCMeta.__class__
<class 'type'>

Ultimately, the class of ABCMeta is also type. Every class is an instance of type,
directly or indirectly, but only metaclasses are also subclasses of type. That’s the most
important relationship to understand metaclasses: a metaclass, such as ABCMeta,

932 | Chapter 24: Class Metaprogramming

inherits from type the power to construct classes. Figure 24-3 illustrates this crucial
relationship.

Figure 24-3. Iterable is a subclass of object and an instance of ABCMeta. Both object
and ABCMeta are instances of type, but the key relationship here is that ABCMeta is also
a subclass of type, because ABCMeta is a metaclass. In this diagram, Iterable is the
only abstract class.

The important takeaway here is that metaclasses are subclasses of type, and that’s
what makes them work as class factories. A metaclass can customize its instances by
implementing special methods, as the next sections demonstrate.

How a Metaclass Customizes a Class
To use a metaclass, it’s critical to understand how __new__ works on any class. This
was discussed in “Flexible Object Creation with __new__” on page 843.

The same mechanics happen at a “meta” level when a metaclass is about to create a
new instance, which is a class. Consider this declaration:

class Klass(SuperKlass, metaclass=MetaKlass):
 x = 42
 def __init__(self, y):
 self.y = y

To process that class statement, Python calls MetaKlass.__new__ with these
arguments:

meta_cls

The metaclass itself (MetaKlass), because __new__ works as class method.

Metaclasses 101 | 933

cls_name

The string Klass.

bases

The single-element tuple (SuperKlass,), with more elements in the case of mul‐
tiple inheritance.

cls_dict

A mapping like:

{x: 42, `__init__`: <function __init__ at 0x1009c4040>}

When you implement MetaKlass.__new__, you can inspect and change those argu‐
ments before passing them to super().__new__, which will eventually call
type.__new__ to create the new class object.

After super().__new__ returns, you can also apply further processing to the newly
created class before returning it to Python. Python then calls Super

Klass.__init_subclass__, passing the class you created, and then applies a class
decorator to it, if one is present. Finally, Python binds the class object to its name in
the surrounding namespace—usually the global namespace of a module, if the class
statement was a top-level statement.

The most common processing made in a metaclass __new__ is to add or replace items
in the cls_dict—the mapping that represents the namespace of the class under con‐
struction. For instance, before calling super().__new__, you can inject methods in
the class under construction by adding functions to cls_dict. However, note that
adding methods can also be done after the class is built, which is why we were able to
do it using __init_subclass__ or a class decorator.

One attribute that you must add to the cls_dict before type.__new__ runs is
__slots__, as discussed in “Why __init_subclass__ Cannot Configure __slots__” on
page 921. The __new__ method of a metaclass is the ideal place to configure
__slots__. The next section shows how to do that.

A Nice Metaclass Example
The MetaBunch metaclass presented here is a variation of the last example in Chapter
4 of Python in a Nutshell, 3rd ed., by Alex Martelli, Anna Ravenscroft, and Steve

934 | Chapter 24: Class Metaprogramming

https://fpy.li/pynut3

14 The authors kindly gave me permission to use their example. MetaBunch first appeared in a message posted by
Martelli in the comp.lang.python group on July 7, 2002, with the subject line “a nice metaclass example (was
Re: structs in python)”, following a discussion about record-like data structures in Python. Martelli’s original
code for Python 2.2 still runs after a single change: to use a metaclass in Python 3, you must use the metaclass
keyword argument in the class declaration, e.g., Bunch(metaclass=MetaBunch), instead of the older conven‐
tion of adding a __metaclass__ class-level attribute.

Holden, written to run on Python 2.7 and 3.5.14 Assuming Python 3.6 or later, I was
able to further simplify the code.

First, let’s see what the Bunch base class provides:

 >>> class Point(Bunch):
 ... x = 0.0
 ... y = 0.0
 ... color = 'gray'
 ...
 >>> Point(x=1.2, y=3, color='green')
 Point(x=1.2, y=3, color='green')
 >>> p = Point()
 >>> p.x, p.y, p.color
 (0.0, 0.0, 'gray')
 >>> p
 Point()

Remember that Checked assigns names to the Field descriptors in subclasses based
on class variable type hints, which do not actually become attributes on the class
since they don’t have values.

Bunch subclasses, on the other hand, use actual class attributes with values, which
then become the default values of the instance attributes. The generated __repr__
omits the arguments for attributes that are equal to the defaults.

MetaBunch—the metaclass of Bunch—generates __slots__ for the new class from the
class attributes declared in the user’s class. This blocks the instantiation and later
assignment of undeclared attributes:

 >>> Point(x=1, y=2, z=3)
 Traceback (most recent call last):
 ...
 AttributeError: No slots left for: 'z'
 >>> p = Point(x=21)
 >>> p.y = 42
 >>> p
 Point(x=21, y=42)
 >>> p.flavor = 'banana'
 Traceback (most recent call last):
 ...
 AttributeError: 'Point' object has no attribute 'flavor'

Metaclasses 101 | 935

https://fpy.li/24-13
https://fpy.li/24-13

Now let’s dive into the elegant code of MetaBunch in Example 24-15.

Example 24-15. metabunch/from3.6/bunch.py: MetaBunch metaclass and Bunch class

class MetaBunch(type):
 def __new__(meta_cls, cls_name, bases, cls_dict):

 defaults = {}

 def __init__(self, **kwargs):
 for name, default in defaults.items():
 setattr(self, name, kwargs.pop(name, default))
 if kwargs:
 extra = ', '.join(kwargs)
 raise AttributeError(f'No slots left for: {extra!r}')

 def __repr__(self):
 rep = ', '.join(f'{name}={value!r}'
 for name, default in defaults.items()
 if (value := getattr(self, name)) != default)
 return f'{cls_name}({rep})'

 new_dict = dict(__slots__=[], __init__=__init__, __repr__=__repr__)

 for name, value in cls_dict.items():
 if name.startswith('__') and name.endswith('__'):
 if name in new_dict:
 raise AttributeError(f"Can't set {name!r} in {cls_name!r}")
 new_dict[name] = value
 else:
 new_dict['__slots__'].append(name)
 defaults[name] = value
 return super().__new__(meta_cls, cls_name, bases, new_dict)

class Bunch(metaclass=MetaBunch):
 pass

To create a new metaclass, inherit from type.

__new__ works as a class method, but the class is a metaclass, so I like to name
the first argument meta_cls (mcs is a common alternative). The remaining three
arguments are the same as the three-argument signature for calling type()
directly to create a class.

defaults will hold a mapping of attribute names and their default values.

This will be injected into the new class.

936 | Chapter 24: Class Metaprogramming

Read the defaults and set the corresponding instance attribute with a value pop‐
ped from kwargs or a default.

If there is still any item in kwargs, it means there are no slots left where we can
place them. We believe in failing fast as best practice, so we don’t want to silently
ignore extra items. A quick and effective solution is to pop one item from kwargs
and try to set it on the instance, triggering an AttributeError on purpose.

__repr__ returns a string that looks like a constructor call—e.g., Point(x=3),
omitting the keyword arguments with default values.

Initialize namespace for the new class.

Iterate over the namespace of the user’s class.

If a dunder name is found, copy the item to the new class namespace, unless it’s
already there. This prevents users from overwriting __init__, __repr__, and
other attributes set by Python, such as __qualname__ and __module__.

If not a dunder name, append to __slots__ and save its value in defaults.

Build and return the new class.

Provide a base class, so users don’t need to see MetaBunch.

MetaBunch works because it is able to configure __slots__ before calling
super().__new__ to build the final class. As usual when metaprogramming, under‐
standing the sequence of actions is key. Let’s do another evaluation time experiment,
now with a metaclass.

Metaclass Evaluation Time Experiment
This is a variation of “Evaluation Time Experiments” on page 926, adding a metaclass
to the mix. The builderlib.py module is the same as before, but the main script is now
evaldemo_meta.py, listed in Example 24-16.

Example 24-16. evaldemo_meta.py: experimenting with a metaclass

#!/usr/bin/env python3

from builderlib import Builder, deco, Descriptor
from metalib import MetaKlass

print('# evaldemo_meta module start')

Metaclasses 101 | 937

@deco
class Klass(Builder, metaclass=MetaKlass):
 print('# Klass body')

 attr = Descriptor()

 def __init__(self):
 super().__init__()
 print(f'# Klass.__init__({self!r})')

 def __repr__(self):
 return '<Klass instance>'

def main():
 obj = Klass()
 obj.method_a()
 obj.method_b()
 obj.method_c()
 obj.attr = 999

if __name__ == '__main__':
 main()

print('# evaldemo_meta module end')

Import MetaKlass from metalib.py, which we’ll see in Example 24-18.

Declare Klass as a subclass of Builder and an instance of MetaKlass.

This method is injected by MetaKlass.__new__, as we’ll see.

In the interest of science, Example 24-16 defies all reason and
applies three different metaprogramming techniques together on
Klass: a decorator, a base class using __init_subclass__, and a
custom metaclass. If you do this in production code, please don’t
blame me. Again, the goal is to observe the order in which the
three techniques interfere in the class construction process.

As in the previous evaluation time experiment, this example does nothing but print
messages revealing the flow of execution. Example 24-17 shows the code for the top
part of metalib.py—the rest is in Example 24-18.

Example 24-17. metalib.py: the NosyDict class

print('% metalib module start')

938 | Chapter 24: Class Metaprogramming

import collections

class NosyDict(collections.UserDict):
 def __setitem__(self, key, value):
 args = (self, key, value)
 print(f'% NosyDict.__setitem__{args!r}')
 super().__setitem__(key, value)

 def __repr__(self):
 return '<NosyDict instance>'

I wrote the NosyDict class to override __setitem__ to display each key and value as
they are set. The metaclass will use a NosyDict instance to hold the namespace of the
class under construction, revealing more of Python’s inner workings.

The main attraction of metalib.py is the metaclass in Example 24-18. It implements
the __prepare__ special method, a class method that Python only invokes on meta‐
classes. The __prepare__ method provides the earliest opportunity to influence the
process of creating a new class.

When coding a metaclass, I find it useful to adopt this naming con‐
vention for special method arguments:

• Use cls instead of self for instance methods, because the
instance is a class.

• Use meta_cls instead of cls for class methods, because the
class is a metaclass. Recall that __new__ behaves as a class
method even without the @classmethod decorator.

Example 24-18. metalib.py: the MetaKlass

class MetaKlass(type):
 print('% MetaKlass body')

 @classmethod
 def __prepare__(meta_cls, cls_name, bases):
 args = (meta_cls, cls_name, bases)
 print(f'% MetaKlass.__prepare__{args!r}')
 return NosyDict()

 def __new__(meta_cls, cls_name, bases, cls_dict):
 args = (meta_cls, cls_name, bases, cls_dict)
 print(f'% MetaKlass.__new__{args!r}')
 def inner_2(self):
 print(f'% MetaKlass.__new__:inner_2({self!r})')

 cls = super().__new__(meta_cls, cls_name, bases, cls_dict.data)

Metaclasses 101 | 939

 cls.method_c = inner_2

 return cls

 def __repr__(cls):
 cls_name = cls.__name__
 return f"<class {cls_name!r} built by MetaKlass>"

print('% metalib module end')

__prepare__ should be declared as a class method. It is not an instance method
because the class under construction does not exist yet when Python calls
__prepare__.

Python calls __prepare__ on a metaclass to obtain a mapping to hold the name‐
space of the class under construction.

Return NosyDict instance to be used as the namespace.

cls_dict is a NosyDict instance returned by __prepare__.

type.__new__ requires a real dict as the last argument, so I give it the data
attribute of NosyDict, inherited from UserDict.

Inject a method in the newly created class.

As usual, __new__ must return the object just created—in this case, the new class.

Defining __repr__ on a metaclass allows customizing the repr() of class objects.

The main use case for __prepare__ before Python 3.6 was to provide an OrderedDict
to hold the attributes of the class under construction, so that the metaclass __new__
could process those attributes in the order in which they appear in the source code of
the user’s class definition. Now that dict preserves the insertion order, __prepare__
is rarely needed. You will see a creative use for it in “A Metaclass Hack with __pre‐
pare__” on page 950.

Importing metalib.py in the Python console is not very exciting. Note the use of % to
prefix the lines output by this module:

>>> import metalib
% metalib module start
% MetaKlass body
% metalib module end

Lots of things happen if you import evaldemo_meta.py, as you can see in
Example 24-19.

940 | Chapter 24: Class Metaprogramming

Example 24-19. Console experiment with evaldemo_meta.py

>>> import evaldemo_meta
@ builderlib module start
@ Builder body
@ Descriptor body
@ builderlib module end
% metalib module start
% MetaKlass body
% metalib module end
evaldemo_meta module start
% MetaKlass.__prepare__(<class 'metalib.MetaKlass'>, 'Klass',
 (<class 'builderlib.Builder'>,))
% NosyDict.__setitem__(<NosyDict instance>, '__module__', 'evaldemo_meta')
% NosyDict.__setitem__(<NosyDict instance>, '__qualname__', 'Klass')
Klass body
@ Descriptor.__init__(<Descriptor instance>)
% NosyDict.__setitem__(<NosyDict instance>, 'attr', <Descriptor instance>)
% NosyDict.__setitem__(<NosyDict instance>, '__init__',
 <function Klass.__init__ at …>)
% NosyDict.__setitem__(<NosyDict instance>, '__repr__',
 <function Klass.__repr__ at …>)
% NosyDict.__setitem__(<NosyDict instance>, '__classcell__', <cell at …: empty>)
% MetaKlass.__new__(<class 'metalib.MetaKlass'>, 'Klass',
 (<class 'builderlib.Builder'>,), <NosyDict instance>)
@ Descriptor.__set_name__(<Descriptor instance>,
 <class 'Klass' built by MetaKlass>, 'attr')
@ Builder.__init_subclass__(<class 'Klass' built by MetaKlass>)
@ deco(<class 'Klass' built by MetaKlass>)
evaldemo_meta module end

The lines before this are the result of importing builderlib.py and metalib.py.

Python invokes __prepare__ to start processing a class statement.

Before parsing the class body, Python adds the __module__ and __qualname__
entries to the namespace of the class under construction.

The descriptor instance is created…

…and bound to attr in the class namespace.

__init__ and __repr__ methods are defined and added to the namespace.

Once Python finishes processing the class body, it calls MetaKlass.__new__.

__set_name__, __init_subclass__, and the decorator are invoked in this order,
after the __new__ method of the metaclass returns the newly constructed class.

Metaclasses 101 | 941

If you run evaldemo_meta.py as script, main() is called, and a few more things
happen (Example 24-20).

Example 24-20. Running evaldemo_meta.py as a program

$./evaldemo_meta.py
[... 20 lines omitted ...]
@ deco(<class 'Klass' built by MetaKlass>)
@ Builder.__init__(<Klass instance>)
Klass.__init__(<Klass instance>)
@ SuperA.__init_subclass__:inner_0(<Klass instance>)
@ deco:inner_1(<Klass instance>)
% MetaKlass.__new__:inner_2(<Klass instance>)
@ Descriptor.__set__(<Descriptor instance>, <Klass instance>, 999)
evaldemo_meta module end

The top 21 lines—including this one—are the same shown in Example 24-19.

Triggered by obj.method_c() in main; method_c was injected by Meta

Klass.__new__.

Let’s now go back to the idea of the Checked class with the Field descriptors imple‐
menting runtime type validation, and see how it can be done with a metaclass.

A Metaclass Solution for Checked
I don’t want to encourage premature optimization and overengineering, so here is a
make-believe scenario to justify rewriting checkedlib.py with __slots__, which
requires the application of a metaclass. Feel free to skip it.

A Bit of Storytelling
Our checkedlib.py using __init_subclass__ is a company-wide success, and our pro‐
duction servers have millions of instances of Checked subclasses in memory at any
one time.

Profiling a proof-of-concept, we discover that using __slots__ will reduce the cloud
hosting bill for two reasons:

• Lower memory usage, as Checked instances don’t need their own __dict__
• Higher performance, by removing __setattr__, which was created just to block

unexpected attributes, but is triggered at instantiation and for all attribute setting
before Field.__set__ is called to do its job

942 | Chapter 24: Class Metaprogramming

The metaclass/checkedlib.py module we’ll study next is a drop-in replacement for init‐
sub/checkedlib.py. The doctests embedded in them are identical, as well as the check‐
edlib_test.py files for pytest.

The complexity in checkedlib.py is abstracted away from the user. Here is the source
code of a script using the package:

from checkedlib import Checked

class Movie(Checked):
 title: str
 year: int
 box_office: float

if __name__ == '__main__':
 movie = Movie(title='The Godfather', year=1972, box_office=137)
 print(movie)
 print(movie.title)

That concise Movie class definition leverages three instances of the Field validating
descriptor, a __slots__ configuration, five methods inherited from Checked, and a
metaclass to put it all together. The only visible part of checkedlib is the Checked
base class.

Consider Figure 24-4. The Mills & Gizmos Notation complements the UML class
diagram by making the relationship between classes and instances more visible.

For example, a Movie class using the new checkedlib.py is an instance of CheckedMeta,
and a subclass of Checked. Also, the title, year, and box_office class attributes of
Movie are three separate instances of Field. Each Movie instance has its own _title,
_year, and _box_office attributes, to store the values of the corresponding fields.

Now let’s study the code, starting with the Field class, shown in Example 24-21.

The Field descriptor class is now a bit different. In the previous examples, each
Field descriptor instance stored its value in the managed instance using an attribute
of the same name. For example, in the Movie class, the title descriptor stored the
field value in a title attribute in the managed instance. This made it unnecessary for
Field to provide a __get__ method.

However, when a class like Movie uses __slots__, it cannot have class attributes and
instance attributes with the same name. Each descriptor instance is a class attribute,
and now we need separate per-instance storage attributes. The code uses the descrip‐
tor name prefixed with a single _. Therefore Field instances have separate name and
storage_name attributes, and we implement Field.__get__.

A Metaclass Solution for Checked | 943

Figure 24-4. UML class diagram annotated with MGN: the CheckedMeta meta-mill
builds the Movie mill. The Field mill builds the title, year, and box_office descrip‐
tors, which are class attributes of Movie. The per-instance data for the fields is stored in
the _title, _year, and _box_office instance attributes of Movie. Note the package
boundary of checkedlib. The developer of Movie doesn’t need to grok all the machi‐
nery inside checkedlib.py.

Example 24-21 shows the source code for Field, with callouts describing only the
changes in this version.

Example 24-21. metaclass/checkedlib.py: the Field descriptor with storage_name and
__get__

class Field:
 def __init__(self, name: str, constructor: Callable) -> None:
 if not callable(constructor) or constructor is type(None):
 raise TypeError(f'{name!r} type hint must be callable')
 self.name = name
 self.storage_name = '_' + name
 self.constructor = constructor

 def __get__(self, instance, owner=None):
 if instance is None:
 return self
 return getattr(instance, self.storage_name)

 def __set__(self, instance: Any, value: Any) -> None:
 if value is ...:
 value = self.constructor()
 else:

944 | Chapter 24: Class Metaprogramming

 try:
 value = self.constructor(value)
 except (TypeError, ValueError) as e:
 type_name = self.constructor.__name__
 msg = f'{value!r} is not compatible with {self.name}:{type_name}'
 raise TypeError(msg) from e
 setattr(instance, self.storage_name, value)

Compute storage_name from the name argument.

If __get__ gets None as the instance argument, the descriptor is being read from
the managed class itself, not a managed instance. So we return the descriptor.

Otherwise, return the value stored in the attribute named storage_name.

__set__ now uses setattr to set or update the managed attribute.

Example 24-22 shows the code for the metaclass that drives this example.

Example 24-22. metaclass/checkedlib.py: the CheckedMeta metaclass

class CheckedMeta(type):

 def __new__(meta_cls, cls_name, bases, cls_dict):
 if '__slots__' not in cls_dict:
 slots = []
 type_hints = cls_dict.get('__annotations__', {})
 for name, constructor in type_hints.items():
 field = Field(name, constructor)
 cls_dict[name] = field
 slots.append(field.storage_name)

 cls_dict['__slots__'] = slots

 return super().__new__(
 meta_cls, cls_name, bases, cls_dict)

__new__ is the only method implemented in CheckedMeta.

Only enhance the class if its cls_dict doesn’t include __slots__. If __slots__ is
already present, assume it is the Checked base class and not a user-defined sub‐
class, and build the class as is.

To get the type hints in prior examples, we used typing.get_type_hints, but
that requires an existing class as the first argument. At this point, the class we are
configuring does not exist yet, so we need to retrieve the __annotations__

A Metaclass Solution for Checked | 945

directly from the cls_dict—the namespace of the class under construction,
which Python passes as the last argument to the metaclass __new__.

Iterate over type_hints to…

…build a Field for each annotated attribute…

…overwrite the corresponding entry in cls_dict with the Field instance…

…and append the storage_name of the field in the list we’ll use to…

…populate the __slots__ entry in cls_dict—the namespace of the class under
construction.

Finally, we call super().__new__.

The last part of metaclass/checkedlib.py is the Checked base class that users of this
library will subclass to enhance their classes, like Movie.

The code for this version of Checked is the same as Checked in initsub/checkedlib.py
(listed in Example 24-5 and Example 24-6), with three changes:

1. Added an empty __slots__ to signal to CheckedMeta.__new__ that this class
doesn’t require special processing.

2. Removed __init_subclass__. Its job is now done by CheckedMeta.__new__.
3. Removed __setattr__. It became redundant because adding __slots__ to the

user-defined class prevents setting undeclared attributes.

Example 24-23 is a complete listing of the final version of Checked.

Example 24-23. metaclass/checkedlib.py: the Checked base class

class Checked(metaclass=CheckedMeta):
 __slots__ = () # skip CheckedMeta.__new__ processing

 @classmethod
 def _fields(cls) -> dict[str, type]:
 return get_type_hints(cls)

 def __init__(self, **kwargs: Any) -> None:
 for name in self._fields():
 value = kwargs.pop(name, ...)
 setattr(self, name, value)
 if kwargs:
 self.__flag_unknown_attrs(*kwargs)

946 | Chapter 24: Class Metaprogramming

15 In the first edition of Fluent Python, the more advanced versions of the LineItem class used a metaclass just to
set the storage name of the attributes. See the code in the metaclasses of bulkfood in the first edition code
repository.

 def __flag_unknown_attrs(self, *names: str) -> NoReturn:
 plural = 's' if len(names) > 1 else ''
 extra = ', '.join(f'{name!r}' for name in names)
 cls_name = repr(self.__class__.__name__)
 raise AttributeError(f'{cls_name} object has no attribute{plural} {extra}')

 def _asdict(self) -> dict[str, Any]:
 return {
 name: getattr(self, name)
 for name, attr in self.__class__.__dict__.items()
 if isinstance(attr, Field)
 }

 def __repr__(self) -> str:
 kwargs = ', '.join(
 f'{key}={value!r}' for key, value in self._asdict().items()
)
 return f'{self.__class__.__name__}({kwargs})'

This concludes the third rendering of a class builder with validated descriptors.

The next section covers some general issues related to metaclasses.

Metaclasses in the Real World
Metaclasses are powerful, but tricky. Before deciding to implement a metaclass, con‐
sider the following points.

Modern Features Simplify or Replace Metaclasses
Over time, several common use cases of metaclasses were made redundant by new
language features:

Class decorators
Simpler to understand than metaclasses, and less likely to cause conflicts with
base classes and metaclasses.

__set_name__

Avoids the need for custom metaclass logic to automatically set the name of a
descriptor.15

Metaclasses in the Real World | 947

https://fpy.li/24-14
https://fpy.li/24-14

__init_subclass__

Provides a way to customize class creation that is transparent to the end user and
even simpler than a decorator—but may introduce conflicts in a complex class
hierarchy.

Built-in dict preserving key insertion order
Eliminated the #1 reason to use __prepare__: to provide an OrderedDict to store
the namespace of the class under construction. Python only calls __prepare__ on
metaclasses, so if you needed to process the class namespace in the order it
appears in the source code, you had to use a metaclass before Python 3.6.

As of 2021, every actively maintained version of CPython supports all the features
just listed.

I keep advocating these features because I see too much unnecessary complexity in
our profession, and metaclasses are a gateway to complexity.

Metaclasses Are Stable Language Features
Metaclasses were introduced in Python 2.2 in 2002, together with so-called “new-
style classes,” descriptors, and properties.

It is remarkable that the MetaBunch example, first posted by Alex Martelli in July
2002, still works in Python 3.9—the only change being the way to specify the meta‐
class to use, which in Python 3 is done with the syntax class Bunch(metaclass=Meta
Bunch):.

None of the additions I mentioned in “Modern Features Simplify or Replace Meta‐
classes” on page 947 broke existing code using metaclasses. But legacy code using
metaclasses can often be simplified by leveraging those features, especially if you can
drop support to Python versions before 3.6—which are no longer maintained.

A Class Can Only Have One Metaclass
If your class declaration involves two or more metaclasses, you will see this puzzling
error message:

TypeError: metaclass conflict: the metaclass of a derived class
must be a (non-strict) subclass of the metaclasses of all its bases

This may happen even without multiple inheritance. For example, a declaration like
this could trigger that TypeError:

class Record(abc.ABC, metaclass=PersistentMeta):
 pass

We saw that abc.ABC is an instance of the abc.ABCMeta metaclass. If that Persistent
metaclass is not itself a subclass of abc.ABCMeta, you get a metaclass conflict.

948 | Chapter 24: Class Metaprogramming

16 If you just got dizzy considering the implications of multiple inheritance with metaclasses, good for you. I’d
stay way from this solution as well.

17 I made a living writing Django code for a few years before I decided to study how Django’s model fields were
implemented. Only then I learned about descriptors and metaclasses.

There are two ways of dealing with that error:

• Find some other way of doing what you need to do, while avoiding at least one of
the metaclasses involved.

• Write your own PersistentABCMeta metaclass as a subclass of both abc.ABCMeta
and PersistentMeta, using multiple inheritance, and use that as the only meta‐
class for Record.16

I can imagine the solution of the metaclass with two base meta‐
classes implemented to meet a deadline. In my experience, meta‐
class programming always takes longer than anticipated, which
makes this approach risky before a hard deadline. If you do it and
make the deadline, the code may contain subtle bugs. Even in the
absence of known bugs, you should consider this approach as tech‐
nical debt simply because it is hard to understand and maintain.

Metaclasses Should Be Implementation Details
Besides type, there are only six metaclasses in the entire Python 3.9 standard library.
The better known metaclasses are probably abc.ABCMeta, typing.NamedTupleMeta,
and enum.EnumMeta. None of them are intended to appear explicitly in user code. We
may consider them implementation details.

Although you can do some really wacky metaprogramming with metaclasses, it’s best
to heed the principle of least astonishment so that most users can indeed regard met‐
aclasses as implementation details.17

In recent years, some metaclasses in the Python standard library were replaced by
other mechanisms, without breaking the public API of their packages. The simplest
way to future-proof such APIs is to offer a regular class that users subclass to access
the functionality provided by the metaclass, as we’ve done in our examples.

To wrap up our coverage of class metaprogramming, I will share with you the cool‐
est, small example of metaclass I found as I researched this chapter.

Metaclasses in the Real World | 949

https://fpy.li/24-15

A Metaclass Hack with __prepare__
When I updated this chapter for the second edition, I needed to find simple but illu‐
minating examples to replace the bulkfood LineItem code that no longer require met‐
aclasses since Python 3.6.

The simplest and most interesting metaclass idea was given to me by João S. O.
Bueno—better known as JS in the Brazilian Python community. One application of
his idea is to create a class that autogenerates numeric constants:

 >>> class Flavor(AutoConst):
 ... banana
 ... coconut
 ... vanilla
 ...
 >>> Flavor.vanilla
 2
 >>> Flavor.banana, Flavor.coconut
 (0, 1)

Yes, that code works as shown! That’s actually a doctest in autoconst_demo.py.

Here is the user-friendly AutoConst base class and the metaclass behind it, imple‐
mented in autoconst.py:

class AutoConstMeta(type):
 def __prepare__(name, bases, **kwargs):
 return WilyDict()

class AutoConst(metaclass=AutoConstMeta):
 pass

That’s it.

Clearly the trick is in WilyDict.

When Python processes the namespace of the user’s class and reads banana, it looks
up that name in the mapping provided by __prepare__: an instance of WilyDict.
WilyDict implements __missing__, covered in “The __missing__ Method” on page
91. The WilyDict instance initially has no 'banana' key, so the __missing__ method
is triggered. It makes an item on the fly with the key 'banana' and the value 0,
returning that value. Python is happy with that, then tries to retrieve 'coconut'. Wily
Dict promptly adds that entry with the value 1, returning it. The same happens with
'vanilla', which is then mapped to 2.

950 | Chapter 24: Class Metaprogramming

We’ve seen __prepare__ and __missing__ before. The real innovation is how JS put
them together.

Here is the source code for WilyDict, also from autoconst.py:

class WilyDict(dict):
 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.__next_value = 0

 def __missing__(self, key):
 if key.startswith('__') and key.endswith('__'):
 raise KeyError(key)
 self[key] = value = self.__next_value
 self.__next_value += 1
 return value

While experimenting, I found that Python looked up __name__ in the namespace of
the class under construction, causing WilyDict to add a __name__ entry, and incre‐
ment __next_value. So I added that if statement in __missing__ to raise KeyError
for keys that look like dunder attributes.

The autoconst.py package both requires and illustrates mastery of Python’s dynamic
class building machinery.

I had a great time adding more functionality to AutoConstMeta and AutoConst, but
instead of sharing my experiments, I will let you have fun playing with JS’s ingenious
hack.

Here are some ideas:

• Make it possible to retrieve the constant name if you have the value. For example,
Flavor[2] could return 'vanilla'. You can to this by implementing __geti
tem__ in AutoConstMeta. Since Python 3.9, you can implement __class_geti
tem__ in AutoConst itself.

• Support iteration over the class, by implementing __iter__ on the metaclass. I
would make the __iter__ yield the constants as (name, value) pairs.

• Implement a new Enum variant. This would be a major undertaking, because the
enum package is full of tricks, including the EnumMeta metaclass with hundreds of
lines of code and a nontrivial __prepare__ method.

Enjoy!

A Metaclass Hack with __prepare__ | 951

https://fpy.li/24-16
https://fpy.li/24-16

The __class_getitem__ special method was added in Python 3.9
to support generic types, as part of PEP 585—Type Hinting Gener‐
ics In Standard Collections. Thanks to __class_getitem__,
Python’s core developers did not have to write a new metaclass for
the built-in types to implement __getitem__ so that we could write
generic type hints like list[int]. This is a narrow feature, but rep‐
resentative of a wider use case for metaclasses: implementing oper‐
ators and other special methods to work at the class level, such as
making the class itself iterable, just like Enum subclasses.

Wrapping Up
Metaclasses, as well as class decorators and __init_subclass__ are useful for:

• Subclass registration
• Subclass structural validation
• Applying decorators to many methods at once
• Object serialization
• Object-relational mapping
• Object-based persistence
• Implementing special methods at the class level
• Implementing class features found in other languages, such as traits and aspect-

oriented programming

Class metaprogramming can also help with performance issues in some cases, by per‐
forming tasks at import time that otherwise would execute repeatedly at runtime.

To wrap up, let’s recall Alex Martelli’s final advice from his essay “Waterfowl and
ABCs” on page 443:

And, don’t define custom ABCs (or metaclasses) in production code… if you feel the
urge to do so, I’d bet it’s likely to be a case of “all problems look like a nail”-syndrome
for somebody who just got a shiny new hammer—you (and future maintainers of your
code) will be much happier sticking with straightforward and simple code, eschewing
such depths.

I believe Martelli’s advice applies not only to ABCs and metaclasses, but also to class
hierarchies, operator overloading, function decorators, descriptors, class decorators,
and class builders using __init_subclass__.

Those powerful tools exist primarily to support library and framework development.
Applications naturally should use those tools, as provided by the Python standard

952 | Chapter 24: Class Metaprogramming

https://fpy.li/pep585
https://fpy.li/pep585
https://fpy.li/24-17
https://fpy.li/24-18
https://fpy.li/24-18

18 The phrase is widely quoted. I found an early direct quote in a post in DHH’s blog from 2005.

library or external packages. But implementing them in application code is often pre‐
mature abstraction.

Good frameworks are extracted, not invented.18

—David Heinemeier Hansson, creator of Ruby on Rails

Chapter Summary
This chapter started with an overview of attributes found in class objects, such as
__qualname__ and the __subclasses__() method. Next, we saw how the type built-
in can be used to construct classes at runtime.

The __init_subclass__ special method was introduced, with the first iteration of a
Checked base class designed to replace attribute type hints in user-defined subclasses
with Field instances that apply constructors to enforce the type of those attributes at
runtime.

The same idea was implemented with a @checked class decorator that adds features to
user-defined classes, similar to what __init_subclass__ allows. We saw that neither
__init_subclass__ nor a class decorator can dynamically configure __slots__,
because they operate only after a class is created.

The concepts of “import time” and “runtime” were clarified with experiments show‐
ing the order in which Python code is executed when modules, descriptors, class dec‐
orators, and __init_subclass__ is involved.

Our coverage of metaclasses began with an overall explanation of type as a metaclass,
and how user-defined metaclasses can implement __new__ to customize the classes it
builds. We then saw our first custom metaclass, the classic MetaBunch example using
__slots__. Next, another evaluation time experiment demonstrated how the __pre
pare__ and __new__ methods of a metaclass are invoked earlier than __init_sub
class__ and class decorators, providing opportunities for deeper class customization.

The third iteration of a Checked class builder with Field descriptors and custom
__slots__ configuration was presented, followed by some general considerations
about metaclass usage in practice.

Finally, we saw the AutoConst hack invented by João S. O. Bueno, based on the cun‐
ning idea of a metaclass with __prepare__ returning a mapping that implements
__missing__. In less than 20 lines of code, autoconst.py showcases the power of com‐
bining Python metaprogramming techniques

Chapter Summary | 953

https://fpy.li/24-19

I haven’t yet found a language that manages to be easy for beginners, practical for
professionals, and exciting for hackers in the way that Python is. Thanks, Guido van
Rossum and everybody else who makes it so.

Further Reading
Caleb Hattingh—a technical reviewer of this book—wrote the autoslot package, pro‐
viding a metaclass to automatically create a __slots__ attribute in a user-defined
class by inspecting the bytecode of __init__ and finding all assignments to attributes
of self. It’s useful and also an excellent example to study: only 74 lines of code in
autoslot.py, including 20 lines of comments explaining the most difficult parts.

The essential references for this chapter in the Python documentation are “3.3.3. Cus‐
tomizing class creation” in the “Data Model” chapter of The Python Language Refer‐
ence, which covers __init_subclass__ and metaclasses. The type class
documentation in the “Built-in Functions” page, and “4.13. Special Attributes” of the
“Built-in Types” chapter in the The Python Standard Library are also essential read‐
ing.

In the The Python Standard Library, the types module documentation covers two
functions added in Python 3.3 that simplify class metaprogramming:
types.new_class and types.prepare_class.

Class decorators were formalized in PEP 3129—Class Decorators, written by Collin
Winter, with the reference implementation authored by Jack Diederich. The PyCon
2009 talk “Class Decorators: Radically Simple” (video), also by Jack Diederich, is a
quick introduction to the feature. Besides @dataclass, an interesting—and much
simpler—example of a class decorator in Python’s standard library is func

tools.total_ordering that generates special methods for object comparison.

For metaclasses, the main reference in Python’s documentation is PEP 3115—Meta‐
classes in Python 3000, in which the __prepare__ special method was introduced.

Python in a Nutshell, 3rd ed., by Alex Martelli, Anna Ravenscroft, and Steve Holden,
is authoritative, but was written before PEP 487—Simpler customization of class cre‐
ation came out. The main metaclass example in that book—MetaBunch—is still valid,
because it can’t be written with simpler mechanisms. Brett Slatkin’s Effective Python,
2nd ed. (Addison-Wesley) has several up-to-date examples of class building techni‐
ques, including metaclasses.

954 | Chapter 24: Class Metaprogramming

https://fpy.li/24-20
https://fpy.li/24-21
https://fpy.li/24-21
https://fpy.li/24-22
https://fpy.li/24-22
https://fpy.li/24-1
https://fpy.li/24-24
https://fpy.li/24-25
https://fpy.li/24-26
https://fpy.li/24-27
https://fpy.li/24-27
https://fpy.li/pep3115
https://fpy.li/pep3115
https://fpy.li/pynut3
https://fpy.li/pep487
https://fpy.li/pep487
https://fpy.li/effectpy

19 I bought a used copy and found it a very challenging read.

To learn about the origins of class metaprogramming in Python, I recommend Guido
van Rossum’s paper from 2003, “Unifying types and classes in Python 2.2”. The text
applies to modern Python as well, as it covers what were then called the “new-style”
class semantics—the default semantics in Python 3—including descriptors and meta‐
classes. One of the references cited by Guido is Putting Metaclasses to Work: a New
Dimension in Object-Oriented Programming, by Ira R. Forman and Scott H. Danforth
(Addison-Wesley), a book to which he gave five stars on Amazon.com, adding the
following review:

This book contributed to the design for metaclasses in Python 2.2
Too bad this is out of print; I keep referring to it as the best tutorial I know for the
difficult subject of cooperative multiple inheritance, supported by Python via the
super() function.19

If you are keen on metaprogramming, you may wish Python had the ultimate meta‐
programming feature: syntactic macros, as offered in the Lisp family of languages and
—more recently—by Elixir and Rust. Syntactic macros are more powerful and less
error prone than the primitive code substitution macros in the C language. They are
special functions that rewrite source code using custom syntax into standard code
before the compilation step, enabling developers to introduce new language con‐
structs without changing the compiler. Like operator overloading, syntactic macros
can be abused. But as long as the community understands and manages the down‐
sides, they support powerful and user-friendly abstractions, like DSLs (Domain-
Specific Languages). In September 2020, Python core developer Mark Shannon
posted PEP 638—Syntactic Macros, advocating just that. A year after it was initially
published, PEP 638 was still in draft and there were no ongoing discussions about it.
Clearly it’s not a top priority for the Python core developers. I would like to see PEP
638 further discussed and eventually approved. Syntactic macros would allow the
Python community to experiment with controversial new features, such as the walrus
operator (PEP 572), pattern matching (PEP 634), and alternative rules for evaluating
type hints (PEPs 563 and 649) before making permanent changes to the core lan‐
guage. Meanwhile, you can get a taste of syntactic macros with the MacroPy package.

Further Reading | 955

https://fpy.li/24-28
https://fpy.li/pep638
https://fpy.li/pep572
https://fpy.li/pep634
https://fpy.li/pep563
https://fpy.li/pep649
https://fpy.li/24-29

20 See p. xvii. Full text available at Berkeley.edu.

Soapbox
I will start the last soapbox in the book with a long quote from Brian Harvey and
Matthew Wright, two computer science professors from the University of California
(Berkeley and Santa Barbara). In their book, Simply Scheme: Introducing Computer
Science (MIT Press), Harvey and Wright wrote:

There are two schools of thought about teaching computer science. We might carica‐
ture the two views this way:

1. The conservative view: Computer programs have become too large and com‐
plex to encompass in a human mind. Therefore, the job of computer science
education is to teach people how to discipline their work in such a way that 500
mediocre programmers can join together and produce a program that correctly
meets its specification.

2. The radical view: Computer programs have become too large and complex to
encompass in a human mind. Therefore, the job of computer science education
is to teach people how to expand their minds so that the programs can fit, by
learning to think in a vocabulary of larger, more powerful, more flexible ideas
than the obvious ones. Each unit of programming thought must have a big pay‐
off in the capabilities of the program.

—Brian Harvey and Matthew Wright, preface to Simply Scheme20

Harvey and Wright’s exaggerated descriptions are about teaching computer science,
but they also apply to programming language design. By now, you should have
guessed that I subscribe to the “radical” view, and I believe Python was designed in
that spirit.

The property idea is a great step forward compared to the accessors-from-the-start
approach practically demanded by Java and supported by Java IDEs generating get‐
ters/setters with a keyboard shortcut. The main advantage of properties is to let us
start our programs simply exposing attributes as public—in the spirit of KISS—know‐
ing a public attribute can become a property at any time without much pain. But the
descriptor idea goes way beyond that, providing a framework for abstracting away
repetitive accessor logic. That framework is so effective that essential Python con‐
structs use it behind the scenes.

Another powerful idea is functions as first-class objects, paving the way to higher-
order functions. Turns out the combination of descriptors and higher-order func‐
tions enable the unification of functions and methods. A function’s __get__ produces

956 | Chapter 24: Class Metaprogramming

https://fpy.li/24-30

21 Machine Beauty: Elegance and the Heart of Technology by David Gelernter (Basic Books) opens with an intri‐
guing discussion of elegance and aesthetics in works of engineering, from bridges to software. The later chap‐
ters are not great, but the opening is worth the price.

a method object on the fly by binding the instance to the self argument.
This is elegant.21

Finally, we have the idea of classes as first-class objects. It’s an outstanding feat of
design that a beginner-friendly language provides powerful abstractions such as class
builders, class decorators, and full-fledged, user-defined metaclasses. Best of all, the
advanced features are integrated in a way that does not complicate Python’s suitabil‐
ity for casual programming (they actually help it, under the covers). The convenience
and success of frameworks such as Django and SQLAlchemy owe much to meta‐
classes. Over the years, class metaprogramming in Python is becoming simpler and
simpler, at least for common use cases. The best language features are those that ben‐
efit everyone, even if some Python users are not aware of them. But they can always
learn and create the next great library.

I look forward to learning about your contributions to the Python community and
ecosystem!

Further Reading | 957

Afterword

Python is a language for consenting adults.
—Alan Runyan, cofounder of Plone

Alan’s pithy definition expresses one of the best qualities of Python: it gets out of the
way and lets you do what you must. This also means it doesn’t give you tools to
restrict what others can do with your code and the objects it builds.

At age 30, Python is still growing in popularity. But of course, it is not perfect.
Among the top irritants to me is the inconsistent use of CamelCase, snake_case, and
joinedwords in the standard library. But the language definition and the standard
library are only part of an ecosystem. The community of users and contributors is the
best part of the Python ecosystem.

Here is one example of the community at its best: while writing about asyncio in the
first edition, I was frustrated because the API has many functions, dozens of which
are coroutines, and you had to call the coroutines with yield from—now with await
—but you can’t do that with regular functions. This was documented in the asyncio
pages, but sometimes you had to read a few paragraphs to find out whether a particu‐
lar function was a coroutine. So I sent a message to python-tulip titled “Proposal:
make coroutines stand out in the asyncio docs”. Victor Stinner, an asyncio core devel‐
oper; Andrew Svetlov, main author of aiohttp; Ben Darnell, lead developer of Tor‐
nado; and Glyph Lefkowitz, inventor of Twisted, joined the conversation. Darnell
suggested a solution, Alexander Shorin explained how to implement it in Sphinx, and
Stinner added the necessary configuration and markup. Less than 12 hours after I
raised the issue, the entire asyncio documentation set online was updated with the
coroutine tags you can see today.

That story did not happen in an exclusive club. Anybody can join the python-tulip
list, and I had posted only a few times when I wrote the proposal. The story illustrates
a community that is really open to new ideas and new members. Guido van Rossum
used to hang out in python-tulip and often answered basic questions.

959

https://fpy.li/a-1
https://fpy.li/a-1
https://fpy.li/a-2

Another example of openness: the Python Software Foundation (PSF) has been
working to increase diversity in the Python community. Some encouraging results
are already in. The 2013–2014 PSF board saw the first women elected directors: Jes‐
sica McKellar and Lynn Root. In 2015, Diana Clarke chaired PyCon North America
in Montréal, where about one-third of the speakers were women. PyLadies became a
truly global movement, and I am proud that we have so many PyLadies chapters in
Brazil.

If you are a Pythonista but you have not engaged with the community, I encourage
you to do so. Seek the PyLadies or Python Users Group (PUG) in your area. If there
isn’t one, create it. Python is everywhere, so you will not be alone. Travel to events if
you can. Join live events too. During the Covid-19 pandemic I learned a lot in the
“hallway tracks” of online conferences. Come to a PythonBrasil conference—we’ve
had international speakers regularly for many years now. Hanging out with fellow
Pythonistas brings real benefits besides all the knowledge sharing. Like real jobs and
real friendships.

I know I could not have written this book without the help of many friends I made
over the years in the Python community.

My father, Jairo Ramalho, used to say “Só erra quem trabalha,” Portuguese for “Only
those who work make mistakes,” great advice to avoid being paralyzed by the fear of
making errors. I certainly made my share of mistakes while writing this book. The
reviewers, editors, and early release readers caught many of them. Within hours of
the first edition early release, a reader was reporting typos in the errata page for the
book. Other readers contributed more reports, and friends contacted me directly to
offer suggestions and corrections. The O’Reilly copyeditors will catch other errors
during the production process, which will start as soon as I manage to stop writing. I
take responsibility and apologize for any errors and suboptimal prose that remains.

I am very happy to bring this second edition to conclusion, mistakes and all, and I am
very grateful to everybody who helped along the way.

I hope to see you soon at some live event. Please come say hi if you see me around!

Further Reading
I will wrap up the book with references regarding what it its to be “Pythonic”—the
main question this book tried to address.

Brandon Rhodes is an awesome Python teacher, and his talk “A Python Æsthetic:
Beauty and Why I Python” is beautiful, starting with the use of Unicode U+00C6
(LATIN CAPITAL LETTER AE) in the title. Another awesome teacher, Raymond Het‐
tinger, spoke of beauty in Python at PyCon US 2013: “Transforming Code into Beau‐
tiful, Idiomatic Python”.

960 | Afterword

https://fpy.li/a-3
https://fpy.li/a-3
https://fpy.li/a-4
https://fpy.li/a-4

The “Evolution of Style Guides” thread that Ian Lee started on Python-ideas is worth
reading. Lee is the maintainer of the pep8 package that checks Python source code for
PEP 8 compliance. To check the code in this book, I used flake8, which wraps pep8,
pyflakes, and Ned Batchelder’s McCabe complexity plug-in.

Besides PEP 8, other influential style guides are the Google Python Style Guide and the
Pocoo Styleguide, from the team that brought us Flake, Sphinx, Jinja 2, and other
great Python libraries.

The Hitchhiker’s Guide to Python! is a collective work about writing Pythonic code.
Its most prolific contributor is Kenneth Reitz, a community hero thanks to his beau‐
tifully Pythonic requests package. David Goodger presented a tutorial at PyCon US
2008 titled “Code Like a Pythonista: Idiomatic Python”. If printed, the tutorial notes
are 30 pages long. Goodger created both reStructuredText and docutils—the foun‐
dations of Sphinx, Python’s excellent documentation system (which, by the way, is
also the official documentation system for MongoDB and many other projects).

Martijn Faassen tackles the question head-on in “What is Pythonic?” In the python-
list, there is a thread with that same title. Martijn’s post is from 2005, and the thread
from 2003, but the Pythonic ideal hasn’t changed much—neither has the language,
for that matter. A great thread with “Pythonic” in the title is “Pythonic way to sum n-
th list element?”, from which I quoted extensively in the “Soapbox” on page 427.

PEP 3099 — Things that will Not Change in Python 3000 explains why many things
are the way they are, even after the major overhaul that was Python 3. For a long
time, Python 3 was nicknamed Python 3000, but it arrived a few centuries sooner—to
the dismay of some. PEP 3099 was written by Georg Brandl, compiling many opin‐
ions expressed by the BDFL, Guido van Rossum. The “Python Essays” page lists sev‐
eral texts by Guido himself.

Afterword | 961

https://fpy.li/a-5
https://fpy.li/a-6
https://fpy.li/a-7
https://fpy.li/a-8
https://fpy.li/a-9
https://fpy.li/a-10
https://fpy.li/a-11
https://fpy.li/a-12
https://fpy.li/a-13
https://fpy.li/a-14
https://fpy.li/a-15
https://fpy.li/a-16
https://fpy.li/a-17
https://fpy.li/a-17
https://fpy.li/pep3099
https://fpy.li/a-18

Index

Symbols
!= (not equal to) operator, 577
!r conversion field, 12
% (modulo) operator, 5, 12
%r placeholder, 12
* (star) operator, 10, 36-37, 50-56, 240, 572-574
** (double star) operator, 80, 240
*= (star equals) operator, 53-56, 580-585
*_ symbol, 42
*_new*_, 843-845
+ operator, 10, 50-56, 566-572
+= (addition assignment) operator, 53-56,

580-585
+ELLIPSIS directive, 7
:= (Walrus operator), 26
< (less than) operator, 577
<= (less than or equal to) operator, 577
== (equality) operator, 206, 225, 577
> (greater than) operator, 577
>= (greater than or equal to) operator, 577
@ sign, 574-576
@asyncio.coroutine decorator, 777
@cached_property, 856
@contextmanager decorator, 664-669
@dataclass

default settings, 180
example using, 187-189
field options, 180-183
init-only variables, 186
keyword parameters accepted by, 179
post-init processing, 183-185
typed class attributes, 185
__hash__ method, 180

@typing.overload decorator, 520-526

[] (square brackets), 6, 26, 35, 49
\ (backslash), 26
\ line continuation escape, 26
\N{} (Unicode literals escape notation), 136
_ symbol, 41
__ (double underscore), 3
__abs__, 11
__add__, 11
__bool__, 13
__bytes__, 365
__call__, 360
__class__, 870, 908
__contains__, 7, 93
__delattr__, 872
__delete__, 879
__del__, 219
__dict__, 870
__dir__, 872
__enter__, 658
__eq__, 411-416
__exit__, 658
__format__, 365, 370, 418-425, 428
__getattribute__, 872
__getattr__, 407-411, 872
__getitem__, 5-8, 49, 403-407
__get__, 879
__hash__, 180, 411-416
__iadd__, 53
__init_subclass__, 914-921
__init__, 9, 183, 399
__invert__, 563
__iter__, 603-610
__len__, 5-8, 17, 403-407
__missing__, 91-95

963

__mro__, 908
__mul__, 11
__name__, 908
__neg__, 563
__post_init__, 183
__pos__, 563
__prepare__, 950-952
__repr__, 11-13, 364, 399
__setattr__, 872
__setitem__, 49
__set__, 879
__slots__, 384-388, 411, 870, 921
__str__, 13, 364
{} (curly brackets), 26
ǀ (pipe) operator, 80, 686
ǀ= (pipe equals) operator, 80
… (ellipsis), 7, 49

A
abc.ABC class, 449
abc.Iterable, 281
abc.Sequence, 281
ABCs (abstract base classes)

ABC syntax details, 457
defining and using ABCs, 451-457
further reading on, 482
goose typing and, 442-445
overview of, 481
in Python standard library, 449-451
Soapbox discussion, 484-486
structural typing with, 464-466
subclassing ABCs, 447-449, 458-460
type hints (type annotations), 278-280
UML class diagrams, 14-15
usage of register, 463
virtual subclasses of ABCs, 460-463

abs built-in function, 10
actual type parameters, 544
addition assignment (+=) operator, 53-56,

580-585
aliasing, 204-208
anonymous functions, 236, 251, 311
Any type, 266-269
AnyStr, 286
.append method, 67
apply function, 234-236
arguments

freezing with functools.partial, 247
key argument, 74

keyword-only arguments, 242
arrays, 23, 59-62
as keyword, 41
assignment expression (:=), 26
asynchronous generators, 238, 777
asynchronous programming

asynchronous context managers, 786-787
asyncio script example, 778-781
avoiding CPU-bound traps, 826
awaitables, 781
benefits of, 825
Curio project, 821-824
delegating tasks to executors, 797-798
enhancing asyncio downloader, 787-797
further reading on, 828
iteration and iterables, 811-821
myth of I/O-bound systems, 826
overview of, 827
relevant terminology, 777
significant changes to, 776
Soapbox discussion, 829
topics covered, 775
type hinting asynchronous objects, 824
writing asyncio servers, 799-811

Asynchronous Server Gateway Interface
(ASGI), 732

asyncio package
achieving peak performance with, 785
documentation, 776
downloading with, 782-786
enhancing asyncio downloader, 787-797
example script, 778-781
queue implementation by, 69
writing asyncio servers, 799-811

asyncpg, 786
attribute descriptors (see also attributes;

dynamic attributes and properties)
attribute validation, 880-891
descriptor docstring and overriding dele‐

tion, 902
descriptor usage tips, 900-902
further reading on, 904
methods as descriptors, 898-900
overriding versus nonoverriding, 855,

892-898
overview of, 903
purpose of, 879
relevant terminology, 881
significant changes to, 880

964 | Index

Soapbox discussion, 905
topics covered, 879

attributes (see also attribute descriptors;
dynamic attributes and properties)
dynamic attribute access, 407-411
handling attribute deletion, 868
overriding class attributes, 389-391
private and protected, 382-384
properties and up-front costs, 394
safety versus security in private, 395
using attribute descriptors for validation,

880-891
using properties for attribute validation,

857-860
virtual attributes, 835

augmented assignment operators, 53-56,
580-585

averages, computing, 643-645
await keyword, 781

B
backslash (\), 26
behavioral subtyping, 268
binary records, parsing with struct, 118
binary sequences, 120 (see also Unicode text

versus bytes)
bisect module, 58
blue tool, 259
BOMs (byte-order marks), 129
bool type, 13
Boolean values, custom types and, 13
built-in functions, 238
byte sequences, 128 (see also Unicode text ver‐

sus bytes)
bytecode, disassembling, 310

C
call by sharing, 213
callable objects

nine types of, 237-239
user-defined, 239
using iter() with, 598-599

Callable type, 291
card deck example, 5-8
Cartesian products, 27-29
case folding, 142
chain generator, 633
ChainMap, 95
characters

finding Unicode by name, 151-153
numeric meaning of, 153-155

Chardet library, 129
cladistics, 444
class metaprogramming

benefits and drawbacks of, 907
built-in class factory, 909
class factory function, 911-914
classes as objects, 908
enhancing classes with class decorators,

922-925
further reading on, 954
import time versus runtime, 925-931
__init_subclass__, 914-921
metaclass basics, 931-942
metaclass issues, 947-949
metaclass solution for checkedlib.py,

942-947
overview of, 953
__prepare__ method, 950-952
significant changes to, 908
Soapbox discussion, 956
useful applications of metaclasses, 952

classes (see also protocols)
as callable objects, 238
implementing generic classes, 541-544
topics covered, xxi
undocumented classes, 557

classic refactoring strategy, 342-346
classmethod decorator, 369
client codes, 632
clock decorators

class-based, 335
parameterized, 332-334

closures (see decorators and closures)
cls.mro(), 909
cls.__bases__, 908
cls.__qualname__, 909
cls.__subclasses__(), 909
code examples, obtaining and using, xxiv
code points, 119, 161
code smells, 163, 190-192, 446
codecs, 123
Collection API, 14-15
collections.abc module

abstract base classes defined in, 449
ChainMap, 95
Counter, 96
defaultdict and OrderedDict, 85, 95

Index | 965

Mapping and MutableMapping ABCs, 83
multiple inheritance in, 502
UserDict, 97

collections.deque class, 67-70
collections.namedtuple, 5, 169-172
Command pattern, 355-357
comments and questions, xxv
comparison operators, 206, 577-580
computed properties

caching properties with functools, 855-857
data-driven attribute creation, 846-848
properties that compute values, 845
property caching, 853-855
property overriding existing attributes, 852
property to retrieve linked records, 848-852

concatenation, 50-56
concurrency models

basics of concurrency, 696
benefits of concurrency, 695
further reading on, 734-739
Global Interpreter Lock impact, 713-715
Hello World example, 701-712
indefinite loops and sentinels, 721
multicore processors and, 725-733
overview of, 733
process pools, 716-725
Python programming concepts, 699-701
relevant terminology, 697-699
significant changes to, 696
Soapbox discussion, 739-741
structured concurrency, 823
topics covered, 696

concurrent executors
concurrent web downloads, 744-754
downloads with progress display and error

handling, 762-772
Executor.map, 758-761
further reading on, 772
launching processes with concur‐

rent.futures, 754-758
overview of, 772
purpose of, 743
significant changes to, 743
Soapbox discussion, 773

concurrent.futures
downloading with, 749-750
launching processes with, 754-758

consistent-with relationships, 268
Container interface, 15

container sequences, 22, 73
contention, 699
context managers

@contextmanager decorator, 664-669
asynchronous, 786-787
asynchronous generators as, 817
contextlib utilities, 663
creative uses for, 658
demonstrations of, 659-662
methods included in interface, 658
parenthesized in Python 3.10, 663
purpose of, 658

contravariance (see variance)
control flow, xxi (see also asynchronous pro‐

gramming; concurrent executors; concur‐
rency models; iterators; generators; with,
match, and else blocks)

cooperative multiple inheritance, 497
copies

deep, 211-213
shallow, 208-211

coroutine objects, 642
coroutines

computing running averages, 643-645
definition of term, 698
further reading on, 652
generator-based, 777
generic type hints for, 650
Global Interpreter Lock impact, 715
overview of, 652
returning values from, 646-650
significant changes to, 594
Soapbox discussion, 654
spinners (loading indicators) using, 706-710
topics covered, 594
types of, 777
understanding classic, 641

Counter, 96
covariance (see variance)
CPU-bound systems, 826
Curio project, 821-824
curly brackets ({}), 26

D
Dask, 727
data attributes (see attributes)
data class builders

@dataclass, 179-189
classic named tuples, 169-172

966 | Index

data class as code smell, 190-192
further reading on, 196
main features, 167-169
overview of, 164-167, 195
pattern matching class instances, 192-195
significant changes to, 164
Soapbox discussion, 197
topics covered, 163
type hints, 173-179
typed named tuples, 172

data descriptors (see overriding descriptors)
data model (see Python Data Model)
data science, 727
data structures, xxi (see also data class builders;

dictionaries and sets; object references;
sequences; Unicode text versus bytes)

data wrangling
with dynamic attributes, 836-838
flexible object creation, 843-845
invalid attribute name problem, 842
JSON-like data, 838-842

decimal.Decimal class, 565
decoding (see also Unicode text versus bytes)

basics of, 123-124
definition of, 119
understanding encode/decode problems,

125-131
decorator-enhanced strategy pattern, 353-355
decorators and closures

classmethod versus staticmethod, 369
closure basics, 311-314
closures in lis.py, 685
decorator basics, 304-306
decorator execution, 306
decorator implementation, 317-320
decorators in Python standard library,

320-323
enhancing classes with class decorators,

922-925
further reading on, 336
nonlocal declarations, 315-317
overview of, 336
parameterized decorators, 329-335
purpose of, 303
registration decorators, 308
significant changes to, 304
Soapbox discussion, 338-340
topics covered, 303
variable scope rules, 308-310

deep copies, 211-213
defaultdict, 85, 90
defensive programming, 87, 440-442
del statement, 219-221, 868
delegating generators, 632
deprecated collection types, 272
deque (double-ended queue), 59, 67-70
descriptor classes, 881
descriptor instances, 881
descriptors, 177, 879 (see also attribute descrip‐

tors)
design patterns (see functions, design patterns

with first-class)
destructuring, 40
diacritics, normalization and, 144-148
dictcomps (dict comprehensions), 79
dictionaries and sets

automatic handling of missing keys, 90-95
consequences of how dict works, 102
consequences of how set works, 107
dictionary views, 101-102
further reading on, 113
immutable mappings, 99
internals of, 78
modern dict syntax, 78-81
overview of, 112
pattern matching with mappings, 81-83
set operations, 107-110
set operations on dict views, 110
set theory, 103-106
significant changes to, 78
Soapbox discussion, 114
standard API of mapping types, 83-90
topics covered, 77
variations of dict, 95-99

dir([object]) function, 870
dis module, 310
displays, formatting, 370-374
distributed task queues, 732
Django generic views mixins, 504-507
doctest package

documentation, xxii
ellipsis in, 7

double star (**) operator, 80, 240
double underscore (__), 3
double() function, 466-468
Dublin Core Schema, 187
duck typing, 87, 261, 302, 402, 427, 431, 470
dunder methods, 4

Index | 967

dynamic attributes and properties
coding property factories, 865-868
computed properties, 845-857
data wrangling with dynamic attributes,

836-845
dynamic versus virtual attributes, 835
essential attributes and functions for

attribute handling, 869-873
further reading on, 873
handling attribute deletion, 868
overview of, 873
property class, 860-865
significant changes to, 836
Soapbox discussion, 875-877
using properties for attribute validation,

857-860
dynamic protocols, 403, 435
dynamic type, 266-269

E
ellipsis (…), 7, 49
else blocks, 687-689
emojis

building, 118
console font and, 136
finding characters by name, 151-153
in the Museum of Modern Art, 160
increasing issues with, 162
UCS-2 versus UTF-16 encoding, 124
varied support for, 152

encoding (see also Unicode text versus bytes)
basics of, 123-124
definition of, 119
encoding defaults, 134-139
understanding encode/decode problems,

125-131
equality (==) operator, 206, 225, 577
error handling, in network I/O, 762-772
execution units, 697
Executor.map, 758-761
executors, delegating tasks to, 797-798 (see also

concurrent executors)
explicit self argument, 905

F
f-string syntax

benefits of, 5
delegation of formatting by, 370

string representation using special methods,
12

fail-fast philosophy, 87, 417, 440-442
FastAPI framework, 800-804
FIFO (first in, first out), 59, 67
filter function, 27, 234-236
filtering generator functions, 619
first-class functions (see functions, as first-class

objects)
first-class objects, 231
flake8 tool, 259
flat sequences, 22, 73
flawed typing, 296
fluentpython.com, xxiii
ForkingMixIn, 503
formal type parameters, 544
format() function, 370
forward reference problem, 538
free variables, 313, 685
frozenset, 103 (see also dictionaries and sets)
function decorators (see decorators and clo‐

sures)
function parameters, introspection of, 232
function-class duality, 876
function-oriented refactoring strategy, 347-350
functional programming

packages for, 243-249
with Python, 250

functions
abs built-in function, 10
dir([object]) function, 870
disassembling bytecode of, 310
double() function, 466
filter, map, and reduce functions, 27, 234
format() function, 370
getattr function, 871
getattr(object, name[, default]) function,

871
globals() function, 351
hasattr function, 871
higher-order functions, 234-236
id() function, 206
iter() function, 596
len() function, 6
map function, 27
max() function, 521
repr() function, 364
setattr funcion, 871

968 | Index

setattr(object, name, value) function, 871,
871

single dispatch generic functions, 324-329
str() function, 13, 364
super() function, 411, 488
zip() function, 416

functions, as first-class objects (see also decora‐
tors and closures)
anonymous functions, 236
callable objects, 237-239
definition of term, 231
flexible parameter handling and, 240-243
further reading on, 250
higher-order functions, 234-236
overview of, 249
packages for functional programming,

243-249
significant changes to, 232
Soapbox discussion, 250
topics covered, xxi
treating functions like objects, 232-234
user-defined callable types, 239

functions, design patterns with first-class
Command pattern, 355-357
decorator-enhanced strategy pattern,

353-355
dynamic languages and, 341
further reading on, 358
overview of, 357
refactoring strategies, 342-353
significant changes to, 342
Soapbox discussion, 359

functions, type hints in
annotating positional only and variadic

parameters, 295
benefits and drawbacks of, 253
flawed typing and strong testing, 296
further reading on, 298
gradual typing, 254-260
overview of, 297
significant changes to, 254
Soapbox discussion, 299-302
supported operations and, 261-265
topics covered, 254
types usable in annotations, 266-295

functools module
caching properties with, 855-857
freezing arguments with, 247-249
functools.cache decorator, 320-323

functools.lru_cache function, 323
functools.singledispatch decorator, 326-329

futures
basics of, 751-754
definition of term, 743

futures.as_completed, 769-772

G
garbage collection, 219-221, 226
generator expressions (genexps), 26, 29, 235,

613, 818-821
generators

arithmetic progression generators, 615-619
asynchronous generator functions, 812-818
examples of, 607-610
further reading on, 652
generator functions in Python standard

library, 238, 619-630
generator-based coroutines, 777
generic iterable types, 639
humble generators, 784
iterable reducing functions, 630-631
versus iterators, 614
lazy generators, 610-613
overview of, 652
Sentence classes with, 606
significant changes to, 594
Soapbox discussion, 654
subgenerators with yield from expression,

632-639
topics covered, 594
when to use generator expressions, 613
yield keyword, 607

generic classes, implementing, 541-544
generic collections

parameterized generics and TypeVar,
282-286

Soapbox discussion, 302
type annotations and, 271-272

generic functions, single dispatch, 324-329
generic mapping types, 276
generic static protocols, 552-554
getattr function, 871
getattr(object, name[, default]) function, 871
gevent library, 711
Global Interpreter Lock (GIL), 66, 699,

713-715, 725, 736
globals() function, 351
goose typing

Index | 969

ABC syntax details, 457
ABCs in Python standard library, 449-451
abstract base classes (ABCs), 442-445
defining and using ABCs, 451-457
definition of term, 431
overview of, 446
structural typing with ABCs, 464-466
subclassing ABCs, 447-449, 458-460
usage of register, 463
virtual subclasses of ABCs, 460-463

gradual type system (see also type hints (type
annotations))
abstract base classes, 278-280
Any type, 266-267
basics of, 254
Callable type, 291
further reading on, 555
generic collections, 271-272
generic mappings, 276
implementing generic classes, 541-544
implementing generic static protocols,

552-554
in practice, 255-260
Iterable, 280-282
legacy support and deprecated collection

types, 272
NoReturn type, 294
Optional and Union types, 270
overloaded signatures, 520-526
overview of, 554
parameterized generics and TypeVar,

282-286
reading hints at runtime, 537-541
significant changes to, 519
simple types and classes, 269
Soapbox discussion, 557
static protocols, 286-291
subtype-of versus consistent-with relation‐

ships, 267-269
topics covered, 519
tuple types, 274-276
type casting, 534-537
TypedDict, 526
variance and, 544-551

greater than (>) operator, 577
greater than or equal to (>=) operator, 577
greenlet package, 710

H
hasattr function, 871
hash code, versus hash value, 84
hash tables, 77
hashable, definition of, 84
heapq package, 69
higher-order functions, 234-236
HTTPServer class, 503
HTTPX library, 782-786
humble generators, 784

I
I/O (input/output) (see network I/O)
id() function, 206
immutable mappings, 99
immutable sequences, 24
implicit conversion, 117
import time versus runtime, 306, 925
indefinite loops, 721
infix operators, 561, 574-576
inheritance and subclassing

best practices, 510-514
further reading on, 515
mixin classes, 500-502
multiple inheritance and method resolution

order, 494-499
overview of, 514
real-world examples of, 502-509
significant changes to, 488
Soapbox discussion, 517-518
subclassing ABCs, 447-449, 458-460
subclassing built-in types, 490-494
super() function, 488-490
topics covered, 487
virtual subclasses of ABCs, 460-463

input expanding generator functions, 625
interfaces (see also goose typing; protocols)

Container interface, 15
further reading on, 482
Iterable interface, 15, 280, 435
overview of, 481
protocols as informal, 427
role in object-oriented programming, 431
significant changes to, 433
Sized interface, 15
Soapbox discussion, 484-486
topics covered, 433
typing map, 432
ways of defining and using, 431

970 | Index

interning, 222
invalid attribute name problem, 842
inverted indexes, 799
is operator, 206, 221
.items method, 110
iter() function, 596-599
Iterable interface, 15, 280-282, 435-437
iterables

asynchronous, 811-821
iterable reducing functions, 630-631
versus iterators, 599-603
unpacking, 35-38

iterators
asynchronous, 811-821
further reading on, 652
versus generators, 614
generic iterable types, 639
iter() function, 596-599
versus iterables, 599-603
lazy sentences, 610-613
overview of, 652
role of, 593
Sentence classes with __iter__, 603-610
sequence protocol, 594-596
significant changes to, 594
Soapbox discussion, 654
topics covered, 594

itertools module, 618

J
JSON-like data, 838-842

K
key argument, 74
keys

automatic handling of missing, 90-95
converting nonstring keys to str, 98
hashability, 84
persistent storage for mapping, 97
practical consequences of using dict, 102
preserving key insertion order, 15, 948
sorting multiple, 244

.keys method, 110
keyword class patterns, 193
keyword-only arguments, 242
keywords

as keyword, 41
await keyword, 781
lambda keyword, 236

nonlocal keyword, 315-317, 683
reserved keywords, 679
yield keyword, 238, 605-610, 614, 642, 645,

669
KISS principle, 427, 517, 739

L
lambda keyword, 236
lazy sentences, 610-613
Least Recently Used (LRU), 323
len() function, 6
less than (<) operator, 577
less than or equal to (<=) operator, 577
line breaks, 26
lis.py interpreter

Environment class, 673
evaluate function, 676-685
imports and types, 671
OR-patterns, 686
parser, 671-673
pattern matching in, 43-47
Procedure class, 685-686
REPL (read-eval-print-loop), 675
Scheme syntax, 669-671
topics covered, 669

list comprehensions (listcomps)
asynchronous, 818-821
building lists from cartesian products, 27
building sequences with, 25
versus generator expressions, 29
local scope within, 26
readability and, 25
syntax tip, 26
versus map and filter functions, 27, 235

lists
alternatives to, 59-70
building lists of lists, 51
list.sort versus sorted built-in, 56-58
mixed-bag, 74
multiline, 26
shallow copies of, 208-211
versus tuples, 34
using tuples as immutable, 32-34

locks, definition of term, 699
LRU (see Least Recently Used)

M
magic methods, 4, 19
managed attributes, 882

Index | 971

managed classes, 881
managed instances, 882
map function, 27, 234-236
mappings

automatic handling of missing keys, 90-95
case-insensitive, 500-502
immutable mappings, 99
mapping generator functions, 620
merging, 80
pattern matching with, 81-83
standard API of mapping types, 83-90
unpacking, 80

match blocks (see with, match, and else blocks)
match/case statement, 38, 81
mathematical vector operations, 566
max() function, 521-526
memoization, 320-323
memory, saving with __slots__, 384-388
memoryview class, 62-64
metaclasses

basics of, 931-933
considerations for use, 947-949
customizing classes, 933
definition of term, 910
example metaclass, 934-937
metaclass evaluation time experiment,

937-942
metaclass solution for checkedlib.py,

942-947
useful applications of, 952

metaobjects, 19
metaprogramming, xxii (see also attribute

descriptors; class metaprogramming;
dynamic attributes and properties)

method resolution order (MRO), 494-499
methods, as callable objects, 238 (see also

sequences, special methods for; special
methods)

Meyer's Uniform Access Principle, 875-876
Mills & Gizmos Notation (MGN), 883
mixin classes, 500-502
mixin methods, 502
modulo (%) operator, 5, 12
monkey-patching, 438-440, 486, 897
MRO (see method resolution order)
multicore processing

data science, 727
distributed task queues, 732
increased availability of, 725

server-side web/mobile development, 728
system administration, 726
WSGI application servers, 730

multiline lists, 26
multiple inheritance (see also inheritance and

subclassing)
method resolution order and, 494-499
real-world examples of, 502-509

multiplication, scalar, 10, 572-574
multiprocessing package, 69, 704
mutable objects, 225 (see also object references)
mutable parameters, 214-218
mutable sequences, 24
mutable values, inserting or updating, 87-90
MutableMapping ABC, 83
Mypy type checker, 255-260
my_fmt.format() method, 5

N
name mangling, 382
namedtuple, 169-172
native coroutines

versus asynchronous generators, 818
definition of term, 777
functions defined with async def, 238
humble generators and, 784

network I/O
downloading with asyncio, 782-786
downloading with concurrent.futures,

749-750
downloads with progress display and error

handling, 762-772
enhancing asyncio downloader, 787-797
essential role of concurrency in, 744-746
myth of I/O-bound systems, 826
role of futures, 751-754
sequential download script, 746-749

NFC (see Normalization Form C)
nominal typing, 262
nonlocal keyword, 315-317, 683
nonoverriding descriptors, 855, 892-898
NoReturn type, 294
Normalization Form C (NFC), 140
normalized text matching, 143-148
not equal to (!=) operator, 577
numbers ABCs, 478-481
numbers package, 279
numeric protocols, 478-481
numeric tower, 279

972 | Index

numeric types
checking for convertibility, 468, 480
emulating using special methods, 9-12
hashability of, 84
support for, 479

NumPy, 64-67

O
object references

aliasing, 204-208
deep copies, 211-213
del and garbage collection, 219-221
distinction between objects and their

names, 201
function parameters as references, 213-218
further reading on, 224
immutability and, 221
overview of, 223
shallow copies, 208-211
Soapbox discussion, 225
variables as labels versus boxes, 202-204

objects
callable objects, 237-239, 598-599
first-class, 231
flexible object creation, 843-845
mutable, 225
treating functions like, 232-234
user-defined callable objects, 239

operator module, 243-247
operator overloading

augmented assignment operators, 580-585
basics of, 562
further reading on, 587
infix operator method names, 576
infix operators, 561
overloading * for scalar multiplication,

572-574
overloading + for vector addition, 566-572
overview of, 585
rich comparison operators, 577-580
significant changes to, 562
Soapbox discussion, 588
topics covered, 562
unary operators, 563-566
using @ as infix operator, 574-576

Optional type, 270
OR-patterns, 686
OrderedDict, 85, 95
os functions, str versus bytes in, 156

overloaded signatures, 520-526
overriding descriptors, 855, 863, 892-898

P
parallelism, 695, 697
parameterized decorators, 329-335
parameterized types, 544
parameters

annotating positional only and variadic
parameters, 295

introspection of function parameters, 232
keyword-only, 242
mutable, 214-218
parameter passing, 213
positional, 240-243

pattern matching
*_ symbol, 42
destructuring, 40
in lis.py interpreter, 43-47, 669-687
with mappings, 81-83
match/case statement, 38
pattern matching class instances, 192-195
tuples and lists, 41
type information, 42
_ symbol, 41

patterns (see functions, design patterns with
first-class; pattern matching)

pickle module, 97
Pingo library, 99
pipe (ǀ) operator, 80, 686
pipe equals (ǀ=) operator, 80
plain text, 129, 161
.pop method, 67
positional class patterns, 194
positional parameters, 240-243
positional patterns, 377
process pools

code for multicore prime checker, 719-723
example problem, 716
process-based solution, 718
thread-based nonsolution, 724
understanding elapsed times, 718
varying process numbers, 723

processes
definition of term, 698
launching with concurrent.futures, 754-758

progress displays, 762-772
Project Jupyter, 727
proper tail calls (PTC), 691-693

Index | 973

properties (see computed properties; dynamic
attributes and properties)

property class, 860-865
protocol classes, 403
Protocol type, 286-291
protocols (see also interfaces)

defensive programming, 440-442
duck typing and, 402
further reading on, 482
implementing at runtime, 438-440
implementing generic static protocols,

552-554
as informal interfaces, 427
meanings of protocol, 434
numeric, 478-481
overview of, 481
sequence and iterable protocols, 435-437
significant changes to, 433
Soapbox discussion, 484-486
static protocols, 403, 466-481
topics covered, 433

PSF (see Python Software Foundation)
PUG (see Python Users Group)
PyICU, 150
PyLadies, 960
pytest package, xxii
Python

appreciating language-specific features, xix
approach to learning, xx-xxii
community support for, 959
fluentpython.com, xxiii
functional programming with, 250
functioning with multicore processors,

725-733
further reading on, 960
prerequisites to learning, xx
target audience, xx
versions featured, xx

Python Data Model
further reading on, 18
__getitem__ and __len__, 5-8
making len work with custom objects, 17
overview of, 3, 18
significant changes to, 4
Soapbox discussion, 19
special methods overview, 15-17
using special methods, 8-15

Python Software Foundation (PSF), 960
Python type checkers, 255

Python Users Group (PUG), 960
python-tulip list, 959
Pythonic Card Deck example, 5-8
Pythonic objects (see also objects)

alternative constructor for, 368
building user-defined classes, 363
classmethod versus staticmethod, 369
formatted displays, 370-374
further reading on, 392
hashable Vector2d, 374-377
object representations, 364
overriding class attributes, 389-391
overview of, 391
private and protected attributes, 382-384
saving memory with __slots__, 384-388
significant changes to, 364
Soapbox discussion, 394-396
supporting positional patterns, 377
topics covered, 363
Vector2d class example, 365-368
Vector2d full listing, 378-381

Pythonic sums, 428-430
pyuca library, 150, 158

Q
quantity properties, 865-868
questions and comments, xxv
queues

definition of term, 698
deque (double-ended queue), 59, 67
distributed task queues, 732
implementing, 69

R
race conditions, 723
random.choice function, 6
recycling (see garbage collection)
reduce function, 234-236
reducing functions, 412, 630-631
refactoring strategies

choosing the best, 350
classic, 342-346
Command pattern, 355-357
decorator-enhanced pattern, 353-355
finding strategies in modules, 351-353
function-oriented, 347-350

reference counting, 219
registration decorators, 308, 329-332
regular expressions, str versus bytes in, 155

974 | Index

repr() function, 364
reserved keywords, 679
rich comparison operators, 577-580
running averages, computing, 643-645

S
S-expression, 669
salts, 85
Scheme language, 43-47, 669-671
SciPy, 64-67
scope

dynamic scope versus lexical scope, 338-339
function local scope, 310
module global scope, 310
variable scope rules, 308-310
within comprehensions and generator

expressions, 26
semaphores, 790-794
Sentence classes, 603-610
sentinels, 721
sequence protocol, 435-437, 594-596
sequences

alternatives to lists, 59-70
further reading on, 71
list comprehensions and generator expres‐

sions, 25-30
list.sort versus sorted built-in, 56-58
overview of, 70
overview of built-in, 22-24
pattern matching with, 38-47
significant changes to, 22
slicing, 47-50
Soapbox discussion, 73-75
topics covered, 22
tuples, 30-35
uniform handling of, 21
unpacking sequences and iterables, 35-38
using + and * with, 50-56

sequences, special methods for
applications beyond three dimensions, 398
dynamic attribute access, 407-411
__format__, 418-425
further reading on, 426
__hash__ and __eq__, 411-416
overview of, 425
protocols and duck typing, 402
significant changes to, 398
sliceable sequences, 403-407
Soapbox discussion, 427-430

topics covered, 397
Vector implementation strategy, 398
Vector2d compatibility, 399-401

sequential.py program, 716
server-side web/mobile development, 728
servers

Asynchronous Server Gateway Interface
(ASGI), 732

HTTPServer class, 503
TCP servers, 804-811
test servers, 765
ThreadingHTTPServer class, 503
Web Server Gateway Interface (WSGI), 730
writing asyncio servers, 799-811

setattr function, 871
sets (see also dictionaries and sets)

consequences of how set works, 107
set comprehensions, 106
set literals, 105
set operations, 107-110
set operations on dict views, 110
set theory, 103-105

shallow copies, 208-211
shelve module, 97
simple class patterns, 192
single dispatch generic functions, 324-329
Sized interface, 15
slicing

assigning to slices, 50
excluding last item in, 47
multidimensional slicing and ellipses, 49
slice objects, 48
sliceable sequences, 403-407

Soapbox sidebars
@dataclass, 197
anonymous functions, 251
__call__, 360
code points, 161
data model versus object model, 19
design patterns, 359
duck typing, 302, 427
dynamic scope versus lexical scope, 338-339
equality (==) operator, 225
explicit self argument, 905
flat versus container sequences, 73
__format__, 428
function-class duality, 876
functional programming with Python, 250
generic collections, 302

Index | 975

inheritance across languages, 518
interfaces, 486
key argument, 74
lis.py and evaluate function, 693
magic methods, 19
metaobjects, 19
minimalistic iterator interface, 654
mixed-bag lists, 74
monkey-patching, 486
multilevel class hierarchies, 517
mutability, 225
non-ASCII names in source code, 160
object destruction and garbage collection,

226
operator overloading, 588
Oracle, Google, and the Timbot, 74
plain text, 161
pluggable generators, 654-656
programming language design, 956
proper tail calls (PTC), 691-693
properties and up-front costs, 394
protocols as informal interfaces, 427
Python decorators and decorator design

pattern, 339
Pythonic sums, 428-430
safety versus security in private attributes,

395
static typing, 484
syntactic sugar, 114
thread avoidance, 773
threads-and-locks versus actor-style pro‐

gramming, 739-741
trade-offs of built-ins, 517
tuples, 73
Twisted library, 830
type hints (type annotations), 299-302
typing map, 485
undocumented classes, 557
Uniform Access Principle, 875-876
uvloop, 829
variance notation in other classes, 558
with statements, 691

sorted function, 56-58
special methods (see also sequences, special

methods for)
advantages of using, 6
Boolean values of custom types, 13
calling, 8
Collection API, 14-15

emulating numeric types, 9-12
__getitem__ and __len__, 5-8
naming conventions, 3
purpose of, 3
special method names (operators excluded),

15
special method names and symbols for

operators, 16
string representation, 12

spinners (loading indicators) (see also network
I/O)
comparing supervisor functions, 711
created using coroutines, 706-710
created with multiprocessing package, 704
created with threading, 701-704
Global Interpreter Lock impact, 713-715
keeping alive, 715

square brackets ([]), 6, 26, 35, 49
stacked decorators, 322
star (*) operator, 10, 36-37, 50-56, 240, 572-574
star equals (*=) operator, 580-585
static duck typing, 291, 432, 515
static protocols

best practices for protocol design, 476
definition of, 435
designing, 474-476
versus dynamic protocols, 403
extending, 477
implementing generic static protocols,

552-554
limitations of runtime protocol checks, 471
numbers ABCS and numeric protocols,

478-481
runtime checkable, 468-471
Soapbox discussion, 484
supporting, 472-474
type hints (type annotations), 286-291
typed double function, 466-468

static typing, 431
staticmethod decorator, 369
storage attributes, 882
str() function, 13, 364
str.format() method, 5, 370
Strategy pattern, 342-346
strings

default sorting of, 58
dual-mode str and bytes APIs, 155-157
normalizing Unicode for reliable compari‐

sons, 140-148

976 | Index

representation using special methods, 12
strong testing, 296
struct module, 118
structural typing, 464-466
structured concurrency, 823
subclassing (see inheritance and subclassing)
subgenerators, 632
subtype-of relationships, 267
super() function, 411, 488-490
syntactic sugar, 114
SyntaxError, 128
system administration, 726

T
tail call optimization (TCO), 691-693
TCP servers, 804-811
TensorFlow, 727
test servers, 765
text files, handling, 131-139 (see also Unicode

text versus bytes)
ThreadingHTTPServer class, 503
ThreadingMixIn class, 503
threads

definition of term, 698
enhancing asyncio downloader, 788-797
further reading on, 734
Global Interpreter Lock impact, 714
spinners (loading indicators) using, 701-704
thread avoidance, 773
thread-based process pools, 724

throttling, 790-794
Timsort algorithm, 74
Tkinter GUI toolkit

benefits and drawbacks of, 513
multiple inheritance in, 507-509

tree structures, traversing, 634-639
tuples

classic named tuples, 169-172
immutability and, 221
as immutable lists, 32-34
versus lists, 34
nature of, 73
as records, 30-32
relative immutability of, 207
simplified memory diagram for, 23
tuple unpacking, 32
type hints (type annotations), 274-276
typing.NamedTuple, 172

Twisted library, 830

type casting, 534-537
type hints (type annotations)

annotating positional only and variadic
parameters, 295

for asynchronous objects, 824
basics of, 173-179
benefits and drawbacks of, 253
flawed typing and strong testing, 296
further reading on, 298
generic type hints for coroutines, 650
gradual typing, 254-260 (see also gradual

type system)
overview of, 297
significant changes to, 254
Soapbox discussion, 299-302
supported operations and, 261-265
topics covered, 254
types usable in, 266-295

typed double function, 466-468
TypedDict, 164, 526-534
Typeshed project, 280
TypeVar, 282-286
typing map, 432, 485 (see also type hints (type

annotations))
typing module, 266
typing.NamedTuple, 172

U
UCA (see Unicode Collation Algorithm)
UCS-2 encoding, 124
UML class diagrams

ABCs in collections.abc, 449
annotated with MGN, 882, 943
Command design pattern, 355
django.views.generic.base module, 504
django.views.generic.list module, 506
fundamental collection types, 14
managed and descriptor classes, 880
MutableSequence ABC and superclasses,

448
Sequence ABC and abstract classes, 436
simplified for collections.abc, 24
simplified for MutableMapping and super‐

classes, 83
simplified for MutableSet and superclasses,

107
Strategy design pattern, 342
Tkinter Text widget class and superclasses,

498

Index | 977

TomboList, 461
unary operators, 563-566
undocumented classes, 557
Unicode Collation Algorithm (UCA), 150
Unicode literals escape notation (\N{}), 136
Unicode sandwich, 131
Unicode text versus bytes

basic encoders/decoders, 123-124
byte essentials, 120-123
characters and Unicode standard, 118-120
dual-mode str and bytes APIs, 155-157
further reading on, 158
handling text files, 131-139
normalizing Unicode for reliable compari‐

sons, 140-148
overview of, 157
significant changes to, 118
Soapbox discussion, 160
sorting Unicode text, 148-150
topics covered, 117
understanding encode/decode problems,

125-131
Unicode database, 150-155

UnicodeDecodeError, 126
UnicodeEncodeError, 125
Uniform Access Principle, 875-876
Union type, 270
unittest module, xxii
unpacking

iterables and mappings, 240
mapping unpackings, 80
nested, 37
sequences and iterables, 35
using * to grab excess items, 36
with * in function calls and sequence liter‐

als, 37
user-defined functions, 238
UserDict, 97-99
UTF-8 decoding, 129
UTF-8-SIG encoding, 130
uvloop, 829

V
variable annotations

meaning of, 175-179
syntax of, 174

variable scope rules, 308-310
variables

free, 313

init-only variables, 186
as labels versus boxes, 202-204
lookup logic, 316

variadic parameters, 295
variance

contravariant types, 547
covariant types, 546
in callable types, 292
invariant types, 545
overview of, 549
relevance of, 544
rules of thumb, 551
variance notation in other classes, 558

vars([object]) function, 871
Vector class, multidimensional

applications beyond three dimensions, 398
dynamic attribute access, 407-411
__format__, 418-425
further reading on, 426
__hash__ and __eq__, 411-416
implementation strategy, 398
overview of, 425
protocols and duck typing, 402
sliceable sequences, 403-407
topics covered, 397
Vector2d compatibility, 399-401

Vector2d
class example, 365-368
full listing, 378-381
hashable, 374

vectors
overloading + for vector addition, 566-572
representing two-dimensional, 9-12

virtual attributes, 835
virtual subclasses, 460-463

W
Walrus operator (:=), 26
weak references, 221
Web Server Gateway Interface (WSGI), 730
web/mobile development, 728
with, match, and else blocks

context managers and with blocks, 658-669
else clause, 687-689
further reading on, 690
overview of, 689
pattern matching in lis.py, 669-687
purpose of with statements, 658
significant changes to, 658

978 | Index

Soapbox discussion, 691-693
topics covered, 657

Y
yield from expression, 632-639

yield keyword, 238, 605-610, 614, 642, 645, 669

Z
zero-based indexing, 47
zip() function, 416

Index | 979

About the Author
Luciano Ramalho was a web developer before the Netscape IPO in 1995, and
switched from Perl to Java to Python in 1998. He joined Thoughtworks in 2015,
where he is a Principal Consultant in the São Paulo office. He has delivered keynotes,
talks, and tutorials at Python events in the Americas, Europe, and Asia, and also pre‐
sented at Go and Elixir conferences, focusing on language design topics. Ramalho is a
fellow of the Python Software Foundation and cofounder of Garoa Hacker Clube, the
first hackerspace in Brazil.

Colophon
The animal on the cover of Fluent Python is a Namaqua sand lizard (Pedioplanis
namaquensis), found throughout Namibia in arid savannah and semi-desert regions.

The Namaqua sand lizard has a black body with four white stripes running down its
back, brown legs with white spots, a white belly, and a long, pinkish-brown tail. It is
one of the fastest of the lizards active during the day and feeds on small insects. It
inhabits sparsely vegetated sand gravel flats. Female Namaqua sand lizards lay
between three to five eggs in November, and these lizards spends the rest of winter
dormant in burrows that they dig near the base of bushes.

The current conservation status of the Namaqua sand lizard is of “Least Concern.”
Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engrav‐
ing from Wood’s Natural History. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

	Cover
	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Who This Book Is Not For
	Five Books in One
	How the Book Is Organized

	Hands-On Approach
	Soapbox: My Personal Perspective
	Companion Website: fluentpython.com
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	Acknowledgments for the First Edition

	Part I. Data Structures
	Chapter 1. The Python Data Model
	What’s New in This Chapter
	A Pythonic Card Deck
	How Special Methods Are Used
	Emulating Numeric Types
	String Representation
	Boolean Value of a Custom Type
	Collection API

	Overview of Special Methods
	Why len Is Not a Method
	Chapter Summary
	Further Reading

	Chapter 2. An Array of Sequences
	What’s New in This Chapter
	Overview of Built-In Sequences
	List Comprehensions and Generator Expressions
	List Comprehensions and Readability
	Listcomps Versus map and filter
	Cartesian Products
	Generator Expressions

	Tuples Are Not Just Immutable Lists
	Tuples as Records
	Tuples as Immutable Lists
	Comparing Tuple and List Methods

	Unpacking Sequences and Iterables
	Using * to Grab Excess Items
	Unpacking with * in Function Calls and Sequence Literals
	Nested Unpacking

	Pattern Matching with Sequences
	Pattern Matching Sequences in an Interpreter

	Slicing
	Why Slices and Ranges Exclude the Last Item
	Slice Objects
	Multidimensional Slicing and Ellipsis
	Assigning to Slices

	Using + and * with Sequences
	Building Lists of Lists
	Augmented Assignment with Sequences
	A += Assignment Puzzler

	list.sort Versus the sorted Built-In
	When a List Is Not the Answer
	Arrays
	Memory Views
	NumPy
	Deques and Other Queues

	Chapter Summary
	Further Reading

	Chapter 3. Dictionaries and Sets
	What’s New in This Chapter
	Modern dict Syntax
	dict Comprehensions
	Unpacking Mappings
	Merging Mappings with |

	Pattern Matching with Mappings
	Standard API of Mapping Types
	What Is Hashable
	Overview of Common Mapping Methods
	Inserting or Updating Mutable Values

	Automatic Handling of Missing Keys
	defaultdict: Another Take on Missing Keys
	The __missing__ Method
	Inconsistent Usage of __missing__ in the Standard Library

	Variations of dict
	collections.OrderedDict
	collections.ChainMap
	collections.Counter
	shelve.Shelf
	Subclassing UserDict Instead of dict

	Immutable Mappings
	Dictionary Views
	Practical Consequences of How dict Works
	Set Theory
	Set Literals
	Set Comprehensions

	Practical Consequences of How Sets Work
	Set Operations

	Set Operations on dict Views
	Chapter Summary
	Further Reading

	Chapter 4. Unicode Text Versus Bytes
	What’s New in This Chapter
	Character Issues
	Byte Essentials
	Basic Encoders/Decoders
	Understanding Encode/Decode Problems
	Coping with UnicodeEncodeError
	Coping with UnicodeDecodeError
	SyntaxError When Loading Modules with Unexpected Encoding
	How to Discover the Encoding of a Byte Sequence
	BOM: A Useful Gremlin

	Handling Text Files
	Beware of Encoding Defaults

	Normalizing Unicode for Reliable Comparisons
	Case Folding
	Utility Functions for Normalized Text Matching
	Extreme “Normalization”: Taking Out Diacritics

	Sorting Unicode Text
	Sorting with the Unicode Collation Algorithm

	The Unicode Database
	Finding Characters by Name
	Numeric Meaning of Characters

	Dual-Mode str and bytes APIs
	str Versus bytes in Regular Expressions
	str Versus bytes in os Functions

	Chapter Summary
	Further Reading

	Chapter 5. Data Class Builders
	What’s New in This Chapter
	Overview of Data Class Builders
	Main Features

	Classic Named Tuples
	Typed Named Tuples
	Type Hints 101
	No Runtime Effect
	Variable Annotation Syntax
	The Meaning of Variable Annotations

	More About @dataclass
	Field Options
	Post-init Processing
	Typed Class Attributes
	Initialization Variables That Are Not Fields
	@dataclass Example: Dublin Core Resource Record

	Data Class as a Code Smell
	Data Class as Scaffolding
	Data Class as Intermediate Representation

	Pattern Matching Class Instances
	Simple Class Patterns
	Keyword Class Patterns
	Positional Class Patterns

	Chapter Summary
	Further Reading

	Chapter 6. Object References, Mutability, and Recycling
	What’s New in This Chapter
	Variables Are Not Boxes
	Identity, Equality, and Aliases
	Choosing Between == and is
	The Relative Immutability of Tuples

	Copies Are Shallow by Default
	Deep and Shallow Copies of Arbitrary Objects

	Function Parameters as References
	Mutable Types as Parameter Defaults: Bad Idea
	Defensive Programming with Mutable Parameters

	del and Garbage Collection
	Tricks Python Plays with Immutables
	Chapter Summary
	Further Reading

	Part II. Functions as Objects
	Chapter 7. Functions as First-Class Objects
	What’s New in This Chapter
	Treating a Function Like an Object
	Higher-Order Functions
	Modern Replacements for map, filter, and reduce

	Anonymous Functions
	The Nine Flavors of Callable Objects
	User-Defined Callable Types
	From Positional to Keyword-Only Parameters
	Positional-Only Parameters

	Packages for Functional Programming
	The operator Module
	Freezing Arguments with functools.partial

	Chapter Summary
	Further Reading

	Chapter 8. Type Hints in Functions
	What’s New in This Chapter
	About Gradual Typing
	Gradual Typing in Practice
	Starting with Mypy
	Making Mypy More Strict
	A Default Parameter Value
	Using None as a Default

	Types Are Defined by Supported Operations
	Types Usable in Annotations
	The Any Type
	Simple Types and Classes
	Optional and Union Types
	Generic Collections
	Tuple Types
	Generic Mappings
	Abstract Base Classes
	Iterable
	Parameterized Generics and TypeVar
	Static Protocols
	Callable
	NoReturn

	Annotating Positional Only and Variadic Parameters
	Imperfect Typing and Strong Testing
	Chapter Summary
	Further Reading

	Chapter 9. Decorators and Closures
	What’s New in This Chapter
	Decorators 101
	When Python Executes Decorators
	Registration Decorators
	Variable Scope Rules
	Closures
	The nonlocal Declaration
	Variable Lookup Logic

	Implementing a Simple Decorator
	How It Works

	Decorators in the Standard Library
	Memoization with functools.cache
	Using lru_cache
	Single Dispatch Generic Functions

	Parameterized Decorators
	A Parameterized Registration Decorator
	The Parameterized Clock Decorator
	A Class-Based Clock Decorator

	Chapter Summary
	Further Reading

	Chapter 10. Design Patterns with First-Class Functions
	What’s New in This Chapter
	Case Study: Refactoring Strategy
	Classic Strategy
	Function-Oriented Strategy
	Choosing the Best Strategy: Simple Approach
	Finding Strategies in a Module

	Decorator-Enhanced Strategy Pattern
	The Command Pattern
	Chapter Summary
	Further Reading

	Part III. Classes and Protocols
	Chapter 11. A Pythonic Object
	What’s New in This Chapter
	Object Representations
	Vector Class Redux
	An Alternative Constructor
	classmethod Versus staticmethod
	Formatted Displays
	A Hashable Vector2d
	Supporting Positional Pattern Matching
	Complete Listing of Vector2d, Version 3
	Private and “Protected” Attributes in Python
	Saving Memory with __slots__
	Simple Measure of __slot__ Savings
	Summarizing the Issues with __slots__

	Overriding Class Attributes
	Chapter Summary
	Further Reading

	Chapter 12. Special Methods for Sequences
	What’s New in This Chapter
	Vector: A User-Defined Sequence Type
	Vector Take #1: Vector2d Compatible
	Protocols and Duck Typing
	Vector Take #2: A Sliceable Sequence
	How Slicing Works
	A Slice-Aware __getitem__

	Vector Take #3: Dynamic Attribute Access
	Vector Take #4: Hashing and a Faster ==
	Vector Take #5: Formatting
	Chapter Summary
	Further Reading

	Chapter 13. Interfaces, Protocols, and ABCs
	The Typing Map
	What’s New in This Chapter
	Two Kinds of Protocols
	Programming Ducks
	Python Digs Sequences
	Monkey Patching: Implementing a Protocol at Runtime
	Defensive Programming and “Fail Fast”

	Goose Typing
	Subclassing an ABC
	ABCs in the Standard Library
	Defining and Using an ABC
	ABC Syntax Details
	Subclassing an ABC
	A Virtual Subclass of an ABC
	Usage of register in Practice
	Structural Typing with ABCs

	Static Protocols
	The Typed double Function
	Runtime Checkable Static Protocols
	Limitations of Runtime Protocol Checks
	Supporting a Static Protocol
	Designing a Static Protocol
	Best Practices for Protocol Design
	Extending a Protocol
	The numbers ABCs and Numeric Protocols

	Chapter Summary
	Further Reading

	Chapter 14. Inheritance: For Better or for Worse
	What’s New in This Chapter
	The super() Function
	Subclassing Built-In Types Is Tricky
	Multiple Inheritance and Method Resolution Order
	Mixin Classes
	Case-Insensitive Mappings

	Multiple Inheritance in the Real World
	ABCs Are Mixins Too
	ThreadingMixIn and ForkingMixIn
	Django Generic Views Mixins
	Multiple Inheritance in Tkinter

	Coping with Inheritance
	Favor Object Composition over Class Inheritance
	Understand Why Inheritance Is Used in Each Case
	Make Interfaces Explicit with ABCs
	Use Explicit Mixins for Code Reuse
	Provide Aggregate Classes to Users
	Subclass Only Classes Designed for Subclassing
	Avoid Subclassing from Concrete Classes
	Tkinter: The Good, the Bad, and the Ugly

	Chapter Summary
	Further Reading

	Chapter 15. More About Type Hints
	What’s New in This Chapter
	Overloaded Signatures
	Max Overload
	Takeaways from Overloading max

	TypedDict
	Type Casting
	Reading Type Hints at Runtime
	Problems with Annotations at Runtime
	Dealing with the Problem

	Implementing a Generic Class
	Basic Jargon for Generic Types

	Variance
	An Invariant Dispenser
	A Covariant Dispenser
	A Contravariant Trash Can
	Variance Review

	Implementing a Generic Static Protocol
	Chapter Summary
	Further Reading

	Chapter 16. Operator Overloading
	What’s New in This Chapter
	Operator Overloading 101
	Unary Operators
	Overloading + for Vector Addition
	Overloading * for Scalar Multiplication
	Using @ as an Infix Operator
	Wrapping-Up Arithmetic Operators
	Rich Comparison Operators
	Augmented Assignment Operators
	Chapter Summary
	Further Reading

	Part IV. Control Flow
	Chapter 17. Iterators, Generators, and Classic Coroutines
	What’s New in This Chapter
	A Sequence of Words
	Why Sequences Are Iterable: The iter Function
	Using iter with a Callable

	Iterables Versus Iterators
	Sentence Classes with __iter__
	Sentence Take #2: A Classic Iterator
	Don’t Make the Iterable an Iterator for Itself
	Sentence Take #3: A Generator Function
	How a Generator Works

	Lazy Sentences
	Sentence Take #4: Lazy Generator
	Sentence Take #5: Lazy Generator Expression

	When to Use Generator Expressions
	An Arithmetic Progression Generator
	Arithmetic Progression with itertools

	Generator Functions in the Standard Library
	Iterable Reducing Functions
	Subgenerators with yield from
	Reinventing chain
	Traversing a Tree

	Generic Iterable Types
	Classic Coroutines
	Example: Coroutine to Compute a Running Average
	Returning a Value from a Coroutine
	Generic Type Hints for Classic Coroutines

	Chapter Summary
	Further Reading

	Chapter 18. with, match, and else Blocks
	What’s New in This Chapter
	Context Managers and with Blocks
	The contextlib Utilities
	Using @contextmanager

	Pattern Matching in lis.py: A Case Study
	Scheme Syntax
	Imports and Types
	The Parser
	The Environment
	The REPL
	The Evaluator
	Procedure: A Class Implementing a Closure
	Using OR-patterns

	Do This, Then That: else Blocks Beyond if
	Chapter Summary
	Further Reading

	Chapter 19. Concurrency Models in Python
	What’s New in This Chapter
	The Big Picture
	A Bit of Jargon
	Processes, Threads, and Python’s Infamous GIL

	A Concurrent Hello World
	Spinner with Threads
	Spinner with Processes
	Spinner with Coroutines
	Supervisors Side-by-Side

	The Real Impact of the GIL
	Quick Quiz

	A Homegrown Process Pool
	Process-Based Solution
	Understanding the Elapsed Times
	Code for the Multicore Prime Checker
	Experimenting with More or Fewer Processes
	Thread-Based Nonsolution

	Python in the Multicore World
	System Administration
	Data Science
	Server-Side Web/Mobile Development
	WSGI Application Servers
	Distributed Task Queues

	Chapter Summary
	Further Reading
	Concurrency with Threads and Processes
	The GIL
	Concurrency Beyond the Standard Library
	Concurrency and Scalability Beyond Python

	Chapter 20. Concurrent Executors
	What’s New in This Chapter
	Concurrent Web Downloads
	A Sequential Download Script
	Downloading with concurrent.futures
	Where Are the Futures?

	Launching Processes with concurrent.futures
	Multicore Prime Checker Redux

	Experimenting with Executor.map
	Downloads with Progress Display and Error Handling
	Error Handling in the flags2 Examples
	Using futures.as_completed

	Chapter Summary
	Further Reading

	Chapter 21. Asynchronous Programming
	What’s New in This Chapter
	A Few Definitions
	An asyncio Example: Probing Domains
	Guido’s Trick to Read Asynchronous Code

	New Concept: Awaitable
	Downloading with asyncio and HTTPX
	The Secret of Native Coroutines: Humble Generators
	The All-or-Nothing Problem

	Asynchronous Context Managers
	Enhancing the asyncio Downloader
	Using asyncio.as_completed and a Thread
	Throttling Requests with a Semaphore
	Making Multiple Requests for Each Download

	Delegating Tasks to Executors
	Writing asyncio Servers
	A FastAPI Web Service
	An asyncio TCP Server

	Asynchronous Iteration and Asynchronous Iterables
	Asynchronous Generator Functions
	Async Comprehensions and Async Generator Expressions

	async Beyond asyncio: Curio
	Type Hinting Asynchronous Objects
	How Async Works and How It Doesn’t
	Running Circles Around Blocking Calls
	The Myth of I/O-Bound Systems
	Avoiding CPU-Bound Traps

	Chapter Summary
	Further Reading

	Part V. Metaprogramming
	Chapter 22. Dynamic Attributes and Properties
	What’s New in This Chapter
	Data Wrangling with Dynamic Attributes
	Exploring JSON-Like Data with Dynamic Attributes
	The Invalid Attribute Name Problem
	Flexible Object Creation with __new__

	Computed Properties
	Step 1: Data-Driven Attribute Creation
	Step 2: Property to Retrieve a Linked Record
	Step 3: Property Overriding an Existing Attribute
	Step 4: Bespoke Property Cache
	Step 5: Caching Properties with functools

	Using a Property for Attribute Validation
	LineItem Take #1: Class for an Item in an Order
	LineItem Take #2: A Validating Property

	A Proper Look at Properties
	Properties Override Instance Attributes
	Property Documentation

	Coding a Property Factory
	Handling Attribute Deletion
	Essential Attributes and Functions for Attribute Handling
	Special Attributes that Affect Attribute Handling
	Built-In Functions for Attribute Handling
	Special Methods for Attribute Handling

	Chapter Summary
	Further Reading

	Chapter 23. Attribute Descriptors
	What’s New in This Chapter
	Descriptor Example: Attribute Validation
	LineItem Take #3: A Simple Descriptor
	LineItem Take #4: Automatic Naming of Storage Attributes
	LineItem Take #5: A New Descriptor Type

	Overriding Versus Nonoverriding Descriptors
	Overriding Descriptors
	Overriding Descriptor Without __get__
	Nonoverriding Descriptor
	Overwriting a Descriptor in the Class

	Methods Are Descriptors
	Descriptor Usage Tips
	Descriptor Docstring and Overriding Deletion
	Chapter Summary
	Further Reading

	Chapter 24. Class Metaprogramming
	What’s New in This Chapter
	Classes as Objects
	type: The Built-In Class Factory
	A Class Factory Function
	Introducing __init_subclass__
	Why __init_subclass__ Cannot Configure __slots__

	Enhancing Classes with a Class Decorator
	What Happens When: Import Time Versus Runtime
	Evaluation Time Experiments

	Metaclasses 101
	How a Metaclass Customizes a Class
	A Nice Metaclass Example
	Metaclass Evaluation Time Experiment

	A Metaclass Solution for Checked
	Metaclasses in the Real World
	Modern Features Simplify or Replace Metaclasses
	Metaclasses Are Stable Language Features
	A Class Can Only Have One Metaclass
	Metaclasses Should Be Implementation Details

	A Metaclass Hack with __prepare__
	Wrapping Up
	Chapter Summary
	Further Reading

	Afterword
	Further Reading

	Index
	About the Author
	Colophon

