OREILLY’ ESCH

Fluent
Python

Clear, Concise, and
Effective Programming

¥
Xeey
20

Luciano Ramalho

9

O'REILLY"

Fluent Python

Don't waste time bending Python to fit patterns you've
learned in other languages. Python's simplicity lets you
become productive quickly, but often this means you aren't
using everything the language has to offer. With the updated
edition of this hands-on guide, you'll learn how to write

effective, modern Python 3 code by leveraging its best ideas.

Discover and apply idiomatic Python 3 features beyond your

past experience. Author Luciano Ramalho guides you through
Python's core language features and libraries and teaches you

how to make your code shorter, faster, and more readable.

Complete with major updates throughout, this new edition
features five parts that work as five short books within the
book:

¢ Data structures: Sequences, dicts, sets, Unicode, and
data classes

 Functions as objects: First-class functions, related design
patterns, and type hints in function declarations

e Object-oriented idioms: Composition, inheritance, mixins,
interfaces, operator overloading, protocols, and more
static types

¢ Control flow: Context managers, generators, coroutines,
async/await, and thread/process pools

e Metaprogramming: Properties, attribute descriptors, class
decorators, and new class metaprogramming hooks that
replace or simplify metaclasses

Luciano Ramalho is a principal consultant at Thoughtworks and a
Python Software Foundation fellow.

“My ‘go to' book when
looking for detailed
explanations and uses
of a Python feature.
Luciano’s teaching
and presentation are
excellent. A great book
for advanced beginners
looking to build their

knowledge.”
—Carol Willing
Python Steering Council member
(2020-2021)

“This is not the usual dry
coding book, but full of
useful, tested examples,
and just enough humor.
My colleagues and |
have used this amazing,
well-written book to
take our Python coding
to the next level.”

—Maria McKinley
Senior Software Engineer

PROGRAMMING / PYTHON

US $6999 CAN $8799
ISBN: 978-1-492-05635-5

WVINRNIINN i
IR i

8

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

SECOND EDITION

Fluent Python

Clear, Concise, and
Effective Programming

Luciano Ramalho

Bejng - Boston « Farnham - Sebastopol - Tokyo [@YRIIMNY

Fluent Python
by Luciano Ramalho

Copyright © 2022 Luciano Ramalho. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institu-
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn Indexer: Judith McConville
Development Editor: Jeff Bleiel Interior Designer: David Futato
Production Editor: Daniel Elfanbaum Cover Designer: Karen Montgomery
Copyeditor: Sonia Saruba lllustrator: Kate Dullea

Proofreader: Kim Cofer
April 2022: Second Edition

Revision History for the Second Edition
2022-03-31: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492056355 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Fluent Python, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-492-05635-5
[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492056355

Para Marta, com todo o meu amor.

Table of Contents

o] [Xix

Partl. Data Structures

1. ThePythonDataModel..........ccuvvrriiiiiiiiiiiii it iiiiiiieeneeenns 3
What’s New in This Chapter 4
A Pythonic Card Deck 5
How Special Methods Are Used 8

Emulating Numeric Types 9
String Representation 12
Boolean Value of a Custom Type 13
Collection API 14
Overview of Special Methods 15
Why len Is Not a Method 17
Chapter Summary 18
Further Reading 18

2. AN Array of SEQUENCES. . ..ot vvet ettt etiertier et eriesierennrenneennesnnns 21
What’s New in This Chapter 22
Overview of Built-In Sequences 22
List Comprehensions and Generator Expressions 25

List Comprehensions and Readability 25
Listcomps Versus map and filter 27
Cartesian Products 27
Generator Expressions 29
Tuples Are Not Just Immutable Lists 30

Tuples as Records 30

Tuples as Immutable Lists
Comparing Tuple and List Methods
Unpacking Sequences and Iterables
Using * to Grab Excess Items
Unpacking with * in Function Calls and Sequence Literals
Nested Unpacking
Pattern Matching with Sequences
Pattern Matching Sequences in an Interpreter
Slicing
Why Slices and Ranges Exclude the Last Item
Slice Objects
Multidimensional Slicing and Ellipsis
Assigning to Slices
Using + and * with Sequences
Building Lists of Lists
Augmented Assignment with Sequences
A += Assignment Puzzler
list.sort Versus the sorted Built-In
When a List Is Not the Answer
Arrays
Memory Views
NumPy
Deques and Other Queues
Chapter Summary
Further Reading

. Dictionaries and Sets.vvvvriiirit it e

What’s New in This Chapter
Modern dict Syntax
dict Comprehensions
Unpacking Mappings
Merging Mappings with |
Pattern Matching with Mappings
Standard API of Mapping Types
What Is Hashable
Overview of Common Mapping Methods
Inserting or Updating Mutable Values
Automatic Handling of Missing Keys
defaultdict: Another Take on Missing Keys
The __missing_ Method
Inconsistent Usage of __missing__ in the Standard Library
Variations of dict

32
34
35
36
37
37
38
43
47
47
48
49
50
50
51
53
54
56
59
59
62
64
67
70
71

77
78
78
79
80
80
81
83
84
85
87
90
90
91
94
95

vi

Table of Contents

collections.OrderedDict
collections.ChainMap
collections.Counter
shelve.Shelf
Subclassing UserDict Instead of dict
Immutable Mappings
Dictionary Views
Practical Consequences of How dict Works
Set Theory
Set Literals
Set Comprehensions
Practical Consequences of How Sets Work
Set Operations
Set Operations on dict Views
Chapter Summary
Further Reading

. Unicode Text Versus Bytes.oovuviiniiiniiniieniiiiineenneenneennnss
What’s New in This Chapter
Character Issues
Byte Essentials
Basic Encoders/Decoders
Understanding Encode/Decode Problems
Coping with UnicodeEncodeError
Coping with UnicodeDecodeError
SyntaxError When Loading Modules with Unexpected Encoding
How to Discover the Encoding of a Byte Sequence
BOM: A Useful Gremlin
Handling Text Files
Beware of Encoding Defaults
Normalizing Unicode for Reliable Comparisons
Case Folding
Utility Functions for Normalized Text Matching
Extreme “Normalization”: Taking Out Diacritics
Sorting Unicode Text
Sorting with the Unicode Collation Algorithm
The Unicode Database
Finding Characters by Name
Numeric Meaning of Characters
Dual-Mode str and bytes APIs
str Versus bytes in Regular Expressions
str Versus bytes in os Functions

95
95
96
97
97
99
101
102
103
105
106
107
107
110
112
113

117
118
118
120
123
125
125
126
128
128
129
131
134
140
142
143
144
148
150
150
151
153
155
155
156

Table of Contents

vii

. Object References, Mutability, and Recycling

Chapter Summary
Further Reading

Data Class Builders.oovvvvniniiii ittt iiiiiiiiiienennnnes

What’s New in This Chapter
Overview of Data Class Builders
Main Features
Classic Named Tuples
Typed Named Tuples
Type Hints 101
No Runtime Effect
Variable Annotation Syntax
The Meaning of Variable Annotations
More About @dataclass
Field Options
Post-init Processing
Typed Class Attributes
Initialization Variables That Are Not Fields
@dataclass Example: Dublin Core Resource Record
Data Class as a Code Smell
Data Class as Scaffolding
Data Class as Intermediate Representation
Pattern Matching Class Instances
Simple Class Patterns
Keyword Class Patterns
Positional Class Patterns
Chapter Summary
Further Reading

What’s New in This Chapter
Variables Are Not Boxes
Identity, Equality, and Aliases
Choosing Between == and is
The Relative Immutability of Tuples
Copies Are Shallow by Default
Deep and Shallow Copies of Arbitrary Objects
Function Parameters as References
Mutable Types as Parameter Defaults: Bad Idea
Defensive Programming with Mutable Parameters
del and Garbage Collection
Tricks Python Plays with Immutables

157
158

163
164
164
167
169
172
173
173
174
175
179
180
183
185
186
187
190
191
191
192
192
193
194
195
196

201
202
202
204
206
207
208
211
213
214
216
219
221

viii

Table of Contents

Chapter Summary 223
Further Reading 224

Partll. Functions as Objects

7. Functions as First-Class Objects.coooiiiiiiiiiiiiiiiiii i 231
What’s New in This Chapter 232
Treating a Function Like an Object 232
Higher-Order Functions 234

Modern Replacements for map, filter, and reduce 235
Anonymous Functions 236
The Nine Flavors of Callable Objects 237
User-Defined Callable Types 239
From Positional to Keyword-Only Parameters 240

Positional-Only Parameters 242
Packages for Functional Programming 243

The operator Module 243

Freezing Arguments with functools.partial 247
Chapter Summary 249
Further Reading 250

8. TypeHintsinFunctions..........c.ooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiineenes 253
What’s New in This Chapter 254
About Gradual Typing 254
Gradual Typing in Practice 255

Starting with Mypy 256
Making Mypy More Strict 257
A Default Parameter Value 258
Using None as a Default 260
Types Are Defined by Supported Operations 260
Types Usable in Annotations 266

The Any Type 266

Simple Types and Classes 269

Optional and Union Types 270

Generic Collections 271

Tuple Types 274

Generic Mappings 276

Abstract Base Classes 278

Iterable 280

Parameterized Generics and TypeVar 282

Static Protocols 286

Table of Contents | ix

10.

Callable
NoReturn

Annotating Positional Only and Variadic Parameters

Imperfect Typing and Strong Testing
Chapter Summary
Further Reading

Decorators and CloSUNeS. ... vvvevrevr i neieenenennenenns

What’s New in This Chapter
Decorators 101
When Python Executes Decorators
Registration Decorators
Variable Scope Rules
Closures
The nonlocal Declaration
Variable Lookup Logic
Implementing a Simple Decorator
How It Works
Decorators in the Standard Library
Memoization with functools.cache
Using Iru_cache
Single Dispatch Generic Functions
Parameterized Decorators
A Parameterized Registration Decorator
The Parameterized Clock Decorator
A Class-Based Clock Decorator
Chapter Summary
Further Reading

Design Patterns with First-Class Functions......................

What’s New in This Chapter
Case Study: Refactoring Strategy
Classic Strategy
Function-Oriented Strategy
Choosing the Best Strategy: Simple Approach
Finding Strategies in a Module
Decorator-Enhanced Strategy Pattern
The Command Pattern
Chapter Summary
Further Reading

291
294
295
296
297
298

303
304
304
306
308
308
311
315
316
317
318
320
320
323
324
329
329
332
335
336
336

34
342
342
342
347
350
351
353
355
357
358

X

Table of Contents

Partlll. Classes and Protocols

1.

12.

13.

APythonicObject.ovuiriii ittt ittt it aas
What’s New in This Chapter
Object Representations
Vector Class Redux
An Alternative Constructor
classmethod Versus staticmethod
Formatted Displays
A Hashable Vector2d
Supporting Positional Pattern Matching
Complete Listing of Vector2d, Version 3
Private and “Protected” Attributes in Python
Saving Memory with __slots__
Simple Measure of __slot__ Savings
Summarizing the Issues with __slots__
Overriding Class Attributes
Chapter Summary
Further Reading

Special Methods for Sequences.c.oovviiiiiiiiiiiiiiii it
What’s New in This Chapter
Vector: A User-Defined Sequence Type
Vector Take #1: Vector2d Compatible
Protocols and Duck Typing
Vector Take #2: A Sliceable Sequence
How Slicing Works
A Slice-Aware __getitem__
Vector Take #3: Dynamic Attribute Access
Vector Take #4: Hashing and a Faster ==
Vector Take #5: Formatting
Chapter Summary
Further Reading

Interfaces, Protocols, and ABCS. ..o .vvvvrvninre i iiiiiiieeeneenenennenes
The Typing Map
What’s New in This Chapter
Two Kinds of Protocols
Programming Ducks
Python Digs Sequences
Monkey Patching: Implementing a Protocol at Runtime
Defensive Programming and “Fail Fast”

364
364
365
368
369
370
374
377
378
382
384
387
388
389
391
392

397
398
398
399
402
403
404
406
407
411
418
425
426

431
432
433
434
435
436
438
440

Table of Contents

| xi

14.

Goose Typing
Subclassing an ABC
ABCs in the Standard Library
Defining and Using an ABC
ABC Syntax Details
Subclassing an ABC
A Virtual Subclass of an ABC
Usage of register in Practice
Structural Typing with ABCs
Static Protocols
The Typed double Function
Runtime Checkable Static Protocols
Limitations of Runtime Protocol Checks
Supporting a Static Protocol
Designing a Static Protocol
Best Practices for Protocol Design
Extending a Protocol
The numbers ABCs and Numeric Protocols
Chapter Summary
Further Reading

Inheritance: For BetterorforWorse........oovvvvrvniiininneennnns

What’s New in This Chapter
The super() Function
Subclassing Built-In Types Is Tricky
Multiple Inheritance and Method Resolution Order
Mixin Classes
Case-Insensitive Mappings
Multiple Inheritance in the Real World
ABCs Are Mixins Too
ThreadingMixIn and ForkingMixIn
Django Generic Views Mixins
Multiple Inheritance in Tkinter
Coping with Inheritance
Favor Object Composition over Class Inheritance
Understand Why Inheritance Is Used in Each Case
Make Interfaces Explicit with ABCs
Use Explicit Mixins for Code Reuse
Provide Aggregate Classes to Users
Subclass Only Classes Designed for Subclassing
Avoid Subclassing from Concrete Classes
Tkinter: The Good, the Bad, and the Ugly

442
447
449
451
457
458
460
463
464
466
466
468
471
472
474
476
477
478
481
482

487
488
488
490
494
500
500
502
502
503
504
507
510
510
510
511
511
511
512
513
513

Xii

Table of Contents

Chapter Summary 514

Further Reading 515
15. More About Type Hints.oovvniirniiiiiiiiii ittt iii i eieeannes 519
What’s New in This Chapter 519
Overloaded Signatures 520
Max Overload 521
Takeaways from Overloading max 525
TypedDict 526
Type Casting 534
Reading Type Hints at Runtime 537
Problems with Annotations at Runtime 538
Dealing with the Problem 540
Implementing a Generic Class 541
Basic Jargon for Generic Types 544
Variance 544
An Invariant Dispenser 545
A Covariant Dispenser 546
A Contravariant Trash Can 547
Variance Review 549
Implementing a Generic Static Protocol 552
Chapter Summary 554
Further Reading 555
16. OperatorOverloading.ovvuieenieeiiereneeenneenerenerenaeennnns 561
What’s New in This Chapter 562
Operator Overloading 101 562
Unary Operators 563
Overloading + for Vector Addition 566
Overloading * for Scalar Multiplication 572
Using @ as an Infix Operator 574
Wrapping-Up Arithmetic Operators 576
Rich Comparison Operators 577
Augmented Assignment Operators 580
Chapter Summary 585
Further Reading 587

Part1V. Control Flow

17. Iterators, Generators, and Classic COroutines.oovvvevnenrnnenenennenenns 593
What’s New in This Chapter 594

Table of Contents | xiii

18.

A Sequence of Words
Why Sequences Are Iterable: The iter Function
Using iter with a Callable
Iterables Versus Iterators
Sentence Classes with __iter
Sentence Take #2: A Classic Iterator
Don’t Make the Iterable an Iterator for Itself
Sentence Take #3: A Generator Function
How a Generator Works
Lazy Sentences
Sentence Take #4: Lazy Generator
Sentence Take #5: Lazy Generator Expression
When to Use Generator Expressions
An Arithmetic Progression Generator
Arithmetic Progression with itertools
Generator Functions in the Standard Library
Iterable Reducing Functions
Subgenerators with yield from
Reinventing chain
Traversing a Tree
Generic Iterable Types
Classic Coroutines
Example: Coroutine to Compute a Running Average
Returning a Value from a Coroutine
Generic Type Hints for Classic Coroutines
Chapter Summary
Further Reading

with, match, and elseBlocks.covvvivriiiiiiiiiinien.

What’s New in This Chapter
Context Managers and with Blocks
The contextlib Utilities
Using @contextmanager
Pattern Matching in lis.py: A Case Study
Scheme Syntax
Imports and Types
The Parser
The Environment
The REPL
The Evaluator
Procedure: A Class Implementing a Closure
Using OR-patterns

594
596
598
599
603
603
605
606
607
610
610
611
613
615
618
619
630
632
633
634
639
641
643
646
650
652
652

657
658
658
663
664
669
669
671
671
673
675
676
685
686

Xiv

Table of Contents

19.

20.

Do This, Then That: else Blocks Beyond if
Chapter Summary
Further Reading

Concurrency ModelsinPython..........ccovviiiiiiiiiii it iiieennn,
What’s New in This Chapter
The Big Picture
A Bit of Jargon
Processes, Threads, and Python’s Infamous GIL
A Concurrent Hello World
Spinner with Threads
Spinner with Processes
Spinner with Coroutines
Supervisors Side-by-Side
The Real Impact of the GIL
Quick Quiz
A Homegrown Process Pool
Process-Based Solution
Understanding the Elapsed Times
Code for the Multicore Prime Checker
Experimenting with More or Fewer Processes
Thread-Based Nonsolution
Python in the Multicore World
System Administration
Data Science
Server-Side Web/Mobile Development
WSGI Application Servers
Distributed Task Queues
Chapter Summary
Further Reading
Concurrency with Threads and Processes
The GIL
Concurrency Beyond the Standard Library
Concurrency and Scalability Beyond Python

ConCUIreNt EXECULONS. . .o vvvve ettt ittt ie e eieie e eneeneennannans
What’s New in This Chapter
Concurrent Web Downloads
A Sequential Download Script
Downloading with concurrent.futures
Where Are the Futures?
Launching Processes with concurrent.futures

687
689
690

695
696
696
697
699
701
701
704
706
711
713
713
716
718
718
719
723
724
725
726
727
728
730
732
733
734
734
736
736
738

743
743
744
746
749
751
754

Table of Contents

21.

Multicore Prime Checker Redux

Experimenting with Executor.map

Downloads with Progress Display and Error Handling
Error Handling in the flags2 Examples
Using futures.as_completed

Chapter Summary

Further Reading

Asynchronous Programming.covveiierinnrenneenneenns.

What’s New in This Chapter
A Few Definitions
An asyncio Example: Probing Domains
Guido’s Trick to Read Asynchronous Code
New Concept: Awaitable
Downloading with asyncio and HTTPX
The Secret of Native Coroutines: Humble Generators
The All-or-Nothing Problem
Asynchronous Context Managers
Enhancing the asyncio Downloader
Using asyncio.as_completed and a Thread
Throttling Requests with a Semaphore
Making Multiple Requests for Each Download
Delegating Tasks to Executors
Writing asyncio Servers
A FastAPI Web Service
An asyncio TCP Server
Asynchronous Iteration and Asynchronous Iterables
Asynchronous Generator Functions

Async Comprehensions and Async Generator Expressions

async Beyond asyncio: Curio

Type Hinting Asynchronous Objects

How Async Works and How It Doesn’t
Running Circles Around Blocking Calls
The Myth of I/O-Bound Systems
Avoiding CPU-Bound Traps

Chapter Summary

Further Reading

755
758
762
766
769
772
772

775
776
777
778
780
781
782
784
785
786
787
788
790
794
797
799
800
804
811
812
818
821
824
825
825
826
826
827
828

Xvi

Table of Contents

PartV. Metaprogramming

22. Dynamic Attributes and Properties.c.covvuiiiiiiiiiiiiiiiiiiniennaes 835
What’s New in This Chapter 836
Data Wrangling with Dynamic Attributes 836

Exploring JSON-Like Data with Dynamic Attributes 838
The Invalid Attribute Name Problem 842
Flexible Object Creation with __new__ 843
Computed Properties 845
Step 1: Data-Driven Attribute Creation 846
Step 2: Property to Retrieve a Linked Record 848
Step 3: Property Overriding an Existing Attribute 852
Step 4: Bespoke Property Cache 853
Step 5: Caching Properties with functools 855
Using a Property for Attribute Validation 857
Lineltem Take #1: Class for an Item in an Order 857
Lineltem Take #2: A Validating Property 858
A Proper Look at Properties 860
Properties Override Instance Attributes 861
Property Documentation 864
Coding a Property Factory 865
Handling Attribute Deletion 868
Essential Attributes and Functions for Attribute Handling 869
Special Attributes that Affect Attribute Handling 870
Built-In Functions for Attribute Handling 870
Special Methods for Attribute Handling 871
Chapter Summary 873
Further Reading 873

23. Attribute Descriptors.ooveerir it i i aaes 879
What’s New in This Chapter 880
Descriptor Example: Attribute Validation 880

Lineltem Take #3: A Simple Descriptor 880
Lineltem Take #4: Automatic Naming of Storage Attributes 887
Lineltem Take #5: A New Descriptor Type 889
Overriding Versus Nonoverriding Descriptors 892
Overriding Descriptors 894
Overriding Descriptor Without __get 895
Nonoverriding Descriptor 896
Overwriting a Descriptor in the Class 897
Methods Are Descriptors 898
Descriptor Usage Tips 900

Table of Contents | xvii

Descriptor Docstring and Overriding Deletion 902

Chapter Summary 903
Further Reading 904

24, (lass Metaprogramming.c.oeeueerneeenereneeenneenneeenesennnens 907
What’s New in This Chapter 908
Classes as Objects 908
type: The Built-In Class Factory 909

A Class Factory Function 911
Introducing __init_subclass__ 914
Why __init_subclass__ Cannot Configure __slots__ 921
Enhancing Classes with a Class Decorator 922
What Happens When: Import Time Versus Runtime 925
Evaluation Time Experiments 926
Metaclasses 101 931
How a Metaclass Customizes a Class 933

A Nice Metaclass Example 934
Metaclass Evaluation Time Experiment 937

A Metaclass Solution for Checked 942
Metaclasses in the Real World 947
Modern Features Simplify or Replace Metaclasses 947
Metaclasses Are Stable Language Features 948

A Class Can Only Have One Metaclass 948
Metaclasses Should Be Implementation Details 949

A Metaclass Hack with __prepare__ 950
Wrapping Up 952
Chapter Summary 953
Further Reading 954
AFterWOrd. . ..oooe 959
INdeX. ..o 963

xvii | Table of Contents

Preface

Here’s the plan: when someone uses a feature you don’t understand, simply shoot
them. This is easier than learning something new, and before too long the only living
coders will be writing in an easily understood, tiny subset of Python 0.9.6 <wink>.!

—Tim Peters, legendary core developer and author of The Zen of Python

“Python is an easy to learn, powerful programming language.” Those are the first
words of the official Python 3.10 tutorial. That is true, but there is a catch: because
the language is easy to learn and put to use, many practicing Python programmers
leverage only a fraction of its powerful features.

An experienced programmer may start writing useful Python code in a matter of
hours. As the first productive hours become weeks and months, a lot of developers go
on writing Python code with a very strong accent carried from languages learned
before. Even if Python is your first language, often in academia and in introductory
books it is presented while carefully avoiding language-specific features.

As a teacher introducing Python to programmers experienced in other languages, I
see another problem that this book tries to address: we only miss stuff we know
about. Coming from another language, anyone may guess that Python supports regu-
lar expressions, and look that up in the docs. But if you've never seen tuple unpacking
or descriptors before, you will probably not search for them, and you may end up not
using those features just because they are specific to Python.

This book is not an A-to-Z exhaustive reference of Python. Its emphasis is on the lan-
guage features that are either unique to Python or not found in many other popular
languages. This is also mostly a book about the core language and some of its libra-
ries. I will rarely talk about packages that are not in the standard library, even though
the Python package index now lists more than 60,000 libraries, and many of them are
incredibly useful.

1 Message to the comp.lang.python Usenet group, Dec. 23, 2002: “Acrimony in c.l.p”.

Xix

https://fpy.li/p-1
https://fpy.li/p-2

Who This Book Is For

This book was written for practicing Python programmers who want to become pro-
ficient in Python 3. I tested the examples in Python 3.10—most of them also in
Python 3.9 and 3.8. When an example requires Python 3.10, it should be clearly
marked.

If you are not sure whether you know enough Python to follow along, review the top-
ics of the official Python tutorial. Topics covered in the tutorial will not be explained
here, except for some features that are new.

Who This Book Is Not For

If you are just learning Python, this book is going to be hard to follow. Not only that,
if you read it too early in your Python journey, it may give you the impression that
every Python script should leverage special methods and metaprogramming tricks.
Premature abstraction is as bad as premature optimization.

Five Books in One

I recommend that everyone read Chapter 1, “The Python Data Model”. The core
audience for this book should not have trouble jumping directly to any part in this
book after Chapter 1, but often I assume you've read preceding chapters in each spe-
cific part. Think of Parts I through V as books within the book.

I tried to emphasize using what is available before discussing how to build your own.
For example, in Part I, Chapter 2 covers sequence types that are ready to use, includ-
ing some that don’t get a lot of attention, like collections.deque. Building user-
defined sequences is only addressed in Part III, where we also see how to leverage the
abstract base classes (ABCs) from collections.abc. Creating your own ABCs is dis-
cussed even later in Part III, because I believe it’s important to be comfortable using
an ABC before writing your own.

This approach has a few advantages. First, knowing what is ready to use can save you
from reinventing the wheel. We use existing collection classes more often than we
implement our own, and we can give more attention to the advanced usage of avail-
able tools by deferring the discussion on how to create new ones. We are also more
likely to inherit from existing ABCs than to create a new ABC from scratch. And
finally, I believe it is easier to understand the abstractions after you've seen them in
action.

The downside of this strategy is the forward references scattered throughout the
chapters. I hope these will be easier to tolerate now that you know why I chose this
path.

xx | Preface

https://fpy.li/p-3

How the Book Is Organized
Here are the main topics in each part of the book:

Part I, “Data Structures”

Chapter 1 introduces the Python Data Model and explains why the special meth-
ods (e.g., __repr__) are the key to the consistent behavior of objects of all types.
Special methods are covered in more detail throughout the book. The remaining
chapters in this part cover the use of collection types: sequences, mappings, and
sets, as well as the str versus bytes split—the cause of much celebration among
Python 3 users and much pain for Python 2 users migrating their codebases. Also
covered are the high-level class builders in the standard library: named tuple fac-
tories and the @dataclass decorator. Pattern matching—new in Python 3.10—is
covered in sections in Chapters 2, 3, and 5, which discuss sequence patterns,
mapping patterns, and class patterns. The last chapter in Part I is about the life
cycle of objects: references, mutability, and garbage collection.

Part II, “Functions as Objects”
Here we talk about functions as first-class objects in the language: what that
means, how it affects some popular design patterns, and how to implement func-
tion decorators by leveraging closures. Also covered here is the general concept
of callables in Python, function attributes, introspection, parameter annotations,
and the new nonlocal declaration in Python 3. Chapter 8 introduces the major
new topic of type hints in function signatures.

Part III, “Classes and Protocols”
Now the focus is on building classes “by hand”—as opposed to using the class
builders covered in Chapter 5. Like any Object-Oriented (OO) language, Python
has its particular set of features that may or may not be present in the language in
which you and I learned class-based programming. The chapters explain how
to build your own collections, abstract base classes (ABCs), and protocols, as well
as how to cope with multiple inheritance, and how to implement operator
overloading—when that makes sense. Chapter 15 continues the coverage of

type hints.

Part IV, “Control Flow”
Covered in this part are the language constructs and libraries that go beyond tra-
ditional control flow with conditionals, loops, and subroutines. We start with
generators, then visit context managers and coroutines, including the challenging
but powerful new yield from syntax. Chapter 18 includes a significant example
using pattern matching in a simple but functional language interpreter. Chap-
ter 19, “Concurrency Models in Python” is a new chapter presenting an overview
of alternatives for concurrent and parallel processing in Python, their limitations,
and how software architecture allows Python to operate at web scale. I rewrote

Preface | xxi

the chapter about asynchronous programming to emphasize core language fea-
tures—e.g., await, async dev, async for, and async with, and show how they
are used with asyncio and other frameworks.

Part V, “Metaprogramming”

This part starts with a review of techniques for building classes with attributes
created dynamically to handle semi-structured data, such as JSON datasets. Next,
we cover the familiar properties mechanism, before diving into how object
attribute access works at a lower level in Python using descriptors. The relation-
ship among functions, methods, and descriptors is explained. Throughout
Part V, the step-by-step implementation of a field validation library uncovers
subtle issues that lead to the advanced tools of the final chapter: class decorators
and metaclasses.

Hands-On Approach

Often we’ll use the interactive Python console to explore the language and libraries. I
feel it is important to emphasize the power of this learning tool, particularly for those
readers who’ve had more experience with static, compiled languages that don’t pro-
vide a read-eval-print loop (REPL).

One of the standard Python testing packages, doctest, works by simulating console
sessions and verifying that the expressions evaluate to the responses shown. I used
doctest to check most of the code in this book, including the console listings. You
don’t need to use or even know about doctest to follow along: the key feature of
doctests is that they look like transcripts of interactive Python console sessions, so
you can easily try out the demonstrations yourself.

Sometimes I will explain what we want to accomplish by showing a doctest before the
code that makes it pass. Firmly establishing what is to be done before thinking about
how to do it helps focus our coding effort. Writing tests first is the basis of test-driven
development (TDD), and I've also found it helpful when teaching. If you are unfami-
liar with doctest, take a look at its documentation and this book’s example code
repository.

I also wrote unit tests for some of the larger examples using pytest—which I find eas-
ier to use and more powerful than the unittest module in the standard library. You’'ll
find that you can verify the correctness of most of the code in the book by typing
python3 -m doctest example_script.py or pytest in the command shell of your
OS. The pytest.ini configuration at the root of the example code repository ensures
that doctests are collected and executed by the pytest command.

xxii | Preface

https://fpy.li/doctest
https://fpy.li/doctest
https://fpy.li/code
https://fpy.li/code
https://fpy.li/code

Soapbox: My Personal Perspective

I have been using, teaching, and debating Python since 1998, and I enjoy studying
and comparing programming languages, their design, and the theory behind them.
At the end of some chapters, I have added “Soapbox™ sidebars with my own perspec-
tive about Python and other languages. Feel free to skip these if you are not into such
discussions. Their content is completely optional.

Companion Website: fluentpython.com

Covering new features—like type hints, data classes, and pattern matching—made
this second edition almost 30% larger than the first. To keep the book luggable,
I moved some content to fluentpython.com. You will find links to articles I published
there in several chapters. Some sample chapters are also in the companion website.
The full text is available online at the O’Reilly Learning subscription service. The
example code repository is on GitHub.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Note that when a line break falls within a constant_width term, a hyphen is not
added—it could be misunderstood as part of the term.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

Preface | xxiii

http://fluentpython.com
https://fpy.li/p-4
https://fpy.li/p-5
https://fpy.li/code

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

Using Code Examples

Every script and most code snippets that appear in the book are available in the Flu-
ent Python code repository on GitHub at https://fpy.li/code.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you're reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN, e.g., “Fluent Python, 2nd ed., by
Luciano Ramalho (O’Reilly). Copyright 2022 Luciano Ramalho, 978-1-492-05635-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xxiv | Preface

https://fpy.li/code
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

0'Reilly Online Learning

o » For more than 40 years, O’Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://fpy.li/p-4.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.
Find us on Facebook: http://facebook.com/oreilly.
Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: http://www.youtube.com/oreillymedia.

Acknowledgments

I did not expect updating a Python book five years later to be such a major undertak-
ing, but it was. Marta Mello, my beloved wife, was always there when I needed her.
My dear friend Leonardo Rochael helped me from the earliest writing to the final
technical review, including consolidating and double-checking the feedback from the
other tech reviewers, readers, and editors. I honestly don’t know if I'd have made it
without your support, Marta and Leo. Thank you so much!

Preface | xxv

http://oreilly.com
http://oreilly.com
https://fpy.li/p-4
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
https://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Jiirgen Gmach, Caleb Hattingh, Jess Males, Leonardo Rochael, and Miroslav Sedivy
were the outstanding technical review team for the second edition. They reviewed the
whole book. Bill Behrman, Bruce Eckel, Renato Oliveira, and Rodrigo Bernardo
Pimentel reviewed specific chapters. Their many suggestions from different perspec-
tives made the book much better.

Many readers sent corrections or made other contributions during the early release
phase, including: Guilherme Alves, Christiano Anderson, Konstantin Baikov, K. Alex
Birch, Michael Boesl, Lucas Brunialti, Sergio Cortez, Gino Crecco, Chukwuerika
Dike, Juan Esteras, Federico Fissore, Will Frey, Tim Gates, Alexander Hagerman,
Chen Hanxiao, Sam Hyeong, Simon Ilincev, Parag Kalra, Tim King, David Kwast,
Tina Lapine, Wanpeng Li, Guto Maia, Scott Martindale, Mark Meyer, Andy McFar-
land, Chad Mclntire, Diego Rabatone Oliveira, Francesco Piccoli, Meredith Rawls,
Michael Robinson, Federico Tula Rovaletti, Tushar Sadhwani, Arthur Constantino
Scardua, Randal L. Schwartz, Avichai Sefati, Guannan Shen, William Simpson, Vivek
Vashist, Jerry Zhang, Paul Zuradzki—and others who did not want to be named, sent
corrections after I delivered the draft, or are omitted because I failed to record their
names—sorry.

During my research, I learned about typing, concurrency, pattern matching, and
metaprogramming while interacting with Michael Albert, Pablo Aguilar, Kaleb Bar-
rett, David Beazley, J. S. O. Bueno, Bruce Eckel, Martin Fowler, Ivan Levkivskyi, Alex
Martelli, Peter Norvig, Sebastian Rittau, Guido van Rossum, Carol Willing, and Jelle
Zijlstra.

O’Reilly editors Jeff Bleiel, Jill Leonard, and Amelia Blevins made suggestions that
improved the flow of the book in many places. Jeft Bleiel and production editor
Danny Elfanbaum supported me throughout this long marathon.

The insights and suggestions of every one of them made the book better and more
accurate. Inevitably, there will still be bugs of my own creation in the final product. I
apologize in advance.

Finally, I want to extend my heartfelt thanks to my colleagues at Thoughtworks Brazil
—and especially to my sponsor, Alexey Béas—who supported this project in many
ways, all the way.

Of course, everyone who helped me understand Python and write the first edition
now deserves double thanks. There would be no second edition without a successful
first.

xxvi | Preface

Acknowledgments for the First Edition

The Bauhaus chess set by Josef Hartwig is an example of excellent design: beautiful,
simple, and clear. Guido van Rossum, son of an architect and brother of a master font
designer, created a masterpiece of language design. I love teaching Python because it
is beautiful, simple, and clear.

Alex Martelli and Anna Ravenscroft were the first people to see the outline of this
book and encouraged me to submit it to O’Reilly for publication. Their books taught
me idiomatic Python and are models of clarity, accuracy, and depth in technical writ-
ing. Alex’s 6,200+ Stack Overflow posts are a fountain of insights about the language
and its proper use.

Martelli and Ravenscroft were also technical reviewers of this book, along with Len-
nart Regebro and Leonardo Rochael. Everyone in this outstanding technical review
team has at least 15 years of Python experience, with many contributions to high-
impact Python projects in close contact with other developers in the community.
Together they sent me hundreds of corrections, suggestions, questions, and opinions,
adding tremendous value to the book. Victor Stinner kindly reviewed Chapter 21,
bringing his expertise as an asyncio maintainer to the technical review team. It was a
great privilege and a pleasure to collaborate with them over these past several
months.

Editor Meghan Blanchette was an outstanding mentor, helping me improve the orga-
nization and flow of the book, letting me know when it was boring, and keeping me
from delaying even more. Brian MacDonald edited chapters in Part IT while Meghan
was away. I enjoyed working with them, and with everyone I've contacted at O’Reilly,
including the Atlas development and support team (Atlas is the O’Reilly book pub-
lishing platform, which I was fortunate to use to write this book).

Mario Domenech Goulart provided numerous, detailed suggestions starting with the
first early release. I also received valuable feedback from Dave Pawson, Elias Dor-
neles, Leonardo Alexandre Ferreira Leite, Bruce Eckel, J. S. Bueno, Rafael Gongalves,
Alex Chiaranda, Guto Maia, Lucas Vido, and Lucas Brunialti.

Over the years, a number of people urged me to become an author, but the most per-
suasive were Rubens Prates, Aurelio Jargas, Ruda Moura, and Rubens Altimari.
Mauricio Bussab opened many doors for me, including my first real shot at writing a
book. Renzo Nuccitelli supported this writing project all the way, even if that meant a
slow start for our partnership at python.pro.br.

The wonderful Brazilian Python community is knowledgeable, generous, and fun.
The Python Brasil group has thousands of people, and our national conferences bring
together hundreds, but the most influential in my journey as a Pythonista were Leo-
nardo Rochael, Adriano Petrich, Daniel Vainsencher, Rodrigo RBP Pimentel, Bruno
Gola, Leonardo Santagada, Jean Ferri, Rodrigo Senra, J. S. Bueno, David Kwast, Luiz

Preface | xxvii

https://fpy.li/p-7
https://fpy.li/p-8
https://fpy.li/p-9

Irber, Osvaldo Santana, Fernando Masanori, Henrique Bastos, Gustavo Niemayer,
Pedro Werneck, Gustavo Barbieri, Lalo Martins, Danilo Bellini, and Pedro Kroger.

Dorneles Tremea was a great friend (incredibly generous with his time and knowl-
edge), an amazing hacker, and the most inspiring leader of the Brazilian Python
Association. He left us too early.

My students over the years taught me a lot through their questions, insights, feed-
back, and creative solutions to problems. Erico Andrei and Simples Consultoria
made it possible for me to focus on being a Python teacher for the first time.

Martijn Faassen was my Grok mentor and shared invaluable insights with me about
Python and Neanderthals. His work and that of Paul Everitt, Chris McDonough, Tres
Seaver, Jim Fulton, Shane Hathaway, Lennart Regebro, Alan Runyan, Alexander
Limi, Martijn Pieters, Godefroid Chapelle, and others from the Zope, Plone, and Pyr-
amid planets have been decisive in my career. Thanks to Zope and surfing the first
web wave, I was able to start making a living with Python in 1998. José Octavio Cas-
tro Neves was my partner in the first Python-centric software house in Brazil.

I have too many gurus in the wider Python community to list them all, but besides
those already mentioned, I am indebted to Steve Holden, Raymond Hettinger, A.M.
Kuchling, David Beazley, Fredrik Lundh, Doug Hellmann, Nick Coghlan, Mark Pil-
grim, Martijn Pieters, Bruce Eckel, Michele Simionato, Wesley Chun, Brandon Craig
Rhodes, Philip Guo, Daniel Greenfeld, Audrey Roy, and Brett Slatkin for teaching me
new and better ways to teach Python.

Most of these pages were written in my home office and in two labs: CoffeeLab and
Garoa Hacker Clube. CoffeeLab is the caffeine-geek headquarters in Vila Madalena,
Sao Paulo, Brazil. Garoa Hacker Clube is a hackerspace open to all: a community lab
where anyone can freely try out new ideas.

The Garoa community provided inspiration, infrastructure, and slack. I think Aleph
would enjoy this book.

My mother, Maria Lucia, and my father, Jairo, always supported me in every way. I
wish he was here to see the book; I am glad I can share it with her.

My wife, Marta Mello, endured 15 months of a husband who was always working,
but remained supportive and coached me through some critical moments in the
project when I feared I might drop out of the marathon.

Thank you all, for everything.

xxviii | Preface

https://fpy.li/p-10
https://fpy.li/p-11

PARTI

Data Structures

CHAPTER 1
The Python Data Model

Guido’s sense of the aesthetics of language design is amazing. I've met many fine lan-
guage designers who could build theoretically beautiful languages that no one would
ever use, but Guido is one of those rare people who can build a language that is just
slightly less theoretically beautiful but thereby is a joy to write programs in.

—Jim Hugunin, creator of Jython, cocreator of Aspect], and architect of
the .Net DLR!

One of the best qualities of Python is its consistency. After working with Python for a
while, you are able to start making informed, correct guesses about features that are
new to you.

However, if you learned another object-oriented language before Python, you may
find it strange to use len(collection) instead of collection.len(). This apparent
oddity is the tip of an iceberg that, when properly understood, is the key to every-
thing we call Pythonic. The iceberg is called the Python Data Model, and it is the API
that we use to make our own objects play well with the most idiomatic language
features.

You can think of the data model as a description of Python as a framework. It formal-
izes the interfaces of the building blocks of the language itself, such as sequences,
functions, iterators, coroutines, classes, context managers, and so on.

When using a framework, we spend a lot of time coding methods that are called by
the framework. The same happens when we leverage the Python Data Model to build
new classes. The Python interpreter invokes special methods to perform basic object
operations, often triggered by special syntax. The special method names are always
written with leading and trailing double underscores. For example, the syntax

1 “Story of Jython”, written as a foreword to Jython Essentials by Samuele Pedroni and Noel Rappin (O’Reilly).

https://fpy.li/1-1
https://fpy.li/1-2

obj[key] is supported by the __getitem__ special method. In order to evaluate
my_collection[key], the interpreter calls my_collection.__getitem__(key).

We implement special methods when we want our objects to support and interact
with fundamental language constructs such as:

o Collections

« Attribute access

o Iteration (including asynchronous iteration using async for)
o Operator overloading

o Function and method invocation

o String representation and formatting

« Asynchronous programming using await

+ Object creation and destruction

» Managed contexts using the with or async with statements

Magic and Dunder

The term magic method is slang for special method, but how do we
talk about a specific method like __getitem__? I learned to say
“dunder-getitem” from author and teacher Steve Holden. “Dun-
der” is a shortcut for “double underscore before and after.” That’s
why the special methods are also known as dunder methods. The
“Lexical Analysis” chapter of The Python Language Reference warns
that “Any use of __*__ names, in any context, that does not follow
explicitly documented use, is subject to breakage without warning.”

What's New in This Chapter

This chapter had few changes from the first edition because it is an introduction to
the Python Data Model, which is quite stable. The most significant changes are:

o Special methods supporting asynchronous programming and other new features,
added to the tables in “Overview of Special Methods” on page 15.

o Figure 1-2 showing the use of special methods in “Collection API” on page 14,
including the collections.abc.Collection abstract base class introduced in
Python 3.6.

4 | Chapter1:The Python Data Model

https://fpy.li/1-3

Also, here and throughout this second edition I adopted the f-string syntax intro-
duced in Python 3.6, which is more readable and often more convenient than the
older string formatting notations: the str.format() method and the % operator.

One reason to still use my_fmt.format() is when the definition of
my_fmt must be in a different place in the code than where the for-
matting operation needs to happen. For instance, when my_fmt has
multiple lines and is better defined in a constant, or when it must
come from a configuration file, or from the database. Those are
real needs, but don’t happen very often.

A Pythonic Card Deck

Example 1-1 is simple, but it demonstrates the power of implementing just two spe-
cial methods, __getitem__and __len__.

Example 1-1. A deck as a sequence of playing cards
import
Card = collections.namedtuple('Card', ['rank', 'suit'])

class FrenchDeck:
ranks = [str(n) for n in range(2, 11)] + list('JQKA")
suits = 'spades diamonds clubs hearts'.split()

def __init__ (self):
self._cards = [Card(rank, suit) for suit in self.suits
for rank in self.ranks]

def __len__ (self):
return len(self._cards)

def __getitem__(self, position):
return self._cards[position]

The first thing to note is the use of collections.namedtuple to construct a simple
class to represent individual cards. We use namedtuple to build classes of objects that
are just bundles of attributes with no custom methods, like a database record. In the
example, we use it to provide a nice representation for the cards in the deck, as shown
in the console session:

>>> beer_card = Card('7', 'diamonds')

>>> beer_card
Card(rank='7"', suit='diamonds')

APythonicCardDeck | 5

But the point of this example is the FrenchDeck class. It’s short, but it packs a punch.
First, like any standard Python collection, a deck responds to the len() function by
returning the number of cards in it:

>>> deck = FrenchDeck()
>>> len(deck)
52

Reading specific cards from the deck—say, the first or the last—is easy, thanks to the
__getitem__ method:

>>> deck[0]
Card(rank='2"', suit='spades')
>>> deck[-1]
Card(rank='A"', suit='hearts')

Should we create a method to pick a random card? No need. Python already has a
function to get a random item from a sequence: random.choice. We can use it on a
deck instance:

>>> from import choice
>>> choice(deck)
Card(rank='3"', suit='hearts')
>>> choice(deck)
Card(rank='K', suit='spades')
>>> choice(deck)
Card(rank='2"', suit='clubs')

We’ve just seen two advantages of using special methods to leverage the Python Data
Model:

o Users of your classes don’t have to memorize arbitrary method names for stan-
dard operations. (“How to get the number of items? Is it .size(), .length(), or
what?”)

« It’s easier to benefit from the rich Python standard library and avoid reinventing
the wheel, like the random. choice function.

But it gets better.

Because our __getitem__ delegates to the [] operator of self._cards, our deck

automatically supports slicing. Here’s how we look at the top three cards from a
brand-new deck, and then pick just the aces by starting at index 12 and skipping 13
cards at a time:

>>> deck[:3]

[Card(rank='2"', suit='spades'), Card(rank='3', suit='spades'),
Card(rank='4"', suit='spades')]

>>> deck[12::13]

[Card(rank="A"', suit='spades'), Card(rank='A', suit='diamonds'),
Card(rank="'A"', suit='clubs'), Card(rank='A', suit='hearts')]

6 | Chapter 1: The Python Data Model

Just by implementing the __getitem__ special method, our deck is also iterable:

>>> for card in deck: # doctest: +ELLIPSIS
print(card)

Card(rank='2"', suit='spades')

Card(rank='3"', suit='spades')

Card(rank='4"', suit='spades')

We can also iterate over the deck in reverse:

>>> for card in reversed(deck): # doctest: +ELLIPSIS
print(card)

Card(rank="A"', suit='hearts')

Card(rank='K', suit='hearts')

Card(rank='Q"', suit='hearts')

Ellipsis in doctests

Whenever possible, I extracted the Python console listings in this
book from doctest to ensure accuracy. When the output was too
long, the elided part is marked by an ellipsis (.. .), like in the last
line in the preceding code. In such cases, I used the # doctest:
+ELLIPSIS directive to make the doctest pass. If you are trying
these examples in the interactive console, you may omit the doctest
comments altogether.

Iteration is often implicit. If a collection has no __contains__ method, the in opera-
tor does a sequential scan. Case in point: in works with our FrenchDeck class because
it is iterable. Check it out:

>>> Card('Q', 'hearts') in deck

True

>>> Card('7', 'beasts') in deck

False
How about sorting? A common system of ranking cards is by rank (with aces being
highest), then by suit in the order of spades (highest), hearts, diamonds, and clubs
(lowest). Here is a function that ranks cards by that rule, returning 0 for the 2 of clubs
and 51 for the ace of spades:

suit_values = dict(spades=3, hearts=2, diamonds=1, clubs=0)

def spades_high(card):
rank_value = FrenchDeck.ranks.index(card.rank)
return rank_value * len(suit_values) + suit_values[card.suit]

Given spades_high, we can now list our deck in order of increasing rank:

APythonicCardDeck | 7

https://fpy.li/doctest

>>> for card in sorted(deck, key=spades_high): # doctest: +ELLIPSIS
v print(card)

Card(rank='2", suit='clubs")

Card(rank='2"', suit='diamonds')

Card(rank='2"', suit='hearts')

... (46 cards omitted)

Card(rank="'A"', suit='diamonds')

Card(rank="A"', suit='hearts')

Card(rank='A"', suit='spades')

Although FrenchDeck implicitly inherits from the object class, most of its function-
ality is not inherited, but comes from leveraging the data model and composition. By
implementing the special methods __len__ and __getitem__, our FrenchDeck
behaves like a standard Python sequence, allowing it to benefit from core language
features (e.g., iteration and slicing) and from the standard library, as shown by the
examples using random.chotice, reversed, and sorted. Thanks to composition, the
__len__ and __getitem__ implementations can delegate all the work to a list
object, self._cards.

How About Shuffling?

As implemented so far, a FrenchDeck cannot be shuffled because it
is immutable: the cards and their positions cannot be changed,
except by violating encapsulation and handling the _cards
attribute directly. In Chapter 13, we will fix that by adding a one-
line __setitem__ method.

How Special Methods Are Used

The first thing to know about special methods is that they are meant to be called by
the Python interpreter, and not by you. You don’t write my_object.__len__(). You
write len(my_object) and, if my_object is an instance of a user-defined class, then
Python calls the __len__ method you implemented.

But the interpreter takes a shortcut when dealing for built-in types like list, str,
bytearray, or extensions like the NumPy arrays. Python variable-sized collections
written in C include a struct® called PyVarObject, which has an ob_s1ize field holding
the number of items in the collection. So, if my_object is an instance of one of those
built-ins, then len(my_object) retrieves the value of the ob_size field, and this is
much faster than calling a method.

2 A Cstruct is a record type with named fields.

8 | Chapter 1: The Python Data Model

Pouria

Pouria

More often than not, the special method call is implicit. For example, the statement
for 1 in x: actually causes the invocation of iter(x), which in turn may call
X.__iter__ () if that is available, or use x.__getitem__ (), as in the FrenchDeck
example.

Normally, your code should not have many direct calls to special methods. Unless
you are doing a lot of metaprogramming, you should be implementing special meth-
ods more often than invoking them explicitly. The only special method that is fre-
quently called by user code directly is __init__ to invoke the initializer of the
superclass in your own __1init__ implementation.

If you need to invoke a special method, it is usually better to call the related built-in
function (e.g., len, iter, str, etc.). These built-ins call the corresponding special
method, but often provide other services and—for built-in types—are faster than
method calls. See, for example, “Using iter with a Callable” on page 598 in Chapter 17.

In the next sections, we’ll see some of the most important uses of special methods:

« Emulating numeric types
o String representation of objects
« Boolean value of an object

« Implementing collections

Emulating Numeric Types

Several special methods allow user objects to respond to operators such as +. We will
cover that in more detail in Chapter 16, but here our goal is to further illustrate the
use of special methods through another simple example.

We will implement a class to represent two-dimensional vectors—that is, Euclidean
vectors like those used in math and physics (see Figure 1-1).

The built-in complex type can be used to represent two-
dimensional vectors, but our class can be extended to represent n-
dimensional vectors. We will do that in Chapter 17.

How Special Methods Are Used | 9

Pouria

Pouria

Pouria

-+ Vector(4,5)

Vector(2,4)

Figure 1-1. Example of two-dimensional vector addition; Vector(2, 4) + Vector(2, 1)
results in Vector(4, 5).

We will start designing the API for such a class by writing a simulated console session
that we can use later as a doctest. The following snippet tests the vector addition pic-
tured in Figure 1-1:

>>> vl = Vector(2, 4)
>>> v2 = Vector(2, 1)
>>> vl + v2
Vector(4, 5)

Note how the + operator results in a new Vector, displayed in a friendly format at the
console.

The abs built-in function returns the absolute value of integers and floats, and the
magnitude of complex numbers, so to be consistent, our API also uses abs to calcu-
late the magnitude of a vector:

>>> v = Vector(3, 4)
>>> abs(v)
5.0

We can also implement the * operator to perform scalar multiplication (i.e., multi-
plying a vector by a number to make a new vector with the same direction and a
multiplied magnitude):

>>> v * 3
Vector(9, 12)
>>> abs(v * 3)
15.0

10 | Chapter1: The Python Data Model

Example 1-2 is a Vector class implementing the operations just described, through
the use of the special methods __repr__, __abs__, __add__,and __mul__

Example 1-2. A simple two-dimensional vector class

wnn

vector2d.py: a simplistic class demonstrating some special methods

It is simplistic for didactic reasons. It lacks proper error handling,
especially in the *°__add__'" and '"__mul__"" methods.

This example 1s greatly expanded later in the book.
Addition::

>>> v1 = Vector(2, 4)

>>> v2 = Vector(2, 1)

>>> vl + v2

Vector(4, 5)

Absolute value::

>>> v = Vector(3, 4)
>>> abs(v)
5.0

Scalar multiplication::
>>> v * 3
Vector (9, 12)

>>> abs(v * 3)
15.0

nwnn

import math
class Vector:

def __init__(self, x=0, y=0):
self.x = x
self.y =y

def __repr__(self):
return f'Vector({self.x!r}, {self.y!r})’

def __abs_ (self):
return math.hypot(self.x, self.y)

def __bool__(self):

How Special Methods Are Used | 11

return bool(abs(self))

def __add__ (self, other):
x = self.x + other.x
y = self.y + other.y
return Vector(x, y)

def __mul__(self, scalar):
return Vector(self.x * scalar, self.y * scalar)

We implemented five special methods in addition to the familiar __init__. Note that
none of them is directly called within the class or in the typical usage of the class
illustrated by the doctests. As mentioned before, the Python interpreter is the only
frequent caller of most special methods.

Example 1-2 implements two operators: + and *, to show basic usage of __add__ and
__mul__. In both cases, the methods create and return a new instance of Vector, and
do not modify either operand—self or other are merely read. This is the expected
behavior of infix operators: to create new objects and not touch their operands. I will
have a lot more to say about that in Chapter 16.

As implemented, Example 1-2 allows multiplying a Vector by a
number, but not a number by a Vector, which violates the commu-
tative property of scalar multiplication. We will fix that with the
special method __rmul__ in Chapter 16.

In the following sections, we discuss the other special methods in Vector.

String Representation

The __repr__ special method is called by the repr built-in to get the string represen-
tation of the object for inspection. Without a custom __repr__, Python’s console
would display a Vector instance <Vector object at 0x10e100070>.

The interactive console and debugger call repr on the results of the expressions eval-
uated, as does the %r placeholder in classic formatting with the % operator, and the !r
conversion field in the new format string syntax used in f-strings the str.format
method.

Note that the f-string in our __repr__ uses !r to get the standard representation of
the attributes to be displayed. This is good practice, because it shows the crucial dif-
ference between Vector(1, 2) and Vector('1', '2')—the latter would not work in
the context of this example, because the constructor’s arguments should be numbers,
not str.

12 | Chapter 1: The Python Data Model

https://fpy.li/1-4
Pouria

The string returned by __repr__ should be unambiguous and, if possible, match the
source code necessary to re-create the represented object. That is why our Vector
representation looks like calling the constructor of the class (e.g., Vector(3, 4)).

In contrast, __str__ is called by the str() built-in and implicitly used by the print
function. It should return a string suitable for display to end users.

Sometimes same string returned by __repr__ is user-friendly, and you don’t need to
code __str__ because the implementation inherited from the object class calls
__repr__ as a fallback. Example 5-2 is one of several examples in this book with a
custom __str__

Programmers with prior experience in languages with a toString
method tend to implement __str__ and not __repr__. If you only
implement one of these special methods in Python, choose
__repr__.

“What is the difference between __str__ and __repr__ in
Python?” is a Stack Overflow question with excellent contributions
from Pythonistas Alex Martelli and Martijn Pieters.

Boolean Value of a Custom Type

Although Python has a bool type, it accepts any object in a Boolean context, such as
the expression controlling an if or while statement, or as operands to and, or, and
not. To determine whether a value x is truthy or falsy, Python applies bool(x), which
returns either True or False.

By default, instances of user-defined classes are considered truthy, unless either
__bool__or __len__is implemented. Basically, bool(x) calls x.__bool__() and uses
the result. If __bool__ is not implemented, Python tries to invoke x.__len__(), and
if that returns zero, bool returns False. Otherwise bool returns True.

Our implementation of __bool__ is conceptually simple: it returns False if the mag-
nitude of the vector is zero, True otherwise. We convert the magnitude to a Boolean
using bool(abs(self)) because __bool__ is expected to return a Boolean. Outside of
__bool__ methods, it is rarely necessary to call bool() explicitly, because any object
can be used in a Boolean context.

Note how the special method __bool__ allows your objects to follow the truth value
testing rules defined in the “Built-in Types” chapter of The Python Standard Library
documentation.

How Special Methods Are Used | 13

https://fpy.li/1-5
https://fpy.li/1-5
https://fpy.li/1-6

A faster implementation of Vector.__bool__ is this:

def __bool__(self):
return bool(self.x or self.y)

This is harder to read, but avoids the trip through abs, __abs__, the
squares, and square root. The explicit conversion to bool is needed
because __bool__ must return a Boolean, and or returns either
operand as is: x or y evaluates to x if that is truthy, otherwise the
result is y, whatever that is.

Collection API

Figure 1-2 documents the interfaces of the essential collection types in the language.
All the classes in the diagram are ABCs—abstract base classes. ABCs and the collec
tions.abc module are covered in Chapter 13. The goal of this brief section is to give
a panoramic view of Python’s most important collection interfaces, showing how
they are built from special methods.

| Iterable] | Sized | [Container |
[__iter __ | [_len__ | |__contains__ |
JaN FaN
Reversible
* New in Python 36
Sequence Mapping Set
__getitem__ __getitem__ isdisjoint
__contains__ __contains__ _le__
__iter__ _eq__ It
__reversed__ _ne__ _gt__
index get _ge
count items _eq__
keys __ne__
values _and__
—or__
__sub__

__Xor__

Figure 1-2. UML class diagram with fundamental collection types. Method names in
italic are abstract, so they must be implemented by concrete subclasses such as list
and dict. The remaining methods have concrete implementations, therefore subclasses
can inherit them.

Each of the top ABCs has a single special method. The Collection ABC (new in
Python 3.6) unifies the three essential interfaces that every collection should
implement:

14 | Chapter 1: The Python Data Model

o Iterable to support for, unpacking, and other forms of iteration
+ Sized to support the len built-in function
« Contatiner to support the in operator

Python does not require concrete classes to actually inherit from any of these ABCs.
Any class that implements __len__ satisfies the Sized interface.

Three very important specializations of Collection are:

« Sequence, formalizing the interface of built-ins like 1ist and str
o Mapping, implemented by dict, collections.defaultdict, etc.
o Set, the interface of the set and frozenset built-in types

Only Sequence is Reversible, because sequences support arbitrary ordering of their
contents, while mappings and sets do not.

Since Python 3.7, the dict type is officially “ordered,” but that only
means that the key insertion order is preserved. You cannot
rearrange the keys in a dict however you like.

All the special methods in the Set ABC implement infix operators. For example,
a & b computes the intersection of sets a and b, and is implemented in the __and__
special method.

The next two chapters will cover standard library sequences, mappings, and sets in
detail.

Now let’s consider the major categories of special methods defined in the Python
Data Model.

Overview of Special Methods

The “Data Model” chapter of The Python Language Reference lists more than 80 spe-
cial method names. More than half of them implement arithmetic, bitwise, and com-
parison operators. As an overview of what is available, see the following tables.

Table 1-1 shows special method names, excluding those used to implement infix
operators or core math functions like abs. Most of these methods will be covered
throughout the book, including the most recent additions: asynchronous special
methods such as __anext__ (added in Python 3.5), and the class customization hook,
__init_subclass__ (from Python 3.6).

Overview of Special Methods | 15

https://fpy.li/1-7
https://fpy.li/dtmodel
Pouria

Table 1-1. Special method names (operators excluded)

Category Method names

String/bytes representation _repr__ __str__ __format__ __bytes__ __ fspath__

Conversion to number __bool__ __complex__ __int__ _ float__ __hash__
__index__

Emulating collections _len__ __getitem__ _ setitem__ __delitem__
__contains__

Iteration _iter__ __aiter__ _ next__ __anext__ _ reversed__

Callable or coroutine execution __call__ __await__

Context management _enter__ __exit__ __aexit__ __aenter__

Instance creation and destruction __new__ __init__ __del _

Attribute management __getattr__ _ _getattribute__ _ setattr__ _ delattr__
_dir__

Attribute descriptors _get__ __set__ _ delete__ __set_name__

Abstract base classes __instancecheck__ __subclasscheck__

Class metaprogramming __prepare__ __init_subclass__ _ class_getitem__

__mro_entries__

Infix and numerical operators are supported by the special methods listed in
Table 1-2. Here the most recent names are __matmul__, _rmatmul__, and __imat

mul__, added in Python 3.5 to support the use of
multiplication, as we’ll see in Chapter 16.

Table 1-2. Special method names and symbols for opera

@ as an infix operator for matrix

tors

Operator category Symbols Method names

Unary numeric -+ abs() __neg__
Rich comparison < <= == = > >= e
_gt__
Arithmetic + - % [/] % @ __add__
divmod() round() ** __floord
pow() mod__
Reversed arithmetic (arithmetic operators with swapped __radd__
operands) div__
mul__
Augmented += .= *= [= [[= %= __tadd__
assignment @= **= div__
arithmetic mul__
Bitwise & | A << >> o~ _and__
__rshift_
Reversed bitwise (bitwise operators with swapped __rand__
operands) __rlshif

__pos__ __abs__

_le. __eq _ __ne__
—g9e__

_sub__ __mul__ __ truediv__
iv__ _mod__ __matmul__ __div
__round__ __pow__

_rsub__ __rmul__ __rtrue
_rfloordiv__ __rmod__ __rmat
__rdivmod__ _ rpow__

_isub__ __imul__ __itrue
__ifloordiv__ _ imod__ _ imat
__ipow__

_or__ _ xor__ _ lshift__

_ __invert__

__ror__ __rxor__

t__ __rrshift__

16

Chapter 1: The Python Data Model

Operator category Symbols Method names

Augmented &= |= M= <<= >>= _iand__ __ior__ ixor__

assignment bitwise __ilshift__ __irshift__

Python calls a reversed operator special method on the second
operand when the corresponding special method on the first
operand cannot be used. Augmented assignments are shortcuts
combining an infix operator with variable assignment, e.g., a += b.

Chapter 16 explains reversed operators and augmented assignment
in detail.

Why len Is Not a Method

I asked this question to core developer Raymond Hettinger in 2013, and the key to
his answer was a quote from “The Zen of Python™ “practicality beats purity.” In
“How Special Methods Are Used” on page 8, I described how len(x) runs very fast
when x is an instance of a built-in type. No method is called for the built-in objects of
CPython: the length is simply read from a field in a C struct. Getting the number of
items in a collection is a common operation and must work efficiently for such basic

and diverse types as str, list, memoryview, and so on.

In other words, len is not called as a method because it gets special treatment as part
of the Python Data Model, just like abs. But thanks to the special method __len__
you can also make len work with your own custom objects. This is a fair compromise
between the need for efficient built-in objects and the consistency of the language.
Also from “The Zen of Python™: “Special cases aren’t special enough to break the
rules.”

>

If you think of abs and len as unary operators, you may be more
inclined to forgive their functional look and feel, as opposed to the
method call syntax one might expect in an object-oriented lan-
guage. In fact, the ABC language—a direct ancestor of Python that
pioneered many of its features—had an # operator that was the

equivalent of len (you’d write #s). When used as an infix operator,
written x#s, it counted the occurrences of x in s, which in Python
you get as s.count(x), for any sequence s.

Why len Is Nota Method | 17

https://fpy.li/1-8

Chapter Summary

By implementing special methods, your objects can behave like the built-in types,
enabling the expressive coding style the community considers Pythonic.

A basic requirement for a Python object is to provide usable string representations of
itself, one used for debugging and logging, another for presentation to end users.
That is why the special methods __repr__and __str__ exist in the data model.

Emulating sequences, as shown with the FrenchDeck example, is one of the most
common uses of the special methods. For example, database libraries often return
query results wrapped in sequence-like collections. Making the most of existing
sequence types is the subject of Chapter 2. Implementing your own sequences will be
covered in Chapter 12, when we create a multidimensional extension of the Vector
class.

Thanks to operator overloading, Python offers a rich selection of numeric types, from
the built-ins to decimal.Decimal and fractions.Fraction, all supporting infix
arithmetic operators. The NumPy data science libraries support infix operators
with matrices and tensors. Implementing operators—including reversed operators
and augmented assignment—will be shown in Chapter 16 via enhancements of the
Vector example.

The use and implementation of the majority of the remaining special methods of the
Python Data Model are covered throughout this book.

Further Reading

The “Data Model” chapter of The Python Language Reference is the canonical source
for the subject of this chapter and much of this book.

Python in a Nutshell, 3rd ed. by Alex Martelli, Anna Ravenscroft, and Steve Holden
(O’Reilly) has excellent coverage of the data model. Their description of the mechan-
ics of attribute access is the most authoritative I've seen apart from the actual
C source code of CPython. Martelli is also a prolific contributor to Stack Overflow,
with more than 6,200 answers posted. See his user profile at Stack Overflow.

David Beazley has two books covering the data model in detail in the context of
Python 3: Python Essential Reference, 4th ed. (Addison-Wesley), and Python Cook-
book, 3rd ed. (O'Reilly), coauthored with Brian K. Jones.

The Art of the Metaobject Protocol (MIT Press) by Gregor Kiczales, Jim des Rivieres,
and Daniel G. Bobrow explains the concept of a metaobject protocol, of which the
Python Data Model is one example.

18 | Chapter1: The Python Data Model

https://fpy.li/dtmodel
https://fpy.li/pynut3
https://fpy.li/1-9
https://dabeaz.com/per.html
https://fpy.li/pycook3
https://fpy.li/pycook3
https://mitpress.mit.edu/books/art-metaobject-protocol
Pouria

Soapbox

Data Model or Object Model?

What the Python documentation calls the “Python Data Model,” most authors would
say is the “Python object model.” Martelli, Ravenscroft, and Holden’s Python in a
Nutshell, 3rd ed., and David Beazley’s Python Essential Reference, 4th ed. are the best
books covering the Python Data Model, but they refer to it as the “object model.” On
Wikipedia, the first definition of “object model” is: “The properties of objects in gen-
eral in a specific computer programming language.” This is what the Python Data
Model is about. In this book, I will use “data model” because the documentation
favors that term when referring to the Python object model, and because it is the title
of the chapter of The Python Language Reference most relevant to our discussions.

Muggle Methods

The Original Hacker’s Dictionary defines magic as “yet unexplained, or too compli-
cated to explain” or “a feature not generally publicized which allows something other-
wise impossible.”

The Ruby community calls their equivalent of the special methods magic methods.
Many in the Python community adopt that term as well. I believe the special methods
are the opposite of magic. Python and Ruby empower their users with a rich metaob-
ject protocol that is fully documented, enabling muggles like you and me to emulate
many of the features available to core developers who write the interpreters for those
languages.

In contrast, consider Go. Some objects in that language have features that are magic,
in the sense that we cannot emulate them in our own user-defined types. For exam-
ple, Go arrays, strings, and maps support the use brackets for item access, as in a[1].
But there’s no way to make the [] notation work with a new collection type that you
define. Even worse, Go has no user-level concept of an iterable interface or an iterator
object, therefore its for/range syntax is limited to supporting five “magic” built-in
types, including arrays, strings, and maps.

Maybe in the future, the designers of Go will enhance its metaobject protocol. But
currently, it is much more limited than what we have in Python or Ruby.

Metaobjects

The Art of the Metaobject Protocol (AMOP) is my favorite computer book title. But I
mention it because the term metaobject protocol is useful to think about the Python
Data Model and similar features in other languages. The metaobject part refers to the
objects that are the building blocks of the language itself. In this context, protocol is a
synonym of interface. So a metaobject protocol is a fancy synonym for object model:
an API for core language constructs.

Further Reading |

19

https://fpy.li/1-10
https://fpy.li/dtmodel
https://fpy.li/1-11

A rich metaobject protocol enables extending a language to support new program-
ming paradigms. Gregor Kiczales, the first author of the AMOP book, later became a
pioneer in aspect-oriented programming and the initial author of Aspect], an exten-
sion of Java implementing that paradigm. Aspect-oriented programming is much
easier to implement in a dynamic language like Python, and some frameworks do it.
The most important example is zope.interface, part of the framework on which the
Plone content management system is built.

20 | Chapter 1: The Python Data Model

https://fpy.li/1-12
https://fpy.li/1-13

CHAPTER 2
An Array of Sequences

As you may have noticed, several of the operations mentioned work equally for texts,
lists and tables. Texts, lists and tables together are called ‘trains’. [...] The FOR com-
mand also works generically on trains.

—Leo Geurts, Lambert Meertens, and Steven Pembertonm, ABC Programmer’s
Handbook!

Before creating Python, Guido was a contributor to the ABC language—a 10-year
research project to design a programming environment for beginners. ABC intro-
duced many ideas we now consider “Pythonic”: generic operations on different types
of sequences, built-in tuple and mapping types, structure by indentation, strong
typing without variable declarations, and more. It’s no accident that Python is so
user-friendly.

Python inherited from ABC the uniform handling of sequences. Strings, lists, byte
sequences, arrays, XML elements, and database results share a rich set of common
operations, including iteration, slicing, sorting, and concatenation.

Understanding the variety of sequences available in Python saves us from reinventing
the wheel, and their common interface inspires us to create APIs that properly sup-
port and leverage existing and future sequence types.

Most of the discussion in this chapter applies to sequences in general, from the famil-
iar list to the str and bytes types added in Python 3. Specific topics on lists, tuples,
arrays, and queues are also covered here, but the specifics of Unicode strings and byte
sequences appear in Chapter 4. Also, the idea here is to cover sequence types that are
ready to use. Creating your own sequence types is the subject of Chapter 12.

1 Leo Geurts, Lambert Meertens, and Steven Pemberton, ABC Programmer’s Handbook, p. 8. (Bosko Books).

21

These are the main topics this chapter will cover:

« List comprehensions and the basics of generator expressions
« Using tuples as records versus using tuples as immutable lists
« Sequence unpacking and sequence patterns

 Reading from slices and writing to slices

o Specialized sequence types, like arrays and queues

What's New in This Chapter

The most important update in this chapter is “Pattern Matching with Sequences” on
page 38. That’s the first time the new pattern matching feature of Python 3.10 appears
in this second edition.

Other changes are not updates but improvements over the first edition:

o New diagram and description of the internals of sequences, contrasting contain-
ers and flat sequences

o Brief comparison of the performance and storage characteristics of list versus
tuple

o Caveats of tuples with mutable elements, and how to detect them if needed

I moved coverage of named tuples to “Classic Named Tuples” on page 169 in Chapter 5,
where they are compared to typing.NamedTuple and @dataclass.

To make room for new content and keep the page count within
reason, the section “Managing Ordered Sequences with Bisect”
from the first edition is now a post in the fluentpython.com com-
panion website.

Overview of Built-In Sequences

The standard library offers a rich selection of sequence types implemented in C:

Container sequences
Can hold items of different types, including nested containers. Some examples:
list, tuple, and collections.deque.

Flat sequences
Hold items of one simple type. Some examples: str, bytes, and array.array.

22 | Chapter2: An Array of Sequences

https://fpy.li/bisect
http://fluentpython.com

A container sequence holds references to the objects it contains, which may be of any
type, while a flat sequence stores the value of its contents in its own memory space,
not as distinct Python objects. See Figure 2-1.

(9.46, 'cat', [2.08. 4.29]) array('d', [9.46,2.08. 4.29])

Sann
N4 /
CL) nEnD

G

Figure 2-1. Simplified memory diagrams for a tuple and an array, each with three
items. Gray cells represent the in-memory header of each Python object—not drawn to
proportion. The tuple has an array of references to its items. Each item is a separate
Python object, possibly holding references to other Python objects, like that two-item
list. In contrast, the Python array is a single object, holding a C language array of three
doubles.

Thus, flat sequences are more compact, but they are limited to holding primitive
machine values like bytes, integers, and floats.

Every Python object in memory has a header with metadata. The
simplest Python object, a float, has a value field and two metadata
fields:

o ob_refcnt: the object’s reference count
« ob_type: a pointer to the object’s type
« ob_fval: a C double holding the value of the float

On a 64-bit Python build, each of those fields takes 8 bytes. That’s
why an array of floats is much more compact than a tuple of floats:
the array is a single object holding the raw values of the floats,
while the tuple consists of several objects—the tuple itself and each
float object contained in it.

Overview of Built-In Sequences | 23

Another way of grouping sequence types is by mutability:

Mutable sequences
For example, list, bytearray, array.array, and collections.deque.

Immutable sequences
For example, tuple, str, and bytes.

Figure 2-2 helps visualize how mutable sequences inherit all methods from immuta-
ble sequences, and implement several additional methods. The built-in concrete
sequence types do not actually subclass the Sequence and MutableSequence abstract
base classes (ABCs), but they are virtual subclasses registered with those ABCs—as
we’ll see in Chapter 13. Being virtual subclasses, tuple and list pass these tests:

>>> from import abc

>>> issubclass(tuple, abc.Sequence)

True

>>> issubclass(list, abc.MutableSequence)

True

= | Collection MutableSequence
__contains__ S __setitem__
_len__ equence __delitem__
__lter__ —9 et/te_m_ insert
__contains__

. :] append
—ter__ reverse

Reversible 4] _reversed__ extend

*

index
__reversed__ count pop
remove
* New in Python 36 __jadd__

Figure 2-2. Simplified UML class diagram for some classes from collections.abc (super-
classes are on the left; inheritance arrows point from subclasses to superclasses; names
in italic are abstract classes and abstract methods).

Keep in mind these common traits: mutable versus immutable; container versus flat.
They are helpful to extrapolate what you know about one sequence type to others.

The most fundamental sequence type is the list: a mutable container. I expect you
are very familiar with lists, so we’ll jump right into list comprehensions, a powerful
way of building lists that is sometimes underused because the syntax may look
unusual at first. Mastering list comprehensions opens the door to generator expres-
sions, which—among other uses—can produce elements to fill up sequences of any
type. Both are the subject of the next section.

24 | Chapter2: An Array of Sequences

List Comprehensions and Generator Expressions

A quick way to build a sequence is using a list comprehension (if the target is a 1ist)
or a generator expression (for other kinds of sequences). If you are not using these
syntactic forms on a daily basis, I bet you are missing opportunities to write code that
is more readable and often faster at the same time.

If you doubt my claim that these constructs are “more readable,” read on. I'll try to
convince you.

For brevity, many Python programmers refer to list comprehen-
sions as listcomps, and generator expressions as genexps. I will use
these words as well.

List Comprehensions and Readability

Here is a test: which do you find easier to read, Example 2-1 or Example 2-2?

Example 2-1. Build a list of Unicode code points from a string

>>> symbols = 'S¢EyEn'

>>> codes = []

>>> for symbol in symbols:
codes.append(ord(symbol))

>>> codes
[36, 162, 163, 165, 8364, 164]

Example 2-2. Build a list of Unicode code points from a string, using a listcomp

>>> symbols = 'S¢E£YEn'

>>> codes = [ord(symbol) for symbol in symbols]
>>> codes

[36, 162, 163, 165, 8364, 164]

Anybody who knows a little bit of Python can read Example 2-1. However, after
learning about listcomps, I find Example 2-2 more readable because its intent is
explicit.

A for loop may be used to do lots of different things: scanning a sequence to count or
pick items, computing aggregates (sums, averages), or any number of other tasks.
The code in Example 2-1 is building up a list. In contrast, a listcomp is more explicit.
Its goal is always to build a new list.

List Comprehensions and Generator Expressions | 25

Of course, it is possible to abuse list comprehensions to write truly incomprehensible
code. I've seen Python code with listcomps used just to repeat a block of code for its
side effects. If you are not doing something with the produced list, you should not use
that syntax. Also, try to keep it short. If the list comprehension spans more than two
lines, it is probably best to break it apart or rewrite it as a plain old for loop. Use your
best judgment: for Python, as for English, there are no hard-and-fast rules for clear
writing.

Syntax Tip

In Python code, line breaks are ignored inside pairs of [], {}, or ().
So you can build multiline lists, listcomps, tuples, dictionaries, etc.,
without using the \ line continuation escape, which doesn’t work if
you accidentally type a space after it. Also, when those delimiter
pairs are used to define a literal with a comma-separated series of
items, a trailing comma will be ignored. So, for example, when cod-
ing a multiline list literal, it is thoughtful to put a comma after the
last item, making it a little easier for the next coder to add one
more item to that list, and reducing noise when reading diffs.

In Python 3, list comprehensions, generator expressions, and their siblings set and
dict comprehensions, have a local scope to hold the variables assigned in the for
clause.

However, variables assigned with the “Walrus operator” := remain accessible after
those comprehensions or expressions return—unlike local variables in a function.
PEP 572— Assignment Expressions defines the scope of the target of := as the enclos-
ing function, unless there is a global or nonlocal declaration for that target.?

Local Scope Within Comprehensions and Generator Expressions

>>> x = 'ABC'

>>> codes = [ord(x) for x in x]

>>> X

'ABC'

>>> codes

[65, 66, 67]

>>> codes = [last := ord(c) for c in x]
>>> last O

67

>>> C e

2 Thanks to reader Tina Lapine for pointing this out.

26

Chapter 2: An Array of Sequences

https://fpy.li/pep572

File "<stdin>", line 1, in <module>

NameError: name 'c' is not defined
@ x was not clobbered: it’s still bound to 'ABC'.
® lastremains.

© cis gone; it existed only inside the listcomp.

List comprehensions build lists from sequences or any other iterable type by filtering
and transforming items. The filter and map built-ins can be composed to do the
same, but readability suffers, as we will see next.

Listcomps Versus map and filter

Listcomps do everything the map and filter functions do, without the contortions of
the functionally challenged Python lambda. Consider Example 2-3.

Example 2-3. The same list built by a listcomp and a map/filter composition

>>> symbols = 'Sc¢E¥ER'

>>> beyond_ascii = [ord(s) for s in symbols if ord(s) > 127]

>>> beyond_asciti

[162, 163, 165, 8364, 164]

>>> beyond_ascii = list(filter(lambda c: c > 127, map(ord, symbols)))
>>> beyond_asciti

[162, 163, 165, 8364, 164]

I used to believe that map and filter were faster than the equivalent listcomps, but
Alex Martelli pointed out that’s not the case—at least not in the preceding examples.
The 02-array-seq/listcomp_speed.py script in the Fluent Python code repository is a
simple speed test comparing listcomp with filter/map.

I'll have more to say about map and filter in Chapter 7. Now we turn to the use of
listcomps to compute Cartesian products: a list containing tuples built from all items
from two or more lists.

Cartesian Products

Listcomps can build lists from the Cartesian product of two or more iterables. The
items that make up the Cartesian product are tuples made from items from every
input iterable. The resulting list has a length equal to the lengths of the input iterables
multiplied. See Figure 2-3.

List Comprehensions and Generator Expressions | 27

https://fpy.li/2-1
https://fpy.li/code

[Q) @) O) *]
[A, [Ae, AOQ, A0, As,
R K’ KQ’ KQ’ KO, Ké’

Q] Qs+, QO, Q9

i 2

, Qe+]

R xS

Figure 2-3. The Cartesian product of 3 card ranks and 4 suits is a sequence of 12
pairings.

For example, imagine you need to produce a list of T-shirts available in two colors
and three sizes. Example 2-4 shows how to produce that list using a listcomp. The
result has six items.

Example 2-4. Cartesian product using a list comprehension

>>> colors = ['black', 'white']
>>> sizes = ['S', 'M', 'L']
>>> tshirts = [(color, size) for color in colors for size in sizes] (1]
>>> tshirts

[('black', 'S"'), ('black', 'M"'), ('black', 'L'), ('white', 'S'"),

('white', 'M'"), ('white', 'L")]
>>> for color in colors:

for size in sizes:
print((color, size))

('black', 's")

('black', 'M")
('black', 'L")

('white', 'S")

('white', 'M")

('white', 'L")

>>> tshirts = [(color, size) for size in sizes (3]
cee for color in colors]

>>> tshirts
[('black', 'S"'), ('white', 'S'), ('black', 'M'), ('white', 'M"),
('black', 'L'), ('white', 'L")]

28 | Chapter2: An Array of Sequences

© This generates a list of tuples arranged by color, then size.

® Note how the resulting list is arranged as if the for loops were nested in the same
order as they appear in the listcomp.

© To get items arranged by size, then color, just rearrange the for clauses; adding a
line break to the listcomp makes it easier to see how the result will be ordered.

In Example 1-1 (Chapter 1), I used the following expression to initialize a card deck
with a list made of 52 cards from all 13 ranks of each of the 4 suits, sorted by suit,
then rank:

self._cards = [Card(rank, suit) for suit in self.suits
for rank in self.ranks]
Listcomps are a one-trick pony: they build lists. To generate data for other sequence
types, a genexp is the way to go. The next section is a brief look at genexps in the
context of building sequences that are not lists.

Generator Expressions

To initialize tuples, arrays, and other types of sequences, you could also start from a
listcomp, but a genexp (generator expression) saves memory because it yields items
one by one using the iterator protocol instead of building a whole list just to feed
another constructor.

Genexps use the same syntax as listcomps, but are enclosed in parentheses rather
than brackets.

Example 2-5 shows basic usage of genexps to build a tuple and an array.

Example 2-5. Initializing a tuple and an array from a generator expression

>>> symbols = 'S$S¢E¥€En'

>>> tuple(ord(symbol) for symbol in symbols) (1)

(36, 162, 163, 165, 8364, 164)

>>> import

>>> array.array('I', (ord(symbol) for symbol in symbols)) (2]
array('I', [36, 162, 163, 165, 8364, 164])

© If the generator expression is the single argument in a function call, there is no
need to duplicate the enclosing parentheses.

©® The array constructor takes two arguments, so the parentheses around the gen-
erator expression are mandatory. The first argument of the array constructor
defines the storage type used for the numbers in the array, as we’ll see in “Arrays”
on page 59.

List Comprehensions and Generator Expressions | 29

Example 2-6 uses a genexp with a Cartesian product to print out a roster of T-shirts
of two colors in three sizes. In contrast with Example 2-4, here the six-item list of T-
shirts is never built in memory: the generator expression feeds the for loop produc-
ing one item at a time. If the two lists used in the Cartesian product had a thousand
items each, using a generator expression would save the cost of building a list with a
million items just to feed the for loop.

Example 2-6. Cartesian product in a generator expression

>>> colors = ['black', 'white']

>>> sizes = ['S', 'M', 'L']

>>> for tshirt in (f'{c} {s}' for c in colors for s in sizes): (1]

print(tshirt)

black
black
black
white

white
white

rTur =un

© The generator expression yields items one by one; a list with all six T-shirt varia-
tions is never produced in this example.

Chapter 17 explains how generators work in detail. Here the idea
was just to show the use of generator expressions to initialize
sequences other than lists, or to produce output that you don’t
need to keep in memory.

Now we move on to the other fundamental sequence type in Python: the tuple.

Tuples Are Not Just Immutable Lists

Some introductory texts about Python present tuples as “immutable lists,” but that is
short selling them. Tuples do double duty: they can be used as immutable lists and
also as records with no field names. This use is sometimes overlooked, so we will start
with that.

Tuples as Records

Tuples hold records: each item in the tuple holds the data for one field, and the posi-
tion of the item gives its meaning.

If you think of a tuple just as an immutable list, the quantity and the order of the
items may or may not be important, depending on the context. But when using a

30 | Chapter2: An Array of Sequences

tuple as a collection of fields, the number of items is usually fixed and their order is
always important.

Example 2-7 shows tuples used as records. Note that in every expression, sorting the
tuple would destroy the information because the meaning of each field is given by its
position in the tuple.

Example 2-7. Tuples used as records

>>> lax_coordinates = (33.9425, -118.408056) (1)
>>> city, year, pop, chg, area = ('Tokyo', 2003, 32 450, 0.66, 8014) (2]
>>> traveler_ids = [('USA', '31195855'), ('BRA', 'CE342567'), ©
.o ('ESP', 'XDA205856')]
>>> for passport in sorted(traveler_ids): (4]
print('%s/%s' % passport)

BRA/CE342567

ESP/XDA205856

USA/31195855

>>> for country, _ in traveler_ids: (6]
print(country)

USA
BRA
ESP

© Latitude and longitude of the Los Angeles International Airport.

® Data about Tokyo: name, year, population (thousands), population change (%),
and area (km?).

A list of tuples of the form (country_code, passport_number).
As we iterate over the list, passport is bound to each tuple.

The % formatting operator understands tuples and treats each item as a separate
field.

O The for loop knows how to retrieve the items of a tuple separately—this is called
“unpacking.” Here we are not interested in the second item, so we assign itto _, a
dummy variable.

Tuples Are Not Just Immutable Lists | 31

In general, using _ as a dummy variable is just a convention. It’s
just a strange but valid variable name. However, in a match/case
statement, _ is a wildcard that matches any value but is not bound
to a value. See “Pattern Matching with Sequences” on page 38. And
in the Python console, the result of the preceding command is
assigned to _—unless the result is None.

We often think of records as data structures with named fields. Chapter 5 presents
two ways of creating tuples with named fields.

But often, there’s no need to go through the trouble of creating a class just to name
the fields, especially if you leverage unpacking and avoid using indexes to access the
fields. In Example 2-7, we assigned ('Tokyo', 2003, 32_450, 0.66, 8014) to
city, year, pop, chg, area in a single statement. Then, the % operator assigned
each item in the passport tuple to the corresponding slot in the format string in the
print argument. Those are two examples of tuple unpacking.

The term tuple unpacking is widely used by Pythonistas, but itera-
ble unpacking is gaining traction, as in the title of PEP 3132 —
Extended Iterable Unpacking.

“Unpacking Sequences and Iterables” on page 35 presents a lot more
about unpacking not only tuples, but sequences and iterables in
general.

Now let’s consider the tuple class as an immutable variant of the 1ist class.

Tuples as Immutable Lists

The Python interpreter and standard library make extensive use of tuples as immuta-
ble lists, and so should you. This brings two key benefits:

Clarity
When you see a tuple in code, you know its length will never change.

Performance
A tuple uses less memory than a list of the same length, and it allows Python
to do some optimizations.

However, be aware that the immutability of a tuple only applies to the references
contained in it. References in a tuple cannot be deleted or replaced. But if one of
those references points to a mutable object, and that object is changed, then the value
of the tuple changes. The next snippet illustrates this point by creating two tuples—a
and b—which are initially equal. Figure 2-4 represents the initial layout of the b tuple
in memory.

32 | Chapter2: An Array of Sequences

https://fpy.li/2-2
https://fpy.li/2-2

tuple

(16, 'alpha’, [1,2])#[...1/ I | II]ﬂ

int l list
str

["'I”] /I\]ﬁ
int int

CLET)

Figure 2-4. The content of the tuple itself is immutable, but that only means the refer-
ences held by the tuple will always point to the same objects. However, if one of the ref-
erenced objects is mutable—like a list—its content may change.

When the last item in b is changed, b and a become different:

>>> a
>>> b
>>> a
True
>>> b[-1].append(99)

>>> g ==

False

>>> b

(10, 'alpha', [1, 2, 99])

(10, 'alpha', [1, 2])
(10, 'alpha', [1, 2D)
=b

Tuples with mutable items can be a source of bugs. As we’ll see in “What Is Hasha-
ble” on page 84, an object is only hashable if its value cannot ever change. An unhasha-
ble tuple cannot be inserted as a dict key, or a set element.

If you want to determine explicitly if a tuple (or any object) has a fixed value, you can
use the hash built-in to create a fixed function like this:

>>> def fixed(o):
try:
hash(o)
except TypeError:
return False
return True

>>> tf = (10, 'alpha', (1, 2))
>>> tm = (10, 'alpha', [1, 21)
>>> fixed(tf)

True

Tuples Are Not Just Immutable Lists | 33

>>> fixed(tm)
False

We explore this issue further in “The Relative Immutability of Tuples” on page 207.

Despite this caveat, tuples are widely used as immutable lists. They offer some perfor-
mance advantages explained by Python core developer Raymond Hettinger in a
StackOverflow answer to the question: “Are tuples more efficient than lists in
Python?”. To summarize, Hettinger wrote:

o To evaluate a tuple literal, the Python compiler generates bytecode for a tuple
constant in one operation; but for a list literal, the generated bytecode pushes
each element as a separate constant to the data stack, and then builds the list.

 Given a tuple t, tuple(t) simply returns a reference to the same t. There’s no
need to copy. In contrast, given a list 1, the 1ist(l) constructor must create a
new copy of 1.

« Because of its fixed length, a tuple instance is allocated the exact memory space
it needs. Instances of list, on the other hand, are allocated with room to spare,
to amortize the cost of future appends.

o The references to the items in a tuple are stored in an array in the tuple struct,
while a list holds a pointer to an array of references stored elsewhere. The indi-
rection is necessary because when a list grows beyond the space currently alloca-
ted, Python needs to reallocate the array of references to make room. The extra
indirection makes CPU caches less effective.

Comparing Tuple and List Methods

When using a tuple as an immutable variation of list, it is good to know how similar
their APIs are. As you can see in Table 2-1, tuple supports all 1ist methods that do
not involve adding or removing items, with one exception—tuple lacks the
__reversed__ method. However, that is just for optimization; reversed(my_tuple)
works without it.

Table 2-1. Methods and attributes found in list or tuple (methods implemented by object
are omitted for brevity)

s.__add__(s2) o o s + s2—concatenation
s.__iadd__(s2) L4 s += s2—in-place concatenation
s.append(e) L Append one element after last
s.clear() ° Delete all items
s.__contains__(e) LA e in s

s.copy() ° Shallow copy of the list

34 | Chapter2: An Array of Sequences

https://fpy.li/2-3
https://fpy.li/2-3

s.count(e) o o Count occurrences of an element

s.__delitem__(p) o Remove item at position p

s.extend(it) L4 Append items from iterable 1t

s.__getitem__(p) o o s[p]—get item at position

s.__getnewargs__ () L4 Support for optimized serialization with pickle
s.index(e) o o Find position of first occurrence of e

s.insert(p, e) L Insert element e before the item at position p
s.__iter__() o o Get iterator

s.__len__() o o len(s)—number of items

s.__mul__(n) LA 4 s * n—repeated concatenation

s.__imul__(n) o s *= n—in-place repeated concatenation
s.__rmul__(n) o o n * s—reversed repeated concatenation®
s.pop([p]) L4 Remove and return last item or item at optional position p
s.remove(e) L4 Remove first occurrence of element e by value
s.reverse() ° Reverse the order of the items in place
s.__reversed__() o Get iterator to scan items from last to first
s.__setitem__(p, e) L4 s[p] = e—pute in position p, overwriting existing item®

s.sort([key], [reverse]) Sort items in place with optional keyword arguments key and

reverse

2 Reversed operators are explained in Chapter 16.
b Also used to overwrite a subsequence. See “Assigning to Slices” on page 50.

Now let’s switch to an important subject for idiomatic Python programming: tuple,
list, and iterable unpacking.

Unpacking Sequences and Iterables

Unpacking is important because it avoids unnecessary and error-prone use of
indexes to extract elements from sequences. Also, unpacking works with any iterable
object as the data source—including iterators, which don’t support index notation
([1). The only requirement is that the iterable yields exactly one item per variable in
the receiving end, unless you use a star (*) to capture excess items, as explained in
“Using * to Grab Excess Items” on page 36.

The most visible form of unpacking is parallel assignment; that is, assigning items
from an iterable to a tuple of variables, as you can see in this example:

>>> lax_coordinates = (33.9425, -118.408056)
>>> latitude, longitude = lax_coordinates # unpacking
>>> latitude

Unpacking Sequences and Iterables | 35

33.9425
>>> longitude
-118.408056

An elegant application of unpacking is swapping the values of variables without using
a temporary variable:

>>> b, a=a, b

Another example of unpacking is prefixing an argument with * when calling a
function:

>>> divmod(20, 8)

(2, 4

>>> t = (20, 8)

>>> divmod(*t)

2, 8

>>> quotient, remainder = divmod(*t)
>>> quotient, remainder

(2, 4

The preceding code shows another use of unpacking: allowing functions to return
multiple values in a way that is convenient to the caller. As another example, the
os.path.split() function builds a tuple (path, last_part) from a filesystem path:

>>> import

>>> _, filename = os.path.split('/home/luciano/.ssh/id_rsa.pub')
>>> filename

'id_rsa.pub’

Another way of using just some of the items when unpacking is to use the * syntax, as
we'll see right away.

Using * to Grab Excess Items

Defining function parameters with *args to grab arbitrary excess arguments is a
classic Python feature.

In Python 3, this idea was extended to apply to parallel assignment as well:

>>> a, b, *rest = range(5)
>>> a3, b, rest

(0, 1, [2, 3, 4])

>>> a, b, *rest = range(3)
>>> a, b, rest

0, 1, [2D)

>>> a, b, *rest = range(2)
>>> a3, b, rest

0, 1, [D

In the context of parallel assignment, the * prefix can be applied to exactly one vari-
able, but it can appear in any position:

36 | Chapter2: An Array of Sequences

range(5)

>>> a, *body, c, d
>>> a, body, c, d

o, [1, 2], 3, 4)

>>> *head, b, ¢, d = range(5)
>>> head, b, c, d

([o, 11, 2, 3, 4)

Unpacking with * in Function Calls and Sequence Literals

PEP 448—Additional Unpacking Generalizations introduced more flexible syntax for
iterable unpacking, best summarized in “What’s New In Python 3.5”.

In function calls, we can use * multiple times:

>>> def fun(a, b, c, d, *rest):
return a, b, c, d, rest

;;; fun(*[1, 2], 3, *range(4, 7))

(1’ 2’ 3) 4’ (SJ 6))
The * can also be used when defining 1ist, tuple, or set literals, as shown in these
examples from “What’s New In Python 3.5”:

>>> *range(4), 4

(0, 1, 2, 3, 4)

>>> [*range(4), 4]

[0, 1, 2, 3, 4]

>>> {*range(4), 4, *(5, 6, 7)}
{e, 1, 2, 3, 4, 5, 6, 7}

PEP 448 introduced similar new syntax for **, which we’ll see in “Unpacking Map-
pings” on page 80.

Finally, a powerful feature of tuple unpacking is that it works with nested structures.

Nested Unpacking

The target of an unpacking can use nesting, e.g., (a, b, (c, d)). Python will do the
right thing if the value has the same nesting structure. Example 2-8 shows nested
unpacking in action.

Example 2-8. Unpacking nested tuples to access the longitude

metro_areas = [
('Tokyo', 'JP', 36.933, (35.689722, 139.691667)), @
('Delhi NCR', 'IN', 21.935, (28.613889, 77.208889)),
('Mexico City', 'MX', 20.142, (19.433333, -99.133333)),
('New York-Newark', 'US', 20.104, (40.808611, -74.020386)),
('Sao Paulo', 'BR', 19.649, (-23.547778, -46.635833)),

Unpacking Sequences and Iterables | 37

https://fpy.li/pep448
https://fpy.li/2-4
https://fpy.li/2-4

def main():
print(f'{"":15} | {"latitude":>9} | {"longitude":>9}"')
for name, _, _, (lat, lon) in metro_areas:
if lon <= 0:
print(f'{name:15} | {lat:9.4f} | {lon:9.4f}")

if __pame__ == '__main__
main()

© Each tuple holds a record with four fields, the last of which is a coordinate pair.
© By assigning the last field to a nested tuple, we unpack the coordinates.

© The lon <= 0: test selects only cities in the Western hemisphere.

The output of Example 2-8 is:

| Tlatitude | longitude
Mexico City | 19.4333 | -99.1333
New York-Newark | 40.8086 | -74.0204
Sado Paulo | -23.5478 | -46.6358

The target of an unpacking assignment can also be a list, but good use cases are rare.
Here is the only one I know: if you have a database query that returns a single record
(e.g., the SQL code has a LIMIT 1 clause), then you can unpack and at the same time
make sure there’s only one result with this code:

>>> [record] = query_returning_single_row()
If the record has only one field, you can get it directly, like this:
>>> [[fileld]] = query_returning_single_row_with_single_field()

Both of these could be written with tuples, but don’t forget the syntax quirk that
single-item tuples must be written with a trailing comma. So the first target would be
(record,) and the second ((field,),). In both cases you get a silent bug if you for-
get a comma.’

Now let’s study pattern matching, which supports even more powerful ways to
unpack sequences.

Pattern Matching with Sequences

The most visible new feature in Python 3.10 is pattern matching with the match/case
statement proposed in PEP 634—Structural Pattern Matching: Specification.

3 Thanks to tech reviewer Leonardo Rochael for this example.

38 | (Chapter2: An Array of Sequences

https://fpy.li/pep634

Python core developer Carol Willing wrote the excellent introduc-
tion to pattern matching in the “Structural Pattern Matching” sec-
tion of “What’s New In Python 3.10”. You may want to read that
quick overview. In this book, I chose to split the coverage of pat-
tern matching over different chapters, depending on the pattern
types: “Pattern Matching with Mappings” on page 81 and “Pattern
Matching Class Instances” on page 192. An extended example is in
“Pattern Matching in lis.py: A Case Study” on page 669.

Here is a first example of match/case handling sequences. Imagine you are designing
a robot that accepts commands sent as sequences of words and numbers, like BEEPER
440 3. After splitting into parts and parsing the numbers, you’d have a message like
['BEEPER', 440, 3].You could use a method like this to handle such messages:

Example 2-9. Method from an imaginary Robot class

def handle_command(self, message):
match message:

case ['BEEPER', frequency, times]: (2]
self.beep(times, frequency)

case ['NECK', angle]:
self.rotate_neck(angle)

case ['LED', ident, intensity]: (4]
self.leds[1dent].set_brightness(ident, intensity)

case ['LED', ident, red, green, blue]:
self.leds[ident].set_color(ident, red, green, blue)

case _
raise InvalidCommand(message)

© The expression after the match keyword is the subject. The subject is the data that
Python will try to match to the patterns in each case clause.

® This pattern matches any subject that is a sequence with three items. The first
item must be the string 'BEEPER'. The second and third item can be anything,
and they will be bound to the variables frequency and times, in that order.

This matches any subject with two items, the first being 'NECK'.

This will match a subject with three items starting with 'LED'. If the number of
items does not match, Python proceeds to the next case.

© Another sequence pattern starting with 'LED', now with five items—including
the 'LED' constant.

Pattern Matching with Sequences | 39

https://fpy.li/2-6
https://fpy.li/2-7

O This is the default case. It will match any subject that did not match a previous
pattern. The _ variable is special, as we’ll soon see.

On the surface, match/case may look like the switch/case statement from the C lan-
guage—but that’s only half the story.* One key improvement of match over switch is
destructuring—a more advanced form of unpacking. Destructuring is a new word in
the Python vocabulary, but it is commonly used in the documentation of languages
that support pattern matching—like Scala and Elixir.

As a first example of destructuring, Example 2-10 shows part of Example 2-8 rewrit-
ten with match/case.

Example 2-10. Destructuring nested tuples—requires Python > 3.10

metro_areas = [
('Tokyo', 'JP', 36.933, (35.689722, 139.691667)),
('Delhi NCR', 'IN', 21.935, (28.613889, 77.208889)),
('Mexico City', 'MX', 20.142, (19.433333, -99.133333)),
('New York-Newark', 'US', 20.104, (40.808611, -74.020386)),
('Sado Paulo', 'BR', 19.649, (-23.547778, -46.635833)),

1

def main():
print(f'{"":15} | {"latitude":>9} | {"longitude":>9}")
for record in metro_areas:
match record:
case [name, _, _, (lat, lon)] if lon <= 0: (2]
print(f'{name:15} | {lat:9.4f} | {lon:9.4f}")

© The subject of this match is record— i.e., each of the tuples in metro_areas.

® A case clause has two parts: a pattern and an optional guard with the if
keyword.

In general, a sequence pattern matches the subject if:
1. The subject is a sequence and;

2. The subject and the pattern have the same number of items and;

3. Each corresponding item matches, including nested items.

4 In my view, a sequence of if/elif/elif/.../else blocks is a fine replacement for switch/case. It doesn’t
suffer from the fallthrough and dangling else problems that some language designers irrationally copied from
C—decades after they were widely known as the cause of countless bugs.

40 | Chapter2:An Array of Sequences

https://fpy.li/2-8
https://fpy.li/2-9

For example, the pattern [name, _, _, (lat, lon)] in Example 2-10 matches a
sequence with four items, and the last item must be a two-item sequence.

Sequence patterns may be written as tuples or lists or any combination of nested
tuples and lists, but it makes no difference which syntax you use: in a sequence pat-
tern, square brackets and parentheses mean the same thing. I wrote the pattern as a
list with a nested 2-tuple just to avoid repeating brackets or parentheses in
Example 2-10.

A sequence pattern can match instances of most actual or virtual subclasses of collec
tions.abc.Sequence, with the exception of str, bytes, and bytearray.

Instances of str, bytes, and bytearray are not handled as sequen-
ces in the context of match/case. A match subject of one of those
types is treated as an “atomic” value—like the integer 987 is treated
as one value, not a sequence of digits. Treating those three types as
sequences could cause bugs due to unintended matches. If you
want to treat an object of those types as a sequence subject, convert
it in the match clause. For example, see tuple(phone) in the
following:

match tuple(phone):
case ['1', *rest]: # North America and Caribbean

case ['2', *rest]: # Africa and some territories

case ['3' | '4', *rest]: # Europe

In the standard library, these types are compatible with sequence patterns:

list memoryview array.array
tuple range collections.deque

Unlike unpacking, patterns don’t destructure iterables that are not sequences (such as
iterators).

The _ symbol is special in patterns: it matches any single item in that position, but it
is never bound to the value of the matched item. Also, the _ is the only variable that
can appear more than once in a pattern.

You can bind any part of a pattern with a variable using the as keyword:

case [name, _, _, (lat, lon) as coord]:

Given the subject ['Shanghai', 'CN', 24.9, (31.1, 121.3)], the preceding pat-
tern will match, and set the following variables:

Pattern Matching with Sequences | 41

Variable Set Value

name 'Shanghati'
lat 31.1
lon 121.3

coord (31.1, 121.3)

We can make patterns more specific by adding type information. For example, the
following pattern matches the same nested sequence structure as the previous exam-
ple, but the first item must be an instance of str, and both items in the 2-tuple must
be instances of float:

case [str(name), _, _, (float(lat), float(lon))]:

The expressions str(name) and float(lat) look like constructor
calls, which we’d use to convert name and lat to str and float.
But in the context of a pattern, that syntax performs a runtime type
check: the preceding pattern will match a four-item sequence in
which item 0 must be a str, and item 3 must be a pair of floats.
Additionally, the str in item 0 will be bound to the name variable,
and the floats in item 3 will be bound to lat and lon, respectively.
So, although str(name) borrows the syntax of a constructor call,
the semantics are completely different in the context of a pattern.
Using arbitrary classes in patterns is covered in “Pattern Matching
Class Instances” on page 192.

On the other hand, if we want to match any subject sequence starting with a str, and
ending with a nested sequence of two floats, we can write:

case [str(name), *_, (float(lat), float(lon))]:

The *_ matches any number of items, without binding them to a variable. Using
*extra instead of *_ would bind the items to extra as a list with 0 or more items.

The optional guard clause starting with if is evaluated only if the pattern matches,
and can reference variables bound in the pattern, as in Example 2-10:

match record:
case [name, _, _, (lat, lon)] if lon <= 0:
print(f'{name:15} | {lat:9.4f} | {lon:9.4f}")

The nested block with the print statement runs only if the pattern matches and the
guard expression is truthy.

42 | Chapter2: An Array of Sequences

Destructuring with patterns is so expressive that sometimes a
match with a single case can make code simpler. Guido van Ros-
sum has a collection of case/match examples, including one that
he titled “A very deep iterable and type match with extraction”.

Example 2-10 is not an improvement over Example 2-8. It’s just an example to con-
trast two ways of doing the same thing. The next example shows how pattern match-
ing contributes to clear, concise, and effective code.

Pattern Matching Sequences in an Interpreter

Peter Norvig of Stanford University wrote lis.py: an interpreter for a subset of the
Scheme dialect of the Lisp programming language in 132 lines of beautiful and reada-
ble Python code. I took Norvig’s MIT-licensed source and updated it to Python 3.10
to showcase pattern matching. In this section, we’ll compare a key part of Norvig’s
code—which uses if/elif and unpacking—with a rewrite using match/case.

The two main functions of lis.py are parse and evaluate.” The parser takes Scheme
parenthesized expressions and returns Python lists. Here are two examples:

>>> parse('(gcd 18 45)")

['gcd', 18, 45]

>>> parse('"''

... (define double

(lambda (n)

. (* n 2)))
L)
['define', 'double', ['lambda', ['n'], ['*', 'n', 2]1]1]

The evaluator takes lists like these and executes them. The first example is calling a

gcd function with 18 and 45 as arguments. When evaluated, it computes the greatest

common divisor of the arguments: 9. The second example is defining a function

named double with a parameter n. The body of the function is the expression (* n

2). The result of calling a function in Scheme is the value of the last expression in its

body.

Our focus here is destructuring sequences, so I will not explain the evaluator actions.
See “Pattern Matching in lis.py: A Case Study” on page 669 to learn more about how
lis.py works.

Example 2-11 shows Norvig’s evaluator with minor changes, abbreviated to show
only the sequence patterns.

5 The latter is named eval in Norvig’s code; I renamed it to avoid confusion with Python’s eval built-in.

Pattern Matching with Sequences | 43

https://fpy.li/2-10
https://fpy.li/2-11

Example 2-11. Matching patterns without match/case

def evaluate(exp: Expression, env: Environment) -> Any:
"Evaluate an expression in an environment."

if isinstance(exp, Symbol): # variable reference
return env[exp]

... lines omitted

elif exp[0] == 'quote': # (quote exp)
(L, x) = exp
return x

elif exp[0] == "if': # (if test conseq alt)

(_, test, consequence, alternative) = exp
if evaluate(test, env):
return evaluate(consequence, env)
else:
return evaluate(alternative, env)
elif exp[0] == 'lambda': # (lambda (parm..) body..)
(_, parms, *body) = exp
return Procedure(parms, body, env)
elif exp[0] == 'define':
(_, name, value_exp) = exp
env[name] = evaluate(value_exp, env)
... more lines omitted

Note how each elif clause checks the first item of the list, and then unpacks the list,
ignoring the first item. The extensive use of unpacking suggests that Norvig is a fan of
pattern matching, but he wrote that code originally for Python 2 (though it now
works with any Python 3).

Using match/case in Python > 3.10, we can refactor evaluate as shown in
Example 2-12.

Example 2-12. Pattern matching with match/case—requires Python > 3.10

def evaluate(exp: Expression, env: Environment) -> Any:
"Evaluate an expression in an environment."

match exp:
... lines omitted
case ['quote', x]: (1]
return x

case ['if', test, consequence, alternative]: (2]
if evaluate(test, env):
return evaluate(consequence, env)
else:
return evaluate(alternative, env)
case ['lambda', [*parms], *body] if body: (3]
return Procedure(parms, body, env)
case ['define', Symbol() as name, value_exp]: (4]
env[name] = evaluate(value_exp, env)
... more lines omitted

44 | Chapter 2: An Array of Sequences

case _: O

raise SyntaxError(lispstr(exp))

Match if subject is a two-item sequence starting with 'quote’.
Match if subject is a four-item sequence starting with 'if'.

Match if subject is a sequence of three or more items starting with 'lambda'. The
guard ensures that body is not empty.

O Match if subject is a three-item sequence starting with 'define’, followed by an
instance of Symbol.

© It is good practice to have a catch-all case. In this example, if exp doesn’t match
any of the patterns, the expression is malformed, and I raise SyntaxError.

Without a catch-all, the whole match statement does nothing when a subject does not
match any case—and this can be a silent failure.

Norvig deliberately avoided error checking in lis.py to keep the code easy to under-
stand. With pattern matching, we can add more checks and still keep it readable. For
example, in the 'define' pattern, the original code does not ensure that name is an
instance of Symbol—that would require an if block, an isinstance call, and more
code. Example 2-12 is shorter and safer than Example 2-11.

Alternative patterns for lambda

This is the syntax of lambda in Scheme, using the syntactic convention that the suffix
.. means the element may appear zero or more times:

(lambda (parms..) bodyl body2..)
A simple pattern for the lambda case 'lambda' would be this:
case ['lambda', parms, *body] if body:

However, that matches any value in the parms position, including the first 'x"' in this
invalid subject:
['lambda', 'x', ['*', 'x', 2]]

The nested list after the lambda keyword in Scheme holds the names of the formal
parameters for the function, and it must be a list even if it has only one element. It
may also be an empty list, if the function takes no parameters—like Python’s ran
dom.random().

In Example 2-12, I made the 'lambda' pattern safer using a nested sequence pattern:

Pattern Matching with Sequences | 45

case ['lambda', [*parms], *body] if body:
return Procedure(parms, body, env)

In a sequence pattern, * can appear only once per sequence. Here we have two
sequences: the outer and the inner.

Adding the characters [*] around parms made the pattern look more like the Scheme
syntax it handles, and gave us an additional structural check.

Shortcut syntax for function definition

Scheme has an alternative define syntax to create a named function without using a
nested lambda. This is the syntax:

(define (name parm..) bodyl body2..)

The define keyword is followed by a list with the name of the new function and zero
or more parameter names. After that list comes the function body with one or more
expressions.

Adding these two lines to the match takes care of the implementation:

case ['define', [Symbol() as name, *parms], *body] if body:
env[name] = Procedure(parms, body, env)
I’d place that case after the other define case in Example 2-12. The order between
the define cases is irrelevant in this example because no subject can match both of
these patterns: the second element must be a Symbol in the original define case, but
it must be a sequence starting with a Symbol in the define shortcut for function
definition.

Now consider how much work we’d have adding support for this second define syn-
tax without the help of pattern matching in Example 2-11. The match statement does
a lot more than the switch in C-like languages.

Pattern matching is an example of declarative programming: the code describes
“what” you want to match, instead of “how” to match it. The shape of the code fol-
lows the shape of the data, as Table 2-2 illustrates.

Table 2-2. Some Scheme syntactic forms and case patterns to handle them

(quote exp) ['quote', exp]

(if test conseq alt) ['if', test, conseq, alt]

(lambda (parms..) body1l body2..) ['lambda', [*parms], *body] if body

(define name exp) ['define', Symbol() as name, exp]

(define (name parms..) body1l ['define', [Symbol() as name, *parms], *body]
body2..) if body

46 | Chapter2: An Array of Sequences

I hope this refactoring of Norvig’s evaluate with pattern matching convinced you
that match/case can make your code more readable and safer.

We'll see more of lis.py in “Pattern Matching in lis.py: A Case
Study” on page 669, when we’ll review the complete match/case
example in evaluate. If you want to learn more about Norvig’s
lis.py, read his wonderful post “(How to Write a (Lisp) Interpreter
(in Python))”.

This concludes our first tour of unpacking, destructuring, and pattern matching with
sequences. We’ll cover other types of patterns in later chapters.

Every Python programmer knows that sequences can be sliced using the s[a:b] syn-
tax. We now turn to some less well-known facts about slicing.

Slicing
A common feature of list, tuple, str, and all sequence types in Python is the sup-
port of slicing operations, which are more powerful than most people realize.

In this section, we describe the use of these advanced forms of slicing. Their imple-
mentation in a user-defined class will be covered in Chapter 12, in keeping with our
philosophy of covering ready-to-use classes in this part of the book, and creating new
classes in Part IIL.

Why Slices and Ranges Exclude the Last ltem

The Pythonic convention of excluding the last item in slices and ranges works well
with the zero-based indexing used in Python, C, and many other languages. Some
convenient features of the convention are:

o It’s easy to see the length of a slice or range when only the stop position is given:
range(3) and my_list[:3] both produce three items.

o It’s easy to compute the length of a slice or range when start and stop are given:
just subtract stop - start.

o It’s easy to split a sequence in two parts at any index x, without overlapping: sim-
ply get my_list[:x] and my_list[x:]. For example:

s>>> 1 = [10, 20, 30, 40, 50, 60]
>>> 1[:2] # split at 2

[10, 20]

>>> 1[2:]

[30, 40, 50, 60]

>>> 1[:3] # split at 3

[10, 20, 30]

Slicing | 47

https://fpy.li/2-12
https://fpy.li/2-12

>>> 1[3:]
[40, 50, 60]

The best arguments for this convention were written by the Dutch computer scientist
Edsger W. Dijkstra (see the last reference in “Further Reading” on page 71).

Now let’s take a close look at how Python interprets slice notation.

Slice Objects

This is no secret, but worth repeating just in case: s[a:b:c] can be used to specify a
stride or step c, causing the resulting slice to skip items. The stride can also be nega-
tive, returning items in reverse. Three examples make this clear:

>>> s = 'bicycle'
>>> s[::3]

lbyel

>>> s[::-1]
'elcycib’

>>> s[::-2]
'eccb’

Another example was shown in Chapter 1 when we used deck[12::13] to get all the
aces in the unshuffled deck:

>>> deck[12::13]

[Card(rank='A"', suit='spades'), Card(rank='A'", suit='diamonds'),

Card(rank="'A"', suit='clubs'), Card(rank='A', suit='hearts')]
The notation a:b:c is only valid within [] when used as the indexing or subscript
operator, and it produces a slice object: slice(a, b, c). As we will see in “How Slic-
ing Works” on page 404, to evaluate the expression seq[start:stop:step], Python
calls seq.__getitem__(slice(start, stop, step)). Even if you are not imple-
menting your own sequence types, knowing about slice objects is useful because it
lets you assign names to slices, just like spreadsheets allow naming of cell ranges.

Suppose you need to parse flat-file data like the invoice shown in Example 2-13.
Instead of filling your code with hardcoded slices, you can name them. See how read-
able this makes the for loop at the end of the example.

Example 2-13. Line items from a flat-file invoice

>>> invoice =

0..... Be ittt ittt e i e e it 40........ 52 55, ..
.. 1909 Pimoroni PiBrella $17.50 3 $52.50
.. 1489 6mm Tactile Switch x20 $4.95 2 $9.90
.. 1510 Panavise Jr. - PV-201 $28.00 1 $28.00
. 1601 PiTFT Mini Kit 320x240 $34.95 1 $34.95

wnn

48 | Chapter2: An Array of Sequences

>>> SKU = slice(0, 6)

>>> DESCRIPTION = slice(6, 40)

>>> UNIT_PRICE = slice(40, 52)

>>> QUANTITY = slice(52, 55)

>>> ITEM_TOTAL = slice(55, None)

>>> line_items = invoice.split('\n')[2:]

>>> for item in line_1items:
print(item[UNIT_PRICE], item[DESCRIPTION])

$17.50 Pimoroni PiBrella

$4.95 6mm Tactile Switch x20
$28.00 Panavise Jr. - PV-201
$34.95 PiTFT Minil Kit 320x240

We'll come back to slice objects when we discuss creating your own collections in
“Vector Take #2: A Sliceable Sequence” on page 403. Meanwhile, from a user perspec-
tive, slicing includes additional features such as multidimensional slices and ellipsis
(...) notation. Read on.

Multidimensional Slicing and Ellipsis

The [] operator can also take multiple indexes or slices separated by commas. The
__getitem__ and __setitem__ special methods that handle the [] operator simply
receive the indices in a[1, j] as a tuple. In other words, to evaluate a[1, j], Python
callsa.__getitem_ ((1, j)).

This is used, for instance, in the external NumPy package, where items of a two-
dimensional numpy.ndarray can be fetched using the syntax a[i, j] and a
two-dimensional slice obtained with an expression like a[m:n, k:1]. Example 2-22
later in this chapter shows the use of this notation.

Except for memoryview, the built-in sequence types in Python are one-dimensional, so
they support only one index or slice, and not a tuple of them.®

The ellipsis—written with three full stops (. ..) and not .. (Unicode U+2026)—is rec-
ognized as a token by the Python parser. It is an alias to the E1l1ipsis object, the sin-
gle instance of the ellipsis class.” As such, it can be passed as an argument to
functions and as part of a slice specification, as in f(a, ..., z) or a[i:...].
NumPy uses ... as a shortcut when slicing arrays of many dimensions; for example,

6 In “Memory Views” on page 62 we show that specially constructed memory views can have more than one
dimension.

7 No, I did not get this backwards: the ellipsis class name is really all lowercase, and the instance is a built-in
named E1lipsis, just like bool is lowercase but its instances are True and False.

Slicing | 49

if x is a four-dimensional array, x[1, ...] is a shortcut for x[1, :, :, :,]. See
“NumPy quickstart” to learn more about this.

At the time of this writing, I am unaware of uses of Ellipsis or multidimensional
indexes and slices in the Python standard library. If you spot one, let me know. These
syntactic features exist to support user-defined types and extensions such as NumPy.

Slices are not just useful to extract information from sequences; they can also be used
to change mutable sequences in place—that is, without rebuilding them from scratch.

Assigning to Slices

Mutable sequences can be grafted, excised, and otherwise modified in place using
slice notation on the lefthand side of an assignment statement or as the target of a del
statement. The next few examples give an idea of the power of this notation:

>>> 1 = list(range(10))

s> 1

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> 1[2:5] = [20, 30]

>>> 1

[o, 1, 20, 30, 5, 6, 7, 8, 9]
>>> del 1[5:7]

s> 1

[e, 1, 20, 30, 5, 8, 9]

>>> 1[3::2] = [11, 22]

>>> 1

[e, 1, 20, 11, 5, 22, 9]

>>> 1[2:5] = 100 @

File "<stdin>", line 1, in <module>
TypeError: can only assign an iterable
>>> 1[2:5] = [100]
>>> 1
[0, 1, 100, 22, 9]

© When the target of the assignment is a slice, the righthand side must be an itera-
ble object, even if it has just one item.

Every coder knows that concatenation is a common operation with sequences. Intro-
ductory Python tutorials explain the use of + and * for that purpose, but there are
some subtle details on how they work, which we cover next.

Using + and * with Sequences

Python programmers expect that sequences support + and *. Usually both operands
of + must be of the same sequence type, and neither of them is modified, but a new
sequence of that same type is created as result of the concatenation.

50 | Chapter2:An Array of Sequences

https://fpy.li/2-13

To concatenate multiple copies of the same sequence, multiply it by an integer.
Again, a new sequence is created:

>>> 1 =[1, 2, 3]

>>> 1 * 5

[1, 2, 3,1, 2, 3,1,2,3,1,2,3,1, 2, 3]
>>> 5 * 'abcd'

'abcdabcdabcdabcdabed!

Both + and * always create a new object, and never change their operands.

Beware of expressions like a * n when a is a sequence containing
mutable items, because the result may surprise you. For example,
trying to initialize a list of lists as my_list = [[]] * 3 will result

\ in a list with three references to the same inner list, which is proba-
bly not what you want.

The next section covers the pitfalls of trying to use * to initialize a list of lists.

Building Lists of Lists

Sometimes we need to initialize a list with a certain number of nested lists—for
example, to distribute students in a list of teams or to represent squares on a game
board. The best way of doing so is with a list comprehension, as in Example 2-14.

Example 2-14. A list with three lists of length 3 can represent a tic-tac-toe board

>>> board = [['_'] * 3 for 1 in range(3)] @

>>> board

I P P PR I
>>> board[1][2] = 'X' ©

>>> board

[[l_l, l_l’ I_l]’ [l_l, l_l’ le]’ [I_l, |_l’ I_l]]
© Create a list of three lists of three items each. Inspect the structure.

® Place a mark in row 1, column 2, and check the result.

A tempting, but wrong, shortcut is doing it like Example 2-15.

Example 2-15. A list with three references to the same list is useless

>>> weird_board = [['_'] * 3] * 3 (1]

>>> weird_board

[[l_l, l_l’ I_l]’ [l_l, l_l’ I_l], [I_l, l_l’ I_l]]
>>> weird_board[1][2] = '0' ©

Using + and * with Sequences | 51

>>> weird_board
[[l_l, |_l’ Iol]’ [l_l, ‘_', Io|]’ [I_l, l_l’ I0|]]

@ The outer list is made of three references to the same inner list. While it is
unchanged, all seems right.

® Placing a mark in row 1, column 2, reveals that all rows are aliases referring to
the same object.

The problem with Example 2-15 is that, in essence, it behaves like this code:
row=['"]%*3
board = []

for 1 in range(3):
board.append(row) (1)

© The same row is appended three times to board.

On the other hand, the list comprehension from Example 2-14 is equivalent to this
code:

>>> board = []

>>> for 1 in range(3):
row=['_"']*3 (1)
board.append(row)

>>> board

[PR

>>> board[z][1

>>> board ©

IS P S PR I

] [P P R

i)

Each iteration builds a new row and appends it to board.

Only row 2 is changed, as expected.

If either the problem or the solution in this section is not clear to
you, relax. Chapter 6 was written to clarify the mechanics and pit-
falls of references and mutable objects.

So far we have discussed the use of the plain + and * operators with sequences, but
there are also the += and *= operators, which produce very different results, depend-
ing on the mutability of the target sequence. The following section explains how that
works.

52 | Chapter2: An Array of Sequences

Augmented Assignment with Sequences

The augmented assignment operators += and *= behave quite differently, depending
on the first operand. To simplify the discussion, we will focus on augmented addition
first (+=), but the concepts also apply to *= and to other augmented assignment
operators.

The special method that makes += work is __iadd__ (for “in-place addition”).

However, if __iadd__ is not implemented, Python falls back to calling __add__. Con-
sider this simple expression:

>>> a += b

If a implements __iadd__, that will be called. In the case of mutable sequences (e.g.,

list, bytearray, array.array), a will be changed in place (i.e., the effect will be sim-

ilar to a.extend(b)). However, when a does not implement __iadd__, the expression

a += b has the same effect as a = a + b: the expression a + b is evaluated first,

producing a new object, which is then bound to a. In other words, the identity of

the object bound to a may or may not change, depending on the availability of
iadd__.

In general, for mutable sequences, it is a good bet that __iadd__ is implemented and
that += happens in place. For immutable sequences, clearly there is no way for that to
happen.

What I just wrote about += also applies to *=, which is implemented via __imul__.
The __iadd__ and __imul__ special methods are discussed in Chapter 16. Here is a
demonstration of *= with a mutable sequence and then an immutable one:

>>> 1 = [1, 2, 3]
>>> 1d(1)
4311953800 @
>>> 1 *= 2

>>> 1

[1, 2, 3, 1, 2, 3]
>>> 1d(1)
4311953800 @
>>> t = (1, 2, 3)
>>> 1d(t)
4312681568

>>> t *= 2

>>> 1d(t)
4301348296 O

@ 1D of the initial list.

© After multiplication, the list is the same object, with new items appended.

Using + and * with Sequences | 53

© D of the initial tuple.

O After multiplication, a new tuple was created.

Repeated concatenation of immutable sequences is inefficient, because instead of just
appending new items, the interpreter has to copy the whole target sequence to create
a new one with the new items concatenated.®

We've seen common use cases for +=. The next section shows an intriguing corner
case that highlights what “immutable” really means in the context of tuples.

A += Assignment Puzzler

Try to answer without using the console: what is the result of evaluating the two
expressions in Example 2-16?°

Example 2-16. A riddle

>>> t = (1, 2, [30, 40])
>>> t[2] += [50, 60]

What happens next? Choose the best answer:

A. tbecomes (1, 2, [30, 40, 50, 60]).

B. TypeError is raised with the message 'tuple' object does not support item
assignment.

C. Neither.
D. Both A and B.

When I saw this, I was pretty sure the answer was B, but it’s actually D, “Both A and
B”! Example 2-17 is the actual output from a Python 3.9 console.’

8 stris an exception to this description. Because string building with += in loops is so common in real codeba-
ses, CPython is optimized for this use case. Instances of str are allocated in memory with extra room, so that
concatenation does not require copying the whole string every time.

9 Thanks to Leonardo Rochael and Cesar Kawakami for sharing this riddle at the 2013 PythonBrasil
Conference.

10 Readers suggested that the operation in the example can be done with t[2].extend([50,60]), without
errors. I am aware of that, but my intent is to show the strange behavior of the += operator in this case.

54 | Chapter2: An Array of Sequences

Example 2-17. The unexpected result: item t2 is changed and an exception is raised

>>> t = (1, 2, [30, 40])
>>> t[2] += [50, 60]

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> t
(1, 2, [30, 40, 50, 60])

Online Python Tutor is an awesome online tool to visualize how Python works in
detail. Figure 2-5 is a composite of two screenshots showing the initial and final states
of the tuple t from Example 2-17.

1t =1, 2, [30, 48]) Frames Objects

=2 t[2] += [58, 68] Global frame tuple list

tl_/—-—-—ﬁnlz 0 1
1|2 30 | 40

Edit code

0

| =<First | | <Back | Step 20f 2 | Forward> | | Last>> |

line that has just executed
=% next line to execute

1t = (1,2, [30, 40]) Frames Objects

=2 2] += (50, 601 Globat frane e

thu 1 [z 3
1|2 60

0 1 2
Edit code 30 | 40 | 50

| =<First | | <Back | Program terminated | Forward > Last >

TypeError: 'tuple' object does not support item assignment

line that has just executed
= next line to execute

Figure 2-5. Initial and final state of the tuple assignment puzzler (diagram generated
by Online Python Tutor).

If you look at the bytecode Python generates for the expression s[a] += b
(Example 2-18), it becomes clear how that happens.

Example 2-18. Bytecode for the expression s[a] += b

>>> dis.dis('s[a] += b")

1 0 LOAD_NAME 0 (s)
3 LOAD_NAME 1 (a)
6 DUP_TOP_TWO
7 BINARY_SUBSCR (1)
8 LOAD_NAME 2 (b)

11 INPLACE_ADD
12 ROT_THREE

13 STORE_SUBSCR (3]
14 LOAD_CONST 0 (None)

17 RETURN_VALUE

Using + and * with Sequences | 55

https://fpy.li/2-14

Put the value of s[a] on TOS (Top Of Stack).

Perform TOS += b. This succeeds if TOS refers to a mutable object (it’s a list, in
Example 2-17).

© Assign s[a] = TOS. This fails if s is immutable (the t tuple in Example 2-17).

This example is quite a corner case—in 20 years using Python, I have never seen this
strange behavior actually bite somebody.

I take three lessons from this:

« Avoid putting mutable items in tuples.

« Augmented assignment is not an atomic operation—we just saw it throwing an
exception after doing part of its job.

« Inspecting Python bytecode is not too difficult, and can be helpful to see what is
going on under the hood.

After witnessing the subtleties of using + and * for concatenation, we can change the
subject to another essential operation with sequences: sorting.

list.sort Versus the sorted Built-In

The 1ist.sort method sorts a list in place—that is, without making a copy. It returns
None to remind us that it changes the receiver'! and does not create a new list. This is
an important Python API convention: functions or methods that change an object in
place should return None to make it clear to the caller that the receiver was changed,
and no new object was created. Similar behavior can be seen, for example, in the ran
dom.shuffle(s) function, which shuffles the mutable sequence s in place, and
returns None.

The convention of returning None to signal in-place changes has a
drawback: we cannot cascade calls to those methods. In contrast,
methods that return new objects (e.g., all str methods) can be cas-
caded in the fluent interface style. See Wikipedia’s “Fluent inter-
face” entry for further description of this topic.

In contrast, the built-in function sorted creates a new list and returns it. It accepts
any iterable object as an argument, including immutable sequences and generators

11 Receiver is the target of a method call, the object bound to self in the method body.

56 | Chapter2: An Array of Sequences

https://fpy.li/2-15
https://fpy.li/2-15

(see Chapter 17). Regardless of the type of iterable given to sorted, it always returns a
newly created list.

Both list.sort and sorted take two optional, keyword-only arguments:

reverse
If True, the items are returned in descending order (i.e., by reversing the compar-
ison of the items). The default is False.

key
A one-argument function that will be applied to each item to produce its sorting
key. For example, when sorting a list of strings, key=str.lower can be used
to perform a case-insensitive sort, and key=1en will sort the strings by character
length. The default is the identity function (i.e., the items themselves are
compared).

You can also use the optional keyword parameter key with the
min() and max() built-ins and with other functions from the stan-
dard library (e.g., itertools.groupby() and heapg.nlargest()).

Here are a few examples to clarify the use of these functions and keyword arguments.
The examples also demonstrate that Python’s sorting algorithm is stable (i.e., it pre-
serves the relative ordering of items that compare equally):'?

>>> fruits = ['grape', 'raspberry', 'apple', 'banana']
>>> sorted(fruits)

['apple', 'banana', 'grape', 'raspberry']
>>> fruits

['grape', 'raspberry', 'apple', 'banana']
>>> sorted(fruits, reverse=True)
['raspberry', 'grape', 'banana', 'apple']
>>> sorted(fruits, key=len)

['grape', 'apple', 'banana', 'raspberry']
>>> sorted(fruits, key=len, reverse=True)
['raspberry', 'banana', 'grape', 'apple']
>>> fruits

['grape', 'raspberry', 'apple', 'banana']
>>> fruits.sort()

>>> fruits

['apple', 'banana', 'grape', 'raspberry']

© 006 6 6 © © ©

12 Python’s main sorting algorithm is named Timsort after its creator, Tim Peters. For a bit of Timsort trivia, see
the “Soapbox” on page 73.

list.sort Versus the sorted Built-In | 57

This produces a new list of strings sorted alphabetically.”
Inspecting the original list, we see it is unchanged.

This is the previous “alphabetical” ordering, reversed.

© o o ©

A new list of strings, now sorted by length. Because the sorting algorithm is
stable, “grape” and “apple,” both of length 5, are in the original order.

()

These are the strings sorted by length in descending order. It is not the reverse of
the previous result because the sorting is stable, so again “grape” appears before

“apple.”

So far, the ordering of the original fruits list has not changed.
This sorts the list in place, and returns None (which the console omits).

Now fruits is sorted.

By default, Python sorts strings lexicographically by character code.
That means ASCII uppercase letters will come before lowercase let-
ters, and non-ASCII characters are unlikely to be sorted in a sensi-

\ ble way. “Sorting Unicode Text” on page 148 covers proper ways of
sorting text as humans would expect.

Once your sequences are sorted, they can be very efficiently searched. A binary search
algorithm is already provided in the bisect module of the Python standard library.
That module also includes the bisect.insort function, which you can use to make
sure that your sorted sequences stay sorted. You’'ll find an illustrated introduction to
the bisect module in the “Managing Ordered Sequences with Bisect” post in the flu-
entpython.com companion website.

Much of what we have seen so far in this chapter applies to sequences in general, not
just lists or tuples. Python programmers sometimes overuse the list type because it
is so handy—I know I've done it. For example, if you are processing large lists of
numbers, you should consider using arrays instead. The remainder of the chapter is
devoted to alternatives to lists and tuples.

13 The words in this example are sorted alphabetically because they are 100% made of lowercase ASCII charac-
ters. See the warning after the example.

58 | Chapter2: An Array of Sequences

https://fpy.li/bisect
http://fluentpython.com
http://fluentpython.com

When a List Is Not the Answer

The list type is flexible and easy to use, but depending on specific requirements,
there are better options. For example, an array saves a lot of memory when you need
to handle millions of floating-point values. On the other hand, if you are constantly
adding and removing items from opposite ends of a list, it’s good to know that a
deque (double-ended queue) is a more efficient FIFO' data structure.

If your code frequently checks whether an item is present in a col-
lection (e.g., item in my_collection), consider using a set for
my_collection, especially if it holds a large number of items. Sets
are optimized for fast membership checking. They are also iterable,
but they are not sequences because the ordering of set items is
unspecified. We cover them in Chapter 3.

For the remainder of this chapter, we discuss mutable sequence types that can replace
lists in many cases, starting with arrays.

Arrays

If a list only contains numbers, an array.array is a more efficient replacement.
Arrays support all mutable sequence operations (including .pop, .insert,
and .extend), as well as additional methods for fast loading and saving, such
as .frombytes and .tofile.

A Python array is as lean as a C array. As shown in Figure 2-1, an array of float
values does not hold full-fledged float instances, but only the packed bytes repre-
senting their machine values—similar to an array of double in the C language. When
creating an array, you provide a typecode, a letter to determine the underlying C
type used to store each item in the array. For example, b is the typecode for what
C calls a signed char, an integer ranging from -128 to 127. If you create an
array('b'), then each item will be stored in a single byte and interpreted as an inte-
ger. For large sequences of numbers, this saves a lot of memory. And Python will not
let you put any number that does not match the type for the array.

Example 2-19 shows creating, saving, and loading an array of 10 million floating-
point random numbers.

14 First in, first out—the default behavior of queues.

When a List Is Not the Answer | 59

Example 2-19. Creating, saving, and loading a large array of floats

>>> from import array (1)

>>> from import random

>>> floats = array('d', (random() for i in range(10%**7))) (2]
>>> floats[-1] (3]
0.07802343889111107

>>> fp = open('floats.bin', 'wb')
>>> floats.tofile(fp) @

>>> fp.close()

>>> floats2 = array('d') (5)

>>> fp = open('floats.bin', 'rb")
>>> floats2.fromfile(fp, 10%*7) @
>>> fp.close()

>>> floats2[-1] (7]
0.07802343889111107

>>> floats2 == floats ©

True

@ Import the array type.

® Create an array of double-precision floats (typecode 'd") from any iterable object
—in this case, a generator expression.

Inspect the last number in the array.

Save the array to a binary file.

Create an empty array of doubles.

Read 10 million numbers from the binary file.

Inspect the last number in the array.

© ©¢ © 6 6 o

Verify that the contents of the arrays match.

As you can see, array.tofile and array.fromfile are easy to use. If you try the
example, you'll notice they are also very fast. A quick experiment shows that it takes
about 0.1 seconds for array.fromfile to load 10 million double-precision floats
from a binary file created with array.tofile. That is nearly 60 times faster than
reading the numbers from a text file, which also involves parsing each line with the
float built-in. Saving with array.tofile is about seven times faster than writing one
float per line in a text file. In addition, the size of the binary file with 10 million dou-
bles is 80,000,000 bytes (8 bytes per double, zero overhead), while the text file has
181,515,739 bytes for the same data.

60 | Chapter2: An Array of Sequences

For the specific case of numeric arrays representing binary data, such as raster
images, Python has the bytes and bytearray types discussed in Chapter 4.

We wrap up this section on arrays with Table 2-3, comparing the features of list
and array.array.

Table 2-3. Methods and attributes found in list or array (deprecated array methods and
those also implemented by object are omitted for brevity)

S

S

S

.__add__(s2)
.__1ladd__(s2)
.append(e)
.byteswap()
.clear()
.__contains__(e)
.copy()
.__copy__()
.count(e)
.__deepcopy__()
.__delitem__(p)
.extend(it)
.frombytes(b)
.fromfile(f, n)
fromlist(l)
.__getitem__(p)
.index(e)
.insert(p, e)
.itemsize
.__iter__()
__len__Q)
.__mul__(n)
.__imul__(n)
.__rmul__(n)
-pop([p])
.remove(e)
.reverse()
.__reversed__ ()

.__setitem__(p, e)

s + s2—concatenation

s += s2—in-place concatenation

Append one element after last

Swap bytes of all items in array for endianness conversion

Delete all items

e in s

Shallow copy of the list

Support for copy . copy

Count occurrences of an element

Optimized support for copy . deepcopy

Remove item at position p

Append items from iterable 1t

Append items from byte sequence interpreted as packed machine values
Append n items from binary file f interpreted as packed machine values
Append items from list; if one causes TypeError, none are appended
s[p]—aget item or slice at position

Find position of first occurrence of e

Insert element e before the item at position p

Length in bytes of each array item

Get iterator

len(s)—number of items

s * n—repeated concatenation

s *= n—in-place repeated concatenation

n * s—reversed repeated concatenation®

Remove and return item at position p (default: last)

Remove first occurrence of element e by value

Reverse the order of the items in place

Get iterator to scan items from last to first

s[p] = e—put e in position p, overwriting existing item or slice

When a List Is Not the Answer | 61

list array

s.sort([key], [reverse]) @ Sort items in place with optional keyword arguments key and
reverse

s.tobytes() L4 Return items as packed machine values in a by tes object

s.tofile(f) L4 Save items as packed machine values to binary file f

s.tolist() 4 Return items as numeric objectsina list

s.typecode ° One-character string identifying the C type of the items

2 Reversed operators are explained in Chapter 16.

As of Python 3.10, the array type does not have an in-place sort
method like list.sort(). If you need to sort an array, use the
built-in sorted function to rebuild the array:

a = array.array(a.typecode, sorted(a))

To keep a sorted array sorted while adding items to it, use the
bisect.insort function.

If you do a lot of work with arrays and don’t know about memoryview, you're missing
out. See the next topic.

Memory Views

The built-in memoryview class is a shared-memory sequence type that lets you handle
slices of arrays without copying bytes. It was inspired by the NumPy library (which
we’ll discuss shortly in “NumPy” on page 64). Travis Oliphant, lead author of NumPy,
answers the question, “When should a memoryview be used?” like this:

A memoryview is essentially a generalized NumPy array structure in Python itself
(without the math). It allows you to share memory between data-structures (things like
PIL images, SQLite databases, NumPy arrays, etc.) without first copying. This is very
important for large data sets.

Using notation similar to the array module, the memoryview.cast method lets you
change the way multiple bytes are read or written as units without moving bits
around. memoryview.cast returns yet another memoryview object, always sharing the
same memory.

Example 2-20 shows how to create alternate views on the same array of 6 bytes, to
operate on it as a 2x3 matrix or a 3x2 matrix.

Example 2-20. Handling 6 bytes of memory as 1x6, 2x3, and 3x2 views

>>> from import array
>>> octets = array('B', range(6)) (1]

62 | Chapter2: An Array of Sequences

https://fpy.li/2-16
https://fpy.li/2-17

>>>
>>>
(o,
>>>
>>>

[lo,

>>>
>>>

[lo,

>>>
>>>
>>>

ml = memoryview(octets) (2]
ml.tolist()

1, 2, 3, 4, 5]
m2 = ml.cast('B', [2, 3]) ©
m2.tolist()

1, 2], [3, 4, 5]]
m3 = ml.cast('B', [3, 2]) (4]
m3.tolist()

11, [2, 31, [4, 5]1]
m2[1,1] = 22

m3[1,1] = 33 O
octets

array('B', [0, 1, 2, 33, 22, 5])

®© ©6 6 6 o o o

Build array of 6 bytes (typecode 'B").

Build memoryview from that array, then export it as a list.

Build new memoryview from that previous one, but with 2 rows and 3 columns.
Yet another memoryview, now with 3 rows and 2 columns.

Overwrite byte in m2 at row 1, column 1 with 22.

Overwrite byte in m3 at row 1, column 1 with 33.

Display original array, proving that the memory was shared among octets, m1,
m2, and m3.

The awesome power of memoryview can also be used to corrupt. Example 2-21 shows
how to change a single byte of an item in an array of 16-bit integers.

Example 2-21. Changing the value of a 16-bit integer array item by poking one of its
bytes

>>>
>>>
>>>
5
>>>
-2
>>>
>>>

numbers = array.array('h', [-2, -1, 0, 1, 2])
memv = memoryview(numbers)
len(memv)

memv[0] (2]

memv_oct = memv.cast('B') (3]
memv_oct.tolist() (4]

[254, 255, 255, 255, 0, 0, 1, 0, 2, O]

>>>
>>>

memv_oct[5] = 4
numbers

array('h', [-2, -1, 1024, 1, 2]) O

When a List Is Not the Answer | 63

Build memoryview from array of 5 16-bit signed integers (typecode 'h").
memv sees the same 5 items in the array.

Create memv_oct by casting the elements of memv to bytes (typecode 'B").
Export elements of memv_oct as a list of 10 bytes, for inspection.

Assign value 4 to byte offset 5.

© 6 6 o o o

Note the change to numbers: a 4 in the most significant byte of a 2-byte unsigned
integer is 1024.

You'll find an example of inspecting memoryview with the struct
package at fluentpython.com: “Parsing binary records with struct”.

Meanwhile, if you are doing advanced numeric processing in arrays, you should be
using the NumPy libraries. We’ll take a brief look at them right away.

NumPy

Throughout this book, I make a point of highlighting what is already in the Python
standard library so you can make the most of it. But NumPy is so awesome that a
detour is warranted.

For advanced array and matrix operations, NumPy is the reason why Python became
mainstream in scientific computing applications. NumPy implements multi-
dimensional, homogeneous arrays and matrix types that hold not only numbers but
also user-defined records, and provides efficient element-wise operations.

SciPy is a library, written on top of NumPy, offering many scientific computing algo-
rithms from linear algebra, numerical calculus, and statistics. SciPy is fast and reliable
because it leverages the widely used C and Fortran codebase from the Netlib Reposi-
tory. In other words, SciPy gives scientists the best of both worlds: an interactive
prompt and high-level Python APIs, together with industrial-strength number-
crunching functions optimized in C and Fortran.

As a very brief NumPy demo, Example 2-22 shows some basic operations with two-
dimensional arrays.

64 | Chapter2: An Array of Sequences

http://fluentpython.com
https://fpy.li/2-18
https://fpy.li/2-19
https://fpy.li/2-19

Example 2-22. Basic operations with rows and columns in a numpy . ndarray

>>> import as (1]
>>> 3 = np.arange(12) (2]
>>> a

array([o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
>>> type(a)

<class 'numpy.ndarray's>

>>> a.shape

(12,)

>>> 3a.shape = 3, 4 (4]

>>> a

array([[o, 1, 2, 3],
[4’ 51 61 7]’
[8, 9, 10, 11]])

>>> a[2]

array([8, 9, 10, 11])

>>> a[2, 1]

9

>>> a[:, 1] (7]

array([1, 5, 9])

>>> a.transpose() (8]

array([[o, 4, 8],
[1, 5, 9],
[2, 6, 10],

[3, 7,11]D

Import NumPy, after installing (it’s not in the Python standard library). Conven-
tionally, numpy is imported as np.

Build and inspect a numpy . ndarray with integers 0 to 11.

Inspect the dimensions of the array: this is a one-dimensional, 12-element array.
Change the shape of the array, adding one dimension, then inspecting the result.
Get row at index 2.

Get element at index 2, 1.

®© ©6 6 6 o o

Get column at index 1.

Create a new array by transposing (swapping columns with rows).

NumPy also supports high-level operations for loading, saving, and operating on all
elements of a numpy.ndarray:

>>> import
>>> floats = numpy.loadtxt('floats-10M-lines.txt') @

When a List Is Not the Answer | 65

>>> floats[-3:] (2]

array([3016362.69195522, 535281.10514262, 4566560.44373946])
>>> floats *= .5

>>> floats[-3:]

array([1508181.34597761, 267640.55257131, 2283280.22186973])
>>> from import perf_counter as pc (4]

>>> t0 = pc(); floats /= 3; pc() - tO (5]

0.03690556302899495

>>> numpy.save('floats-10M', floats) (6]

>>> floats2 = numpy.load('floats-16M.npy', 'r+') (7]

>>> floats2 *= 6

>>> floats2[-3:] (8]

memmap([3016362.69195522, 535281.10514262, 4566560.44373946])

Load 10 million floating-point numbers from a text file.
Use sequence slicing notation to inspect the last three numbers.

Multiply every element in the floats array by .5 and inspect the last three
elements again.

O Import the high-resolution performance measurement timer (available since
Python 3.3).

© Divide every element by 3; the elapsed time for 10 million floats is less than 40
milliseconds.

Save the array in a .npy binary file.

Load the data as a memory-mapped file into another array; this allows efficient
processing of slices of the array even if it does not fit entirely in memory.

O Inspect the last three elements after multiplying every element by 6.
This was just an appetizer.

NumPy and SciPy are formidable libraries, and are the foundation of other awesome
tools such as the Pandas—which implements efficient array types that can hold non-
numeric data and provides import/export functions for many different formats,
like .csv, .xIs, SQL dumps, HDFS5, etc.—and scikit-learn, currently the most widely
used Machine Learning toolset. Most NumPy and SciPy functions are implemented
in C or C++, and can leverage all CPU cores because they release Python’s GIL
(Global Interpreter Lock). The Dask project supports parallelizing NumPy, Pandas,
and scikit-learn processing across clusters of machines. These packages deserve entire
books about them. This is not one of those books. But no overview of Python sequen-
ces would be complete without at least a quick look at NumPy arrays.

66 | Chapter2: An Array of Sequences

https://fpy.li/2-20
https://fpy.li/2-21
https://fpy.li/dask

Having looked at flat sequences—standard arrays and NumPy arrays—we now turn
to a completely different set of replacements for the plain old list: queues.

Deques and Other Queues

The .append and .pop methods make a list usable as a stack or a queue (if you
use .append and .pop(0), you get FIFO behavior). But inserting and removing from
the head of a list (the 0-index end) is costly because the entire list must be shifted in
memory.

The class collections.deque is a thread-safe double-ended queue designed for fast
inserting and removing from both ends. It is also the way to go if you need to keep a
list of “last seen items” or something of that nature, because a deque can be bounded
—i.e., created with a fixed maximum length. If a bounded deque is full, when you add
a new item, it discards an item from the opposite end. Example 2-23 shows some typ-
ical operations performed on a deque.

Example 2-23. Working with a deque

>>> from import deque
>>> dq = deque(range(10), maxlen=10)
>>> dq

deque([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], maxlen=10)
>>> dg.rotate(3)

>>> dq

deque([7, 8, 9, 0, 1, 2, 3, 4, 5, 6], maxlen=10)
>>> dq.rotate(-4)

>>> dq

deque([1, 2, 3, 4, 5, 6, 7, 8, 9, 0], maxlen=10)
>>> dq.appendleft(-1)

>>> dq

deque([-1, 1, 2, 3, 4, 5, 6, 7, 8, 9], maxlen=10)
>>> dq.extend([11, 22, 33])

>>> dq

deque([3, 4, 5, 6, 7, 8, 9, 11, 22, 33], maxlen=10)
>>> dq.extendleft([10, 20, 30, 40])

>>> dq

deque([40, 30, 20, 10, 3, 4, 5, 6, 7, 8], maxlen=10)

© The optional maxlen argument sets the maximum number of items allowed in
this instance of deque; this sets a read-only maxlen instance attribute.

® Rotating with n > 0 takes items from the right end and prepends them to the
left; when n < 0 items are taken from left and appended to the right.

When a List Is Not the Answer | 67

© Appending to a deque that is full (Len(d) == d.maxlen) discards items from the
other end; note in the next line that the 0 is dropped.

Adding three items to the right pushes out the leftmost -1, 1, and 2.

Note that extendleft(iter) works by appending each successive item of the
iter argument to the left of the deque, therefore the final position of the items is
reversed.

Table 2-4 compares the methods that are specific to list and deque (removing those
that also appear in object).

Note that deque implements most of the l1ist methods, and adds a few that are spe-
cific to its design, like popleft and rotate. But there is a hidden cost: removing
items from the middle of a deque is not as fast. It is really optimized for appending
and popping from the ends.

The append and popleft operations are atomic, so deque is safe to use as a FIFO
queue in multithreaded applications without the need for locks.

Table 2-4. Methods implemented in list or deque (those that are also implemented by
object are omitted for brevity)

s.__add__(s2) o S + s2—concatenation
s.__iadd__(s2) o o s += s2—in-place concatenation
s.append(e) o o Append one element to the right (after last)
s.appendleft(e) ° Append one element to the left (before first)
s.clear() e o Delete all items

s.__contains__(e) L4 e in s

s.copy() . Shallow copy of the list

s.__copy__() L4 Support for copy . copy (shallow copy)
s.count(e) o o Count occurrences of an element
s.__delitem__(p) o o Remove item at position p

s.extend(1) o o Append items from iterable i to the right
s.extendleft(i) L4 Append items from iterable 1 to the left
s.__getitem__(p) LA 4 s[p]—get item or slice at position
s.index(e) ° Find position of first occurrence of e
s.insert(p, e) L Insert element e before the item at position p
s.__iter__() o o Get iterator

s.__len__() o o len(s)—number of items

68 | Chapter2: An Array of Sequences

S

S.

S

._mul__(n) °
__imul__(n) o
._rmul__(n) L4
-pop() b
.popleft()

.remove(e) o
.reverse() o
__reversed__() L4
.rotate(n)

__setitem__(p, e) o

.sort([key], [reverse]) @

s * n—repeated concatenation

s *= n—in-place repeated concatenation

n * s—reversed repeated concatenation®

Remove and return last item®

Remove and return first item

Remove first occurrence of element e by value

Reverse the order of the items in place

Get iterator to scan items from last to first

Move n items from one end to the other

s[p] = e—pute in position p, overwriting existing item or slice

Sort items in place with optional keyword arguments key and
reverse

2 Reversed operators are explained in Chapter 16.

ba_list.pop(p) allows removing from position p, but deque does not support that option.

Besides deque, other Python standard library packages implement queues:

queue
This provides the synchronized (i.e., thread-safe) classes SimpleQueue, Queue,
LifoQueue, and PriorityQueue. These can be used for safe communication
between threads. All except SimpleQueue can be bounded by providing a max
size argument greater than 0 to the constructor. However, they don’t discard
items to make room as deque does. Instead, when the queue is full, the insertion
of a new item blocks—i.e., it waits until some other thread makes room by taking
an item from the queue, which is useful to throttle the number of live threads.

multiprocessing
Implements its own unbounded SimpleQueue and bounded Queue, very similar
to those in the queue package, but designed for interprocess communication. A
specialized multiprocessing.JoinableQueue is provided for task management.

asyncio
Provides Queue, LifoQueue, PriorityQueue, and JoinableQueue with APIs
inspired by the classes in the queue and multiprocessing modules, but adapted
for managing tasks in asynchronous programming.

heapq
In contrast to the previous three modules, heapq does not implement a queue
class, but provides functions like heappush and heappop that let you use a muta-
ble sequence as a heap queue or priority queue.

When aList Is Not the Answer | 69

This ends our overview of alternatives to the list type, and also our exploration of
sequence types in general—except for the particulars of str and binary sequences,
which have their own chapter (Chapter 4).

Chapter Summary

Mastering the standard library sequence types is a prerequisite for writing concise,
effective, and idiomatic Python code.

Python sequences are often categorized as mutable or immutable, but it is also useful
to consider a different axis: flat sequences and container sequences. The former are
more compact, faster, and easier to use, but are limited to storing atomic data such as
numbers, characters, and bytes. Container sequences are more flexible, but may sur-
prise you when they hold mutable objects, so you need to be careful to use them cor-
rectly with nested data structures.

Unfortunately, Python has no foolproof immutable container sequence type: even
“immutable” tuples can have their values changed when they contain mutable items
like lists or user-defined objects.

List comprehensions and generator expressions are powerful notations to build and
initialize sequences. If you are not yet comfortable with them, take the time to master
their basic usage. It is not hard, and soon you will be hooked.

Tuples in Python play two roles: as records with unnamed fields and as immutable
lists. When using a tuple as an immutable list, remember that a tuple value is only
guaranteed to be fixed if all the items in it are also immutable. Calling hash(t) on a
tuple is a quick way to assert that its value is fixed. A TypeError will be raised if t
contains mutable items.

When a tuple is used as a record, tuple unpacking is the safest, most readable way of
extracting the fields of the tuple. Beyond tuples, * works with lists and iterables in
many contexts, and some of its use cases appeared in Python 3.5 with PEP 448—
Additional Unpacking Generalizations. Python 3.10 introduced pattern matching
with match/case, supporting more powerful unpacking, known as destructuring.

Sequence slicing is a favorite Python syntax feature, and it is even more powerful
than many realize. Multidimensional slicing and ellipsis (...) notation, as used in
NumPy, may also be supported by user-defined sequences. Assigning to slices is a
very expressive way of editing mutable sequences.

Repeated concatenation as in seq * n is convenient and, with care, can be used to
initialize lists of lists containing immutable items. Augmented assignment with +=
and *= behaves differently for mutable and immutable sequences. In the latter case,
these operators necessarily build new sequences. But if the target sequence is

70 | Chapter2: An Array of Sequences

https://fpy.li/pep448
https://fpy.li/pep448

mutable, it is usually changed in place—but not always, depending on how the
sequence is implemented.

The sort method and the sorted built-in function are easy to use and flexible, thanks
to the optional key argument: a function to calculate the ordering criterion. By the
way, key can also be used with the min and max built-in functions.

Beyond lists and tuples, the Python standard library provides array.array. Although
NumPy and SciPy are not part of the standard library, if you do any kind of numeri-
cal processing on large sets of data, studying even a small part of these libraries can
take you a long way.

We closed by visiting the versatile and thread-safe collections.deque, comparing its
API with that of l1ist in Table 2-4 and mentioning other queue implementations in
the standard library.

Further Reading

Chapter 1, “Data Structures,” of the Python Cookbook, 3rd ed. (O’Reilly) by David
Beazley and Brian K. Jones, has many recipes focusing on sequences, including
“Recipe 1.11. Naming a Slice,” from which I learned the trick of assigning slices to
variables to improve readability, illustrated in our Example 2-13.

The second edition of the Python Cookbook was written for Python 2.4, but much of
its code works with Python 3, and a lot of the recipes in Chapters 5 and 6 deal with
sequences. The book was edited by Alex Martelli, Anna Ravenscroft, and David
Ascher, and it includes contributions by dozens of Pythonistas. The third edition was
rewritten from scratch, and focuses more on the semantics of the language—particu-
larly what has changed in Python 3—while the older volume emphasizes pragmatics
(i.e., how to apply the language to real-world problems). Even though some of the
second edition solutions are no longer the best approach, I honestly think it is worth-
while to have both editions of the Python Cookbook on hand.

The official Python “Sorting HOW TO” has several examples of advanced tricks for
using sorted and list.sort.

PEP 3132—Extended Iterable Unpacking is the canonical source to read about the
new use of *extra syntax on the lefthand side of parallel assignments. If you'd like a
glimpse of Python evolving, “Missing *-unpacking generalizations” is a bug tracker
issue proposing enhancements to the iterable unpacking notation. PEP 448—Addi-
tional Unpacking Generalizations resulted from the discussions in that issue.

FurtherReading | 71

https://fpy.li/pycook3
https://fpy.li/2-22
https://fpy.li/2-2
https://fpy.li/2-24
https://fpy.li/pep448
https://fpy.li/pep448

As I mentioned in “Pattern Matching with Sequences” on page 38, Carol Willing’s
“Structural Pattern Matching” section of “What’s New In Python 3.10” is a great
introduction to this major new feature in about 1,400 words (that’s less than 5 pages
when Firefox makes a PDF from the HTML). PEP 636—Structural Pattern Matching:
Tutorial is also good, but longer. The same PEP 636 includes “Appendix A—Quick
Intro”. It is shorter than Willing’s intro because it omits high-level considerations
about why pattern matching is good for you. If you need more arguments to con-
vince yourself or others that pattern matching is good for Python, read the 22-page
PEP 635—Structural Pattern Matching: Motivation and Rationale.

Eli Bendersky’s blog post “Less copies in Python with the buffer protocol and memo-
ryviews” includes a short tutorial on memoryview.

There are numerous books covering NumPy in the market, and many don’t mention
“NumPy” in the title. Two examples are the open access Python Data Science Hand-
book by Jake VanderPlas, and the second edition of Wes McKinney’s Python for Data
Analysis.

“NumPy is all about vectorization.” That is the opening sentence of Nicolas P. Rou-
gier’s open access book From Python to NumPy. Vectorized operations apply mathe-
matical functions to all elements of an array without an explicit loop written in
Python. They can operate in parallel, using special vector instructions in modern
CPUgs, leveraging multiple cores or delegating to the GPU, depending on the library.
The first example in Rougier’s book shows a speedup of 500 times after refactoring a
nice Pythonic class using a generator method, into a lean and mean function calling a
couple of NumPy vector functions.

To learn how to use deque (and other collections), see the examples and practical rec-
ipes in “Container datatypes” in the Python documentation.

The best defense of the Python convention of excluding the last item in ranges and
slices was written by Edsger W. Dijkstra himself, in a short memo titled “Why Num-
bering Should Start at Zero”. The subject of the memo is mathematical notation, but
it’s relevant to Python because Dijkstra explains with rigor and humor why a
sequence like 2, 3, ..., 12 should always be expressed as 2 < i < 13. All other reason-
able conventions are refuted, as is the idea of letting each user choose a convention.
The title refers to zero-based indexing, but the memo is really about why it is desira-
ble that 'ABCDE'[1:3] means 'BC' and not 'BCD' and why it makes perfect sense to
write range(2, 13) to produce 2, 3, 4, ..., 12. By the way, the memo is a handwritten
note, but it’s beautiful and totally readable. Dijkstra’s handwriting is so clear that
someone created a font out of his notes.

72 | Chapter2: An Array of Sequences

https://fpy.li/2-6
https://fpy.li/2-7
https://fpy.li/pep636
https://fpy.li/pep636
https://fpy.li/2-27
https://fpy.li/2-27
https://fpy.li/pep635
https://fpy.li/2-28
https://fpy.li/2-28
https://fpy.li/2-29
https://fpy.li/2-29
https://fpy.li/2-30
https://fpy.li/2-30
https://fpy.li/2-31
https://fpy.li/collec
https://fpy.li/2-32
https://fpy.li/2-32
https://fpy.li/2-33

Soapbox

The Nature of Tuples

In 2012, I presented a poster about the ABC language at PyCon US. Before creating
Python, Guido van Rossum had worked on the ABC interpreter, so he came to see
my poster. Among other things, we talked about the ABC compounds, which are
clearly the predecessors of Python tuples. Compounds also support parallel assign-
ment and are used as composite keys in dictionaries (or tables, in ABC parlance).
However, compounds are not sequences. They are not iterable and you cannot
retrieve a field by index, much less slice them. You either handle the compound as
whole or extract the individual fields using parallel assignment, that’s all.

I told Guido that these limitations make the main purpose of compounds very clear:
they are just records without field names. His response: “Making tuples behave as
sequences was a hack.”

This illustrates the pragmatic approach that made Python more practical and more
successful than ABC. From a language implementer perspective, making tuples
behave as sequences costs little. As a result, the main use case for tuples as records is
not so obvious, but we gained immutable lists—even if their type is not as clearly
named as frozenlist.

Flat Versus Container Sequences

To highlight the different memory models of the sequence types, I used the terms
container sequence and flat sequence. The “container” word is from the “Data Model”
documentation:

Some objects contain references to other objects; these are called containers.

I used the term “container sequence” to be specific, because there are containers in
Python that are not sequences, like dict and set. Container sequences can be nested
because they may contain objects of any type, including their own type.

On the other hand, flat sequences are sequence types that cannot be nested because
they only hold simple atomic types like integers, floats, or characters.

I adopted the term flat sequence because I needed something to contrast with “con-
tainer sequence.”

Despite the previous use of the word “containers” in the official documentation, there
is an abstract class in collections.abc called Container. That ABC has just one
method, __contains__—the special method behind the in operator. This means that
strings and arrays, which are not containers in the traditional sense, are virtual sub-
classes of Container because they implement __contains__. This is just one more
example of humans using a word to mean different things. In this book T'll write
“container” with lowercase letters to mean “an object that contains references to

Further Reading |

3

https://fpy.li/2-34
https://fpy.li/2-34

other objects,” and Contatner with a capitalized initial in a single-spaced font to refer
to collections.abc.Container.

Mixed-Bag Lists

Introductory Python texts emphasize that lists can contain objects of mixed types, but
in practice that feature is not very useful: we put items in a list to process them later,
which implies that all items should support at least some operation in common (i.e.,
they should all “quack” whether or not they are genetically 100% ducks). For exam-
ple, you can’t sort a list in Python 3 unless the items in it are comparable:

>>> 1 = [28, 14, '28', 5, '9', '1', 0, 6, '23', 19]
>>> sorted(l)

File "<stdin>", line 1, in <module>
TypeError: unorderable types: str() < int()

Unlike lists, tuples often hold items of different types. That’s natural: if each item in a
tuple is a field, then each field may have a different type.

key Is Brilliant

The optional key argument of list.sort, sorted, max, and min is a great idea. Other
languages force you to provide a two-argument comparison function like the depre-
cated cmp(a, b) function in Python 2. Using key is both simpler and more efficient.
It’s simpler because you just define a one-argument function that retrieves or calcu-
lates whatever criterion you want to use to sort your objects; this is easier than writing
a two-argument function to return -1, 0, 1. It is also more efficient because the key
function is invoked only once per item, while the two-argument comparison is called
every time the sorting algorithm needs to compare two items. Of course, Python also
has to compare the keys while sorting, but that comparison is done in optimized C
code and not in a Python function that you wrote.

By the way, using key we can sort a mixed bag of numbers and number-like strings.
We just need to decide whether we want to treat all items as integers or strings:

>>> 1 = [28, 14, '28', 5, '9', '1', 0, 6, '23', 19]
>>> sorted(l, key=int)

[e, '1', 5, 6, '9', 14, 19, '23', 28, '28']

>>> sorted(l, key=str)

[, '1', 14, 19, '23', 28, '28', 5, 6, '9']

Oracle, Google, and the Timbot Conspiracy

The sorting algorithm used in sorted and list.sort is Timsort, an adaptive algo-
rithm that switches from insertion sort to merge sort strategies, depending on how
ordered the data is. This is efficient because real-world data tends to have runs of sor-
ted items. There is a Wikipedia article about it.

74

| Chapter2: An Array of Sequences

https://fpy.li/2-35

Timsort was first used in CPython in 2002. Since 2009, Timsort is also used to sort
arrays in both standard Java and Android, a fact that became widely known when
Oracle used some of the code related to Timsort as evidence of Google infringement
of Sun’s intellectual property. For example, see this order by Judge William Alsup
from 2012. In 2021, the US Supreme Court ruled Google’s use of Java code as “fair

»

use.

Timsort was invented by Tim Peters, a Python core developer so prolific that he is
believed to be an Al, the Timbot. You can read about that conspiracy theory in
“Python Humor”. Tim also wrote “The Zen of Python”: import this.

Further Reading |

75

https://fpy.li/2-36
https://fpy.li/2-37

CHAPTER 3
Dictionaries and Sets

Python is basically dicts wrapped in loads of syntactic sugar.
—Lalo Martins, early digital nomad and Pythonista
We use dictionaries in all our Python programs. If not directly in our code, then indi-
rectly because the dict type is a fundamental part of Python’s implementation. Class
and instance attributes, module namespaces, and function keyword arguments are

some of the core Python constructs represented by dictionaries in memory. The
__builtins__.__dict__ stores all built-in types, objects, and functions.

Because of their crucial role, Python dicts are highly optimized—and continue to get
improvements. Hash tables are the engines behind Python’s high-performance dicts.

Other built-in types based on hash tables are set and frozenset. These offer richer
APIs and operators than the sets you may have encountered in other popular lan-
guages. In particular, Python sets implement all the fundamental operations from set
theory, like union, intersection, subset tests, etc. With them, we can express algo-
rithms in a more declarative way, avoiding lots of nested loops and conditionals.

Here is a brief outline of this chapter:
o Modern syntax to build and handle dicts and mappings, including enhanced
unpacking and pattern matching
« Common methods of mapping types
o Special handling for missing keys
« Variations of dict in the standard library
+ The set and frozenset types

o Implications of hash tables in the behavior of sets and dictionaries

77

What's New in This Chapter

Most changes in this second edition cover new features related to mapping types:

+ “Modern dict Syntax” on page 78 covers enhanced unpacking syntax and different
ways of merging mappings—including the | and |= operators supported by
dicts since Python 3.9.

« “Pattern Matching with Mappings” on page 81 illustrates handling mappings with
match/case, since Python 3.10.

o “collections.OrderedDict” on page 95 now focuses on the small but still relevant
differences between dict and OrderedDict—considering that dict keeps the key
insertion order since Python 3.6.

o New sections on the view objects returned by dict.keys, dict.items, and
dict.values: “Dictionary Views” on page 101 and “Set Operations on dict Views”
on page 110.

The underlying implementation of dict and set still relies on hash tables, but the
dict code has two important optimizations that save memory and preserve the inser-
tion order of the keys in dict. “Practical Consequences of How dict Works” on page
102 and “Practical Consequences of How Sets Work” on page 107 summarize what you
need to know to use them well.

After adding more than 200 pages in this second edition, I moved
the optional section “Internals of sets and dicts” to the fluentpy-
thon.com companion website. The updated and expanded 18-page
post includes explanations and diagrams about:

« The hash table algorithm and data structures, starting with its
use in set, which is simpler to understand.

o The memory optimization that preserves key insertion order
in dict instances (since Python 3.6).

o The key-sharing layout for dictionaries holding instance

attributes—the __dict__ of user-defined objects (optimiza-
tion implemented in Python 3.3).

Modern dict Syntax

The next sections describe advanced syntax features to build, unpack, and process
mappings. Some of these features are not new in the language, but may be new to
you. Others require Python 3.9 (like the | operator) or Python 3.10 (like match/
case). Let’s start with one of the best and oldest of these features.

78 | Chapter3:Dictionaries and Sets

https://fpy.li/hashint
http://fluentpython.com
http://fluentpython.com
https://fpy.li/hashint
https://fpy.li/hashint

dict Comprehensions

Since Python 2.7, the syntax of listcomps and genexps was adapted to dict compre-
hensions (and set comprehensions as well, which we’ll soon visit). A dictcomp (dict
comprehension) builds a dict instance by taking key:value pairs from any iterable.
Example 3-1 shows the use of dict comprehensions to build two dictionaries from
the same list of tuples.

Example 3-1. Examples of dict comprehensions

>>> dial_codes = [(1)
v (880, 'Bangladesh'),
(55, 'Brazil'),
(86, 'China'),
(91, 'India'),
(62, 'Indonesia'),
(81, 'Japan'),
(234, 'Nigeria'),
(92, 'Pakistan'),
(7, 'Russia'),
. (1, 'United States'),
eee]
>>> country_dial = {country: code for code, country in dial_codes} (2]
>>> country_dial
{'Bangladesh': 880, 'Brazil': 55, 'China': 86, 'India': 91, 'Indonesia': 62,
'Japan': 81, 'Nigeria': 234, 'Pakistan': 92, 'Russia': 7, 'United States': 1}
>>> {code: country.upper()
for country, code in sorted(country_dial.items())
. if code < 70}
{55: 'BRAZIL', 62: 'INDONESIA', 7: 'RUSSIA', 1: 'UNITED STATES'}

O An iterable of key-value pairs like dial_codes can be passed directly to the dict
constructor, but...

® ...here we swap the pairs: country is the key, and code is the value.
©® Sorting country_dial by name, reversing the pairs again, uppercasing values,

and filtering items with code < 70.

If you’re used to listcomps, dictcomps are a natural next step. If you aren’t, the spread
of the comprehension syntax means it’'s now more profitable than ever to become
fluent in it.

Modern dict Syntax | 79

Unpacking Mappings

PEP 448— Additional Unpacking Generalizations enhanced the support of mapping
unpackings in two ways, since Python 3.5.

First, we can apply ** to more than one argument in a function call. This works when
keys are all strings and unique across all arguments (because duplicate keyword argu-
ments are forbidden):

>>> def dump(**kwargs):
return kwargs

>>> dump(**{'x': 13}, y=2, **{'z': 3})
{'x': 1, 'y': 2, 'z': 3}

Second, ** can be used inside a dict literal—also multiple times:

>>> {'a': 0, **{'x': 1}, 'y': 2, #*{'z': 3, 'x': 4}}
{'a': 0, 'x': 4, 'y': 2, 'z': 3}

In this case, duplicate keys are allowed. Later occurrences overwrite previous ones—
see the value mapped to x in the example.

This syntax can also be used to merge mappings, but there are other ways. Please read
on.
Merging Mappings with |

Python 3.9 supports using | and |=to merge mappings. This makes sense, since these
are also the set union operators.

The | operator creates a new mapping;:

>>> dl = {'a': 1, 'b': 3}
>>> d2 = {'a': 2, 'b': 4, 'c': 6}
>>> dl | d2

'a': 2, 'b': 4, 'c': 6}

Usually the type of the new mapping will be the same as the type of the left operand
—d1 in the example—but it can be the type of the second operand if user-defined
types are involved, according to the operator overloading rules we explore in
Chapter 16.

To update an existing mapping in place, use |=. Continuing from the previous exam-
ple, d1 was not changed, but now it is:

>>> dil

{'a': 1, 'b': 3}
>>> dl |= d2
>>> di

{'a': 2, 'b': 4, 'c': 6}

80 | Chapter3:Dictionaries and Sets

https://fpy.li/pep448

If you need to maintain code to run on Python 3.8 or earlier, the
“Motivation” section of PEP 584—Add Union Operators To dict
provides a good summary of other ways to merge mappings.

Now let’s see how pattern matching applies to mappings.

Pattern Matching with Mappings

The match/case statement supports subjects that are mapping objects. Patterns for
mappings look like dict literals, but they can match instances of any actual or virtual
subclass of collections.abc.Mapping.!

In Chapter 2 we focused on sequence patterns only, but different types of patterns
can be combined and nested. Thanks to destructuring, pattern matching is a power-
ful tool to process records structured like nested mappings and sequences, which we
often need to read from JSON APIs and databases with semi-structured schemas, like
MongoDB, EdgeDB, or PostgreSQL. Example 3-2 demonstrates that. The simple type
hints in get_creators make it clear that it takes a dict and returns a list.

Example 3-2. creator.py: get_creators() extracts names of creators from media
records

def get_creators(record: dict) -> list:
match record:

case {'type': 'book', 'api': 2, 'authors': [*names]}: (1]
return names

case {'type': 'book', 'api': 1, 'author': name}: (2]
return [name]

case {'type': 'book'}: (3]
raise ValueError(f"Invalid 'book' record: {record!r}")

case {'type': 'movie', 'director': name}:
return [name]

case _
raise ValueError(f'Invalid record: {record!r}')

1 A virtual subclass is any class registered by calling the .register() method of an ABC, as explained in “A
Virtual Subclass of an ABC” on page 460. A type implemented via Python/C API is also eligible if a specific
marker bit is set. See Py_TPFLAGS_MAPPING.

Pattern Matching with Mappings | 81

https://fpy.li/3-2
https://fpy.li/3-1
https://fpy.li/pep584

© Match any mapping with 'type': 'book', 'api' :2, and an 'authors' key
mapped to a sequence. Return the items in the sequence, as a new list.

©® Match any mapping with 'type': 'book', 'api
mapped to any object. Return the object inside a list.

:1, and an 'author' key

© Any other mapping with 'type': 'book' is invalid, raise ValueError.

O Match any mapping with 'type': 'movie' and a 'director' key mapped to a
single object. Return the object inside a list.

© Any other subject is invalid, raise ValueError.

Example 3-2 shows some useful practices for handling semi-structured data such as
JSON records:

o Include a field describing the kind of record (e.g., 'type': 'movie')

o Include a field identifying the schema version (e.g., 'api':
future evolution of public APIs

2"') to allow for

» Have case clauses to handle invalid records of a specific type (e.g., 'book"), as
well as a catch-all

Now let’s see how get_creators handles some concrete doctests:

>>> bl = dict(api=1, author='Douglas Hofstadter',

. type='book', title='Godel, Escher, Bach')

>>> get_creators(bl)

['Douglas Hofstadter']

>>> from import OrderedDict

>>> b2 = OrderedDict(api=2, type='book',
title='Python in a Nutshell',

. authors="'Martelli Ravenscroft Holden'.split())

>>> get_creators(b2)

['Martelli', 'Ravenscroft', 'Holden']

>>> get_creators({'type': 'book', 'pages': 770})

ValueError: Invalid 'book' record: {'type': 'book', 'pages': 770}
>>> get_creators('Spam, spam, spam')

ValueError: Invalid record: 'Spam, spam, spam'

Note that the order of the keys in the patterns is irrelevant, even if the subject is an
OrderedDict as b2.

82 | Chapter3:Dictionaries and Sets

In contrast with sequence patterns, mapping patterns succeed on partial matches. In
the doctests, the b1 and b2 subjects include a 'title' key that does not appear in any
'book' pattern, yet they match.

There is no need to use **extra to match extra key-value pairs, but if you want to
capture them as a dict, you can prefix one variable with **. It must be the last in the
pattern, and **_ is forbidden because it would be redundant. A simple example:

>>> food = dict(category='ice cream', flavor='vanilla', cost=199)

>>> match food:

case {'category': 'ice cream', **details}:
print(f'Ice cream details: {details}')

Ice cream details: {'flavor': 'vanilla', 'cost': 199}

In “Automatic Handling of Missing Keys” on page 90 we'll study defaultdict and
other mappings where key lookups via __getitem__ (i.e., d[key]) succeed because
missing items are created on the fly. In the context of pattern matching, a match suc-
ceeds only if the subject already has the required keys at the top of the match
statement.

The automatic handling of missing keys is not triggered because
pattern matching always uses the d.get(key, sentinel) method
—where the default sentinel is a special marker value that cannot
occur in user data.

Moving on from syntax and structure, let’s study the API of mappings.

Standard API of Mapping Types

The collections.abc module provides the Mapping and MutableMapping ABCs
describing the interfaces of dict and similar types. See Figure 3-1.

The main value of the ABCs is documenting and formalizing the standard interfaces
for mappings, and serving as criteria for isinstance tests in code that needs to sup-
port mappings in a broad sense:

>>> my_dict = {}

>>> isinstance(my_dict, abc.Mapping)

True

>>> isinstance(my_dict, abc.MutableMapping)
True

Standard APl of Mapping Types | 83

Using isinstance with an ABC is often better than checking
whether a function argument is of the concrete dict type, because
then alternative mapping types can be used. We'll discuss this in
detail in Chapter 13.

gﬂg:f:,:qng MutableMapping |
Collection __contains__ S
i _eq__ — .
;27talns <——_ne__ < glée;r
:Ien: g::ns popitem
keys setdefault
values update

Figure 3-1. Simplified UML class diagram for the MutableMapping and its superclasses
from collections.abc (inheritance arrows point from subclasses to superclasses;
names in italic are abstract classes and abstract methods).

To implement a custom mapping, it’s easier to extend collections.UserDict, or to
wrap a dict by composition, instead of subclassing these ABCs. The collec
tions.UserDict class and all concrete mapping classes in the standard library encap-
sulate the basic dict in their implementation, which in turn is built on a hash table.
Therefore, they all share the limitation that the keys must be hashable (the values
need not be hashable, only the keys). If you need a refresher, the next section
explains.

What Is Hashable

Here is part of the definition of hashable adapted from the Python Glossary:

An object is hashable if it has a hash code which never changes during its lifetime (it
needs a __hash__() method), and can be compared to other objects (it needs an
__eq__() method). Hashable objects which compare equal must have the same hash
code.?

Numeric types and flat immutable types str and bytes are all hashable. Container
types are hashable if they are immutable and all contained objects are also hashable.
A frozenset is always hashable, because every element it contains must be hashable

2 The Python Glossary entry for “hashable” uses the term “hash value” instead of hash code. I prefer hash code
because that is a concept often discussed in the context of mappings, where items are made of keys and val-
ues, so it may be confusing to mention the hash code as a value. In this book, I only use hash code.

84 | Chapter3:Dictionaries and Sets

https://fpy.li/3-3
https://fpy.li/3-3

by definition. A tuple is hashable only if all its items are hashable. See tuples tt, t1,
and tf:

>>> tt = (1, 2, (30, 40))

>>> hash(tt)

8027212646858338501

>>> tl = (1, 2, [30, 40])

>>> hash(tl)

File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

>>> tf = (1, 2, frozenset([30, 40]))

>>> hash(tf)

-4118419923444501110
The hash code of an object may be different depending on the version of Python, the
machine architecture, and because of a salt added to the hash computation for secu-
rity reasons.® The hash code of a correctly implemented object is guaranteed to be
constant only within one Python process.

User-defined types are hashable by default because their hash code is their 1d(), and
the __eq__() method inherited from the object class simply compares the object
IDs. If an object implements a custom __eq__() that takes into account its internal
state, it will be hashable only if its __hash__() always returns the same hash code. In
practice, this requires that __eq__() and __hash__() only take into account instance
attributes that never change during the life of the object.

Now let’s review the API of the most commonly used mapping types in Python: dict,
defaultdict, and OrderedDict.

Overview of Common Mapping Methods

The basic API for mappings is quite rich. Table 3-1 shows the methods implemented
by dict and two popular variations: defaultdict and OrderedDict, both defined in
the collections module.

3 See PEP 456—Secure and interchangeable hash algorithm to learn about the security implications and solu-
tions adopted.

Standard APl of Mapping Types | 85

https://fpy.li/pep456

Table 3-1. Methods of the mapping types dict, collections.defaultdict, and collec
tions.Ordereddict (common object methods omitted for brevity); optional arguments are

enclosed in [..]

d.clear()
d.__contains__(k)
d.copy()

d.__copy__()
d.default_factory

d.__delitem__(k)

d.fromkeys(it, [ini
tiall])

d.get(k, [default])

d.__getitem__(k)

d.items()
d.__iter__()
d.keys()
d.__len__()

d.__missing__(k)
d.move_to_end(k,
[last])
d.__or__(other)
d.__ior__(other)
d.pop(k, [default])
d.popitem()

d.__reversed__()

d.__ror__(other)

dict defaultdict

OrderedDict

Remove all items

k in d

Shallow copy
Support for copy . copy(d)

Callable invoked by __missing__
to set missing values®

del d[k]—remove item with
key k

New mapping from keys in iterable,
with optional initial value (defaults
to None)

Get item with key k, return
default or None if missing

d[k]—qet item with key k
Get view over items—(key,
value) pairs

Get iterator over keys

Get view over keys
len(d)—number of items

(alled when __getitem__ cannot
find the key

Move k first or last position (Last is
True by default)

Support ford1 | d2 to create new
dict merging d1 and d2 (Python
>39)

Support ford1 |= d2 to update
d1 with d2 (Python > 3.9)

Remove and return value at k, or
default or None if missing

Remove and return the last inserted
item as (key, value)®

Support for reverse(d)—returns
iterator for keys from last to first
inserted.

Support for other | dd—
reversed union operator (Python >
3.9)

86 | Chapter3:Dictionaries and Sets

dict defaultdict OrderedDict

d.setdefault(k, L4 L4 L4 Ifk in d,return d[k]; else set
[default]) d[k] = default andreturnit
d.__setitem__(k, v) L4 L4 L4 d[k] = v—putvatk
d.update(m, L 4 o Update d with items from mapping
[**kwargs]) or iterable of (key, value) pairs
d.values() o o L] Get view over values

®default_factory is not a method, but a callable attribute set by the end user when a defaultdict is instantiated.
bOrderedDict.popitem(last=False) removes the first item inserted (FIF0). The last keyword argument is not
supported in dict or defaultdict as recently as Python 3.10b3.

¢ Reversed operators are explained in Chapter 16.

The way d.update(m) handles its first argument m is a prime example of duck typing:
it first checks whether m has a keys method and, if it does, assumes it is a mapping.
Otherwise, update() falls back to iterating over m, assuming its items are (key,
value) pairs. The constructor for most Python mappings uses the logic of update()
internally, which means they can be initialized from other mappings or from any
iterable object producing (key, value) pairs.

A subtle mapping method is setdefault(). It avoids redundant key lookups when
we need to update the value of an item in place. The next section shows how to use it.

Inserting or Updating Mutable Values

In line with Python’s fail-fast philosophy, dict access with d[k] raises an error when
k is not an existing key. Pythonistas know that d.get(k, default) is an alternative
to d[k] whenever a default value is more convenient than handling KeyError. How-
ever, when you retrieve a mutable value and want to update it, there is a better way.

Consider a script to index text, producing a mapping where each key is a word, and
the value is a list of positions where that word occurs, as shown in Example 3-3.

Example 3-3. Partial output from Example 3-4 processing the “Zen of Python”;
each line shows a word and a list of occurrences coded as pairs:
(line_number, column_number)

$ python3 index0.py zen.txt

a [(19, 48), (20, 53)]

Although [(11, 1), (16, 1), (18, 1)]
ambiguity [(14, 16)]

and [(15, 23)]

are [(21, 12)]

aren [(10, 15)]

at [(16, 38)]

bad [(19, 50)]

Standard APl of Mapping Types | 87

be [(15, 14), (16, 27), (20, 50)]

beats [(11, 23)]

Beautiful [(3, 1)]

better [(3, 14), (4, 13), (5, 11), (6, 12), (7, 9), (8, 11), (17, 8), (18, 25)]

Example 3-4 is a suboptimal script written to show one case where dict.get is not
the best way to handle a missing key. I adapted it from an example by Alex Martelli.*

Example 3-4. index0.py uses dict. get to fetch and update a list of word occurrences
from the index (a better solution is in Example 3-5)

nwn mwnn

Build an index mapping word -> list of occurrences

import re
import sys

WORD_RE = re.compile(r'\w+")

index = {}
with open(sys.argv[1], encoding='utf-8') as fp:
for line_no, line in enumerate(fp, 1):
for match in WORD_RE.finditer(line):
word = match.group()
column_no = match.start() + 1
location = (line_no, column_no)
this is ugly; coded like this to make a point
occurrences = index.get(word, []) (1)
occurrences.append(location)
index[word] = occurrences (3]

display in alphabetical order
for word in sorted(index, key=str.upper): (4]
print(word, index[word])

Get the list of occurrences for word, or [] if not found.
Append new location to occurrences.

Put changed occurrences into index dict; this entails a second search through
the index.

4 The original script appears in slide 41 of Martelli’s “Re-learning Python” presentation. His script is actually a
demonstration of dict.setdefault, as shown in our Example 3-5.

88 | (Chapter3:Dictionaries and Sets

https://fpy.li/3-5

O In the key= argument of sorted, I am not calling str.upper, just passing a refer-
ence to that method so the sorted function can use it to normalize the words for
sorting.’

The three lines dealing with occurrences in Example 3-4 can be replaced by a single
line using dict.setdefault. Example 3-5 is closer to Alex Martelli’s code.

Example 3-5. index.py uses dict.setdefault to fetch and update a list of word
occurrences from the index in a single line; contrast with Example 3-4

nwnn mwnn

Build an index mapping word -> list of occurrences
import
import

WORD_RE = re.compile(r'\w+")

index = {}
with open(sys.argv[1], encoding='utf-8') as fp:
for line_no, line in enumerate(fp, 1):
for match in WORD_RE.finditer(line):
word = match.group()
column_no = match.start() + 1
location = (1line_no, column_no)
index.setdefault(word, []).append(location) (1)

display in alphabetical order
for word in sorted(index, key=str.upper):
print(word, index[word])

@ Get the list of occurrences for word, or set it to [] if not found; setdefault
returns the value, so it can be updated without requiring a second search.

In other words, the end result of this line...
my_dict.setdefault(key, []).append(new_value)
...is the same as running...

if key not in my_dict:
my_dict[key] = []
my_dict[key].append(new_value)
...except that the latter code performs at least two searches for key—three if it’s not
found—while setdefault does it all with a single lookup.

5 This is an example of using a method as a first-class function, the subject of Chapter 7.

Standard APl of Mapping Types | 89

A related issue, handling missing keys on any lookup (and not only when inserting),
is the subject of the next section.

Automatic Handling of Missing Keys

Sometimes it is convenient to have mappings that return some made-up value when a
missing key is searched. There are two main approaches to this: one is to use a
defaultdict instead of a plain dict. The other is to subclass dict or any other map-
ping type and add a __missing__ method. Both solutions are covered next.

defaultdict: Another Take on Missing Keys

A collections.defaultdict instance creates items with a default value on demand
whenever a missing key is searched using d[k] syntax. Example 3-6 uses default
dict to provide another elegant solution to the word index task from Example 3-5.

Here is how it works: when instantiating a defaultdict, you provide a callable to
produce a default value whenever __getitem__ is passed a nonexistent key argument.

For example, given a defaultdict created as dd = defaultdict(list),if 'new-key'
is not in dd, the expression dd['new-key'] does the following steps:

1. Calls 1ist() to create a new list.
2. Inserts the list into dd using 'new-key' as key.

3. Returns a reference to that list.

The callable that produces the default values is held in an instance attribute named
default_factory.

Example 3-6. index_default.py: using defaultdict instead of the setdefault method

wn o

Build an index mapping word -> list of occurrences

import
import
import

WORD_RE = re.compile(r'\w+")

index = collections.defaultdict(list) (1]
with open(sys.argv[1], encoding='utf-8') as fp:
for line_no, line in enumerate(fp, 1):
for match in WORD_RE.finditer(line):

word = match.group()
column_no = match.start() + 1
location = (line_no, column_no)

90 | Chapter3:Dictionaries and Sets

index[word].append(location) (2]

display in alphabetical order
for word in sorted(index, key=str.upper):
print(word, index[word])

Create a defaultdict with the 1ist constructor as default_factory.

If word is not initially in the index, the default_factory is called to produce the
missing value, which in this case is an empty list that is then assigned to
index[word] and returned, so the .append(location) operation always suc-
ceeds.

If no default_factory is provided, the usual KeyError is raised for missing keys.

The default_factory of a defaultdict is only invoked to provide
default values for __getitem__ calls, and not for the other meth-
ods. For example, if dd is a defaultdict, and k is a missing key,

v dd[k] will call the default_factory to create a default value, but
dd.get(k) still returns None, and k in ddis False.

The mechanism that makes defaultdict work by calling default_factory is the
__missing__ special method, a feature that we discuss next.

The __missing__ Method

Underlying the way mappings deal with missing keys is the aptly named __missing__
method. This method is not defined in the base dict class, but dict is aware of it: if
you subclass dict and provide a __missing__ method, the standard dict.__geti
tem__ will call it whenever a key is not found, instead of raising KeyError.

Suppose you'd like a mapping where keys are converted to str when looked up. A
concrete use case is a device library for IoT,* where a programmable board with
general-purpose I/O pins (e.g., a Raspberry Pi or an Arduino) is represented by a
Board class with a my_board.pins attribute, which is a mapping of physical pin iden-
tifiers to pin software objects. The physical pin identifier may be just a number or a
string like "A@" or "P9_12". For consistency, it is desirable that all keys in board.pins
are strings, but it is also convenient looking up a pin by number, as in my_ardu
ino.pin[13], so that beginners are not tripped when they want to blink the LED on
pin 13 of their Arduinos. Example 3-7 shows how such a mapping would work.

6 One such library is Pingo.io, no longer under active development.

Automatic Handling of Missing Keys | 91

https://fpy.li/3-6

Example 3-7. When searching for a nonstring key, StrkeyDict@ converts it to str
when it is not found

Tests for item retrieval using ‘d[key]" notation::

>>> d = StrKeyDicto([('2', "two'), ('4"', 'four')])
>>> d['2']

"two'

>>> d[4]

'four'

>>> d[1]

Traceback (most recent call last):

KeyError: '1'
Tests for item retrieval using ‘d.get(key)’ notation::

>>> d.get('2")
'two
>>> d.get(4)

'four'

>>> d.get(1, 'N/A'")
‘N/AI

Tests for the "in’ operator::

>>> 2 in d
True
>>> 1 in d
False

Example 3-8 implements a class StrKeyDict0 that passes the preceding doctests.

A better way to create a user-defined mapping type is to subclass
collections.UserDict instead of dict (as we will do in
Example 3-9). Here we subclass dict just to show that __miss
ing__ is supported by the built-in dict.__getitem__ method.

Example 3-8. StrKeyDict@ converts nonstring keys to str on lookup (see tests in
Example 3-7)

class StrKeyDictO(dict): (1)

def __missing__(self, key):
if isinstance(key, str):
raise KeyError(key)

return self[str(key)] (3]

92 | Chapter3:Dictionaries and Sets

def get(self, key, default=None):
try:
return self[key] (4]
except KeyError:
return default ©

def __contains__(self, key):
return key in self.keys() or str(key) in self.keys() (6]

© StrKeyDict® inherits from dict.

® Check whether key is already a str. If it is, and it’s missing, raise KeyError.

© Build str from key and look it up.

O The get method delegates to __getitem__ by using the self[key] notation; that
gives the opportunity for our __missing__to act.

© [IfaKeyError was raised, __missing__ already failed, so we return the default.

Search for unmodified key (the instance may contain non-str keys), then for a
str built from the key.

Take a moment to consider why the test isinstance(key, str) is necessary in the
__missing__ implementation.

Without that test, our __missing__ method would work OK for any key k—str or
not str—whenever str(k) produced an existing key. But if str(k) is not an existing
key, we’d have an infinite recursion. In the last line of __missing__, self[str(key)]
would call __getitem__, passing that str key, which in turn would call __missing__
again.

The __contains__ method is also needed for consistent behavior in this example,
because the operation k in d calls it, but the method inherited from dict does not
fall back to invoking __missing__. There is a subtle detail in our implementation of
__contains__: we do not check for the key in the usual Pythonic way—k in my_dict
—because str(key) in self would recursively call __contains__. We avoid this by
explicitly looking up the key in self.keys().

A search like k in my_dict.keys() is efficient in Python 3 even for very large map-
pings because dict.keys() returns a view, which is similar to a set, as we’ll see in
“Set Operations on dict Views” on page 110. However, remember that k in my_dict
does the same job, and is faster because it avoids the attribute lookup to find
the .keys method.

Automatic Handling of Missing Keys | 93

I had a specific reason to use self.keys() in the __contains__ method in
Example 3-8. The check for the unmodified key—key in self.keys()—is necessary
for correctness because StrkeyDict® does not enforce that all keys in the dictionary
must be of type str. Our only goal with this simple example is to make searching
“friendlier” and not enforce types.

User-defined classes derived from standard library mappings may

or may not use __missing__ as a fallback in their implementations

of __getitem__, get, or __contains__, as explained in the next
\; section.

Inconsistent Usage of __missing___in the Standard Library

Consider the following scenarios, and how the missing key lookups are affected:

dict subclass
A subclass of dict implementing only __missing__ and no other method. In this
case, __missing__ may be called only on d[k], which will use the __getitem__
inherited from dict.

collections.UserDict subclass
Likewise, a subclass of UserDict implementing only __missing__ and no other
method. The get method inherited from UserDict calls _ getitem__. This
means __missing__ may be called to handle lookups with d[k] and d.get(k).

abc.Mapping subclass with the simplest possible __getitem__
A minimal subclass of abc.Mapping implementing __missing__ and the required
abstract methods, including an implementation of __getitem__ that does not
call __missing__. The __missing__ method is never triggered in this class.

abc.Mapping subclass with __getitem__ calling __missing__
A minimal subclass of abc.Mapping implementing __missing__and the required
abstract methods, including an implementation of __getitem__ that calls __miss
ing__. The __missing__ method is triggered in this class for missing key lookups
made with d[k], d.get(k),and k in d.

See missing.py in the example code repository for demonstrations of the scenarios
described here.

The four scenarios just described assume minimal implementations. If your subclass
implements __getitem__, get, and __contains__, then you can make those methods
use __missing__ or not, depending on your needs. The point of this section is to
show that you must be careful when subclassing standard library mappings to use
__missing__, because the base classes support different behaviors by default.

94 | Chapter3:Dictionaries and Sets

https://fpy.li/3-7

Don’t forget that the behavior of setdefault and update is also affected by key
lookup. And finally, depending on the logic of your __missing__, you may need to
implement special logic in __setitem__, to avoid inconsistent or surprising behavior.
We'll see an example of this in “Subclassing UserDict Instead of dict” on page 97.

So far we have covered the dict and defaultdict mapping types, but the standard
library comes with other mapping implementations, which we discuss next.

Variations of dict

In this section is an overview of mapping types included in the standard library,
besides defaultdict, already covered in “defaultdict: Another Take on Missing
Keys” on page 90.

collections.OrderedDict

Now that the built-in dict also keeps the keys ordered since Python 3.6, the most
common reason to use OrderedDict is writing code that is backward compatible with
earlier Python versions. Having said that, Python’s documentation lists some remain-
ing differences between dict and OrderedDict, which I quote here—only reordering
the items for relevance in daily use:

o The equality operation for OrderedDict checks for matching order.

o The popitem() method of OrderedDict has a different signature. It accepts an
optional argument to specify which item is popped.

o OrderedDict has a move_to_end() method to efficiently reposition an element to
an endpoint.

o The regular dict was designed to be very good at mapping operations. Tracking
insertion order was secondary.

o OrderedDict was designed to be good at reordering operations. Space efficiency,
iteration speed, and the performance of update operations were secondary.

o Algorithmically, OrderedDict can handle frequent reordering operations better
than dict. This makes it suitable for tracking recent accesses (for example, in an
LRU cache).

collections.ChainMap

A ChainMap instance holds a list of mappings that can be searched as one. The lookup
is performed on each input mapping in the order it appears in the constructor call,
and succeeds as soon as the key is found in one of those mappings. For example:

Variations of dict | 95

>>> d1 = dict(a=1, b=3)

>>> d2 = dict(a=2, b=4, c=6)

>>> from import ChainMap
>>> chain = ChainMap(d1, d2)

>>> chain['a']

1

>>> chain['c']

6

The ChainMap instance does not copy the input mappings, but holds references to
them. Updates or insertions to a ChainMap only affect the first input mapping. Con-
tinuing from the previous example:

>>> chain['c'] = -1

>>> dil

{'a': 1, 'b': 3, 'c': -1}
>>> d2

'a': 2, 'b': 4, 'c': 6}

ChainMap is useful to implement interpreters for languages with nested scopes, where
each mapping represents a scope context, from the innermost enclosing scope to the
outermost scope. The “ChainMap objects” section of the collections docs has sev-
eral examples of ChainMap usage, including this snippet inspired by the basic rules of
variable lookup in Python:

import

pylookup = ChainMap(locals(), globals(), vars(builtins))

Example 18-14 shows a ChainMap subclass used to implement an interpreter for a
subset of the Scheme programming language.

collections.Counter

A mapping that holds an integer count for each key. Updating an existing key adds to
its count. This can be used to count instances of hashable objects or as a multiset (dis-
cussed later in this section). Counter implements the + and - operators to combine
tallies, and other useful methods such as most_common([n]), which returns an
ordered list of tuples with the # most common items and their counts; see the docu-
mentation. Here is Counter used to count letters in words:

>>> ct = collections.Counter('abracadabra')

>>> ct

Counter({'a': 5, 'b': 2, 'r': 2, 'c': 1, 'd': 1})

>>> ct.update('aaaaazzz')

>>> ct

Counter({'a': 10, 'z': 3, 'b': 2, 'r': 2, 'c': 1, 'd': 1})
>>> ct.most_common(3)

[("a', 10), ('z', 3), ('b', 2)]

96 | Chapter3:Dictionaries and Sets

https://fpy.li/3-8
https://fpy.li/3-9
https://fpy.li/3-9

Note that the 'b' and 'r' keys are tied in third place, but ct.most_common(3) shows
only three counts.

To use collections.Counter as a multiset, pretend each key is an element in the set,
and the count is the number of occurrences of that element in the set.

shelve.Shelf

The shelve module in the standard library provides persistent storage for a mapping
of string keys to Python objects serialized in the pickle binary format. The curious
name of shelve makes sense when you realize that pickle jars are stored on shelves.

The shelve.open module-level function returns a shelve.Shelf instance—a simple
key-value DBM database backed by the dbm module, with these characteristics:

« shelve.Shelf subclasses abc.MutableMapping, so it provides the essential meth-
ods we expect of a mapping type.

o In addition, shelve.Shelf provides a few other I/O management methods, like
sync and close.

« A Shelf instance is a context manager, so you can use a with block to make sure
it is closed after use.

« Keys and values are saved whenever a new value is assigned to a key.
o The keys must be strings.

o The values must be objects that the pickle module can serialize.

The documentation for the shelve, dbm, and pickle modules provides more details
and some caveats.

Python’s pickle is easy to use in the simplest cases, but has several

drawbacks. Read Ned Batchelder’s “Pickle’s nine flaws” before

adopting any solution involving pickle. In his post, Ned mentions
\ other serialization formats to consider.

OrderedDict, ChainMap, Counter, and Shelf are ready to use but can also be custom-
ized by subclassing. In contrast, UserDict is intended only as a base class to be
extended.

Subclassing UserDict Instead of dict

It’s better to create a new mapping type by extending collections.UserDict rather
than dict. We realize that when we try to extend our StrKeyDict® from Example 3-8
to make sure that any keys added to the mapping are stored as str.

Variations of dict | 97

https://fpy.li/3-10
https://fpy.li/3-11
https://fpy.li/3-12
https://fpy.li/3-13

The main reason why it’s better to subclass UserDict rather than dict is that the
built-in has some implementation shortcuts that end up forcing us to override meth-
ods that we can just inherit from UserDict with no problems.’

Note that UserDict does not inherit from dict, but uses composition: it has an inter-
nal dict instance, called data, which holds the actual items. This avoids undesired
recursion when coding special methods like __setitem__, and simplifies the coding
of __contains__, compared to Example 3-8.

Thanks to UserDict, StrKeyDict (Example 3-9) is more concise than StrkeyDict0
(Example 3-8), but it does more: it stores all keys as str, avoiding unpleasant sur-
prises if the instance is built or updated with data containing nonstring keys.

Example 3-9. StrKeyDict always converts nonstring keys to str on insertion, update,
and lookup

import

class StrKeyDict(collections.UserDict): (1]
def __missing__(self, key): (2]
if isinstance(key, str):
raise KeyError(key)
return self[str(key)]

def __contains__(self, key):
return str(key) in self.data (3]

def __setitem__(self, key, item):
self.data[str(key)] = item (4)

StrKeyDict extends UserDict.
__missing__ is exactly as in Example 3-8.

__contains__ is simpler: we can assume all stored keys are str, and we can
check on self.data instead of invoking self.keys() as we did in StrkeyDicto.

O _ setitem__ converts any key to a str. This method is easier to overwrite when
we can delegate to the self.data attribute.

7 The exact problem with subclassing dict and other built-ins is covered in “Subclassing Built-In Types Is
Tricky” on page 490.

98 | Chapter3:Dictionaries and Sets

Because UserDict extends abc.MutableMapping, the remaining methods that make
StrKeyDict a full-fledged mapping are inherited from UserDict, MutableMapping, or
Mapping. The latter have several useful concrete methods, in spite of being abstract
base classes (ABCs). The following methods are worth noting:

MutableMapping.update
This powerful method can be called directly but is also used by __init__ to load
the instance from other mappings, from iterables of (key, value) pairs, and
keyword arguments. Because it uses self[key] = value to add items, it ends up
calling our implementation of __setitem__.

Mapping.get
In StrKeyDict0 (Example 3-8), we had to code our own get to return the same
results as __getitem__, but in Example 3-9 we inherited Mapping.get, which is
implemented exactly like StrKeyDict0.get (see the Python source code).

Antoine Pitrou authored PEP 455—Adding a key-transforming
dictionary to collections and a patch to enhance the collections
module with a TransformDict, that is more general than Strkey
Dict and preserves the keys as they are provided, before the trans-
formation is applied. PEP 455 was rejected in May 2015—see
Raymond Hettinger’s rejection message. To experiment with Trans
formDict, I extracted Pitrou’s patch from issuel8986 into a stand-
alone module (03-dict-set/transformdict.py in the Fluent Python
second edition code repository).

We know there are immutable sequence types, but how about an immutable map-
ping? Well, there isn’t a real one in the standard library, but a stand-in is available.
That’s next.

Immutable Mappings

The mapping types provided by the standard library are all mutable, but you may
need to prevent users from changing a mapping by accident. A concrete use case can
be found, again, in a hardware programming library like Pingo, mentioned in “The
__missing Method” on page 91: the board.pins mapping represents the physical
GPIO pins on the device. As such, it’s useful to prevent inadvertent updates to
board.pins because the hardware can’t be changed via software, so any change in the
mapping would make it inconsistent with the physical reality of the device.

The types module provides a wrapper class called MappingProxyType, which, given a
mapping, returns a mappingproxy instance that is a read-only but dynamic proxy for
the original mapping. This means that updates to the original mapping can be seen in

Immutable Mappings | 99

https://fpy.li/3-14
https://fpy.li/pep455
https://fpy.li/pep455
https://fpy.li/3-15
https://fpy.li/3-16
https://fpy.li/3-17
https://fpy.li/code
https://fpy.li/code

the mappingproxy, but changes cannot be made through it. See Example 3-10 for a
brief demonstration.

Example 3-10. MappingProxyType builds a read-only mappingproxy instance from a
dict

>>> from import MappingProxyType
>>>d = {1: 'A'}

>>> d_proxy = MappingProxyType(d)

>>> d_proxy

mappingproxy({1: 'A'})

>>> d_proxy[1]

|Al

>>> d_proxy[2] = 'x' (2]

File "<stdin>", line 1, in <module>
TypeError: 'mappingproxy' object does not support item assignment
>>> d[2] = 'B'
>>> d_proxy
mappingproxy({1: 'A', 2: 'B'})
>>> d_proxy[2]
|Bl

>>>

© Items in d can be seen through d_proxy.
® Changes cannot be made through d_proxy.

© d_proxy is dynamic: any change in d is reflected.

Here is how this could be used in practice in the hardware programming scenario:
the constructor in a concrete Board subclass would fill a private mapping with the pin
objects, and expose it to clients of the API via a public .pins attribute implemented
as a mappingproxy. That way the clients would not be able to add, remove, or change
pins by accident.

Next, we’ll cover views—which allow high-performance operations on a dict,
without unnecessary copying of data.

100 | Chapter 3: Dictionaries and Sets

Dictionary Views

The dict instance methods .keys(), .values(), and .items() return instances of
classes called dict_keys, dict_values, and dict_itenms, respectively. These dictio-
nary views are read-only projections of the internal data structures used in the dict
implementation. They avoid the memory overhead of the equivalent Python 2 meth-
ods that returned lists duplicating data already in the target dict, and they also
replace the old methods that returned iterators.

Example 3-11 shows some basic operations supported by all dictionary views.

Example 3-11. The .values() method returns a view of the values in a dict

>>> d = dict(a=10, b=20, c=30)
>>> values = d.values()

>>> values

dict_values([10, 20, 30]) (1)
>>> len(values)

3

>>> list(values) (3]

[10, 20, 30]

>>> reversed(values) (4]
<dict_reversevalueiterator object at 0x10e9e7310>
>>> values[0] (5]

File "<stdin>", line 1, in <module>
TypeError: 'dict_values' object is not subscriptable

© The repr of a view object shows its content.

©® We can query the len of a view.

© Views are iterable, so it’s easy to create lists from them.

O Views implement __reversed__, returning a custom iterator.

© We can’t use [] to get individual items from a view.

A view object is a dynamic proxy. If the source dict is updated, you can immediately
see the changes through an existing view. Continuing from Example 3-11:

>>> d['z'] = 99

>>> d

{'a': 10, 'b': 20, 'c': 30, 'z': 99}
>>> values

dict_values([10, 20, 30, 99])

Dictionary Views | 101

The classes dict_keys, dict_values, and dict_1items are internal: they are not avail-
able via __builtins__ or any standard library module, and even if you get a reference
to one of them, you can’t use it to create a view from scratch in Python code:

>>> values_class = type({}.values())
>>> v = values_class()

File "<stdin>", line 1, in <module>
TypeError: cannot create 'dict_values' instances
The dict_values class is the simplest dictionary view—it implements only the
__len__, __iter__, and __reversed__ special methods. In addition to these meth-
ods, dict_keys and d'LCt items implement several set methods, almost as many as
the frozenset class. After we cover sets, we’ll have more to say about dict_keys and
dict_items in “Set Operations on dict Views” on page 110.

Now let’s see some rules and tips informed by the way dict is implemented under
the hood.

Practical Consequences of How dict Works

The hash table implementation of Python’s dict is very efficient, but it’s important to
understand the practical effects of this design:

o Keys must be hashable objects. They must implement proper __hash__ and
__eq__ methods as described in “What Is Hashable” on page 84.

o Item access by key is very fast. A dict may have millions of keys, but Python can
locate a key directly by computing the hash code of the key and deriving an index
offset into the hash table, with the possible overhead of a small number of tries to
find a matching entry.

+ Key ordering is preserved as a side effect of a more compact memory layout for
dict in CPython 3.6, which became an official language feature in 3.7.

« Despite its new compact layout, dicts inevitably have a significant memory over-
head. The most compact internal data structure for a container would be an
array of pointers to the items.® Compared to that, a hash table needs to store
more data per entry, and Python needs to keep at least one-third of the hash table
rows empty to remain efficient.

« To save memory, avoid creating instance attributes outside of the __init__
method.

8 That’s how tuples are stored.

102 | Chapter 3:Dictionaries and Sets

That last tip about instance attributes comes from the fact that Python’s default
behavior is to store instance attributes in a special __dict__ attribute, which is a dict
attached to each instance.” Since PEP 412—Key-Sharing Dictionary was implemented
in Python 3.3, instances of a class can share a common hash table, stored with the
class. That common hash table is shared by the __dict__ of each new instance that
has the same attributes names as the first instance of that class when __init__
returns. Each instance __dict__ can then hold only its own attribute values as a sim-
ple array of pointers. Adding an instance attribute after __init__ forces Python to
create a new hash table just for the __dict__ of that one instance (which was the
default behavior for all instances before Python 3.3). According to PEP 412, this opti-
mization reduces memory use by 10% to 20% for object-oriented programs.

The details of the compact layout and key-sharing optimizations are rather complex.
For more, please read “Internals of sets and dicts” at fluentpython.com.

Now let’s dive into sets.

Set Theory

Sets are not new in Python, but are still somewhat underused. The set type and its
immutable sibling frozenset first appeared as modules in the Python 2.3 standard
library, and were promoted to built-ins in Python 2.6.

In this book, I use the word “set” to refer both to set and frozen
set. When talking specifically about the set class, I use constant
width font: set.

A set is a collection of unique objects. A basic use case is removing duplication:

>>> 1 = ['spam', 'spam', 'eggs', 'spam', 'bacon', 'eggs']
>>> set(l)

{'eggs', 'spam', 'bacon'}

>>> list(set(l))

['eggs', 'spam', 'bacon']

9 Unless the class has a __slots__ attribute, as explained in “Saving Memory with __slots__” on page 384.

SetTheory | 103

https://fpy.li/pep412
https://fpy.li/hashint
http://fluentpython.com

If you want to remove duplicates but also preserve the order of the
first occurrence of each item, you can now use a plain dict to do it,
like this:

>>> dict.fromkeys(l).keys()
dict_keys(['spam', 'eggs', 'bacon'])
>>> list(dict.fromkeys(1l).keys())
['spam', 'eggs', 'bacon']

Set elements must be hashable. The set type is not hashable, so you can’t build a set
with nested set instances. But frozenset is hashable, so you can have frozenset
elements inside a set.

In addition to enforcing uniqueness, the set types implement many set operations as
infix operators, so, given two sets aand b, a | b returns their union, a & b computes
the intersection, a - b the difference, and a ~ b the symmetric difference. Smart use
of set operations can reduce both the line count and the execution time of Python
programs, at the same time making code easier to read and reason about—by remov-
ing loops and conditional logic.

For example, imagine you have a large set of email addresses (the haystack) and a
smaller set of addresses (the needles) and you need to count how many needles
occur in the haystack. Thanks to set intersection (the & operator) you can code that
in a simple line (see Example 3-12).

Example 3-12. Count occurrences of needles in a haystack, both of type set
found = len(needles & haystack)

Without the intersection operator, you’d have to write Example 3-13 to accomplish
the same task as Example 3-12.

Example 3-13. Count occurrences of needles in a haystack (same end result as
Example 3-12)

found = 0
for n in needles:
if n in haystack:
found += 1

Example 3-12 runs slightly faster than Example 3-13. On the other hand,
Example 3-13 works for any iterable objects needles and haystack, while
Example 3-12 requires that both be sets. But, if you don’t have sets on hand, you can
always build them on the fly, as shown in Example 3-14.

104 | Chapter 3: Dictionaries and Sets

Example 3-14. Count occurrences of needles in a haystack; these lines work for any
iterable types

found = len(set(needles) & set(haystack))

another way:
found = len(set(needles).intersection(haystack))

Of course, there is an extra cost involved in building the sets in Example 3-14, but if
either the needles or the haystack is already a set, the alternatives in Example 3-14
may be cheaper than Example 3-13.

Any one of the preceding examples are capable of searching 1,000 elements in a hay
stack of 10,000,000 items in about 0.3 milliseconds—that’s close to 0.3 microseconds
per element.

Besides the extremely fast membership test (thanks to the underlying hash table), the
set and frozenset built-in types provide a rich API to create new sets or, in the case
of set, to change existing ones. We will discuss the operations shortly, but first a note
about syntax.

Set Literals

The syntax of set literals—{1}, {1, 2}, etc.—looks exactly like the math notation,
with one important exception: there’s no literal notation for the empty set, so we
must remember to write set().

Syntax Quirk

Don’t forget that to create an empty set, you should use the con-
structor without an argument: set(). If you write {3, you’re creat-
ing an empty dict—this hasn’t changed in Python 3.

In Python 3, the standard string representation of sets always uses the {..} notation,
except for the empty set:

>>> s = {1}
>>> type(s)
<class 'set'>
>>> S

{1}

>>> s.pop()

1

>>> S

set()

SetTheory | 105

Literal set syntax like {1, 2, 3} is both faster and more readable than calling the
constructor (e.g., set([1, 2, 31)). The latter form is slower because, to evaluate it,
Python has to look up the set name to fetch the constructor, then build a list, and
finally pass it to the constructor. In contrast, to process a literal like {1, 2, 3},
Python runs a specialized BUILD_SET bytecode."

There is no special syntax to represent frozenset literals—they must be created by
calling the constructor. The standard string representation in Python 3 looks like a
frozenset constructor call. Note the output in the console session:

>>> frozenset(range(10))
frozenset({0, 1, 2, 3, 4, 5, 6, 7, 8, 9})

Speaking of syntax, the idea of listcomps was adapted to build sets as well.

Set Comprehensions

Set comprehensions (setcomps) were added way back in Python 2.7, together with the
dictcomps that we saw in “dict Comprehensions” on page 79. Example 3-15 shows
how.

Example 3-15. Build a set of Latin-1 characters that have the word “SIGN” in their
Unicode names

>>> from import name (1]
>>> {chr(i) for i in range(32, 256) if 'SIGN' in name(chr(i),'')} ©
{I§', |=I, l¢', l#l, Iul’ l<l, |¥l, Iu|, |xl’ I$|, lﬂl’ I'E', I©I’

|°|’ |+|, |+|’ Ii', |>|’ |_||’ |®|’ |%|}
©® Import name function from unicodedata to obtain character names.
© Build set of characters with codes from 32 to 255 that have the word 'SIGN' in

their names.

The order of the output changes for each Python process, because of the salted hash
mentioned in “What Is Hashable” on page 84.

Syntax matters aside, let’s now consider the behavior of sets.

10 This may be interesting, but is not super important. The speed up will happen only when a set literal is evalu-
ated, and that happens at most once per Python process—when a module is initially compiled. If you're curi-
ous, import the dis function from the dis module and use it to disassemble the bytecodes for a set literal—
e.g., dis('{1}')—and a set call—dis('set([1])")

106 | Chapter 3:Dictionaries and Sets

Practical Consequences of How Sets Work

The set and frozenset types are both implemented with a hash table. This has these
effects:

o Set elements must be hashable objects. They must implement proper __hash__
and __eq__ methods as described in “What Is Hashable” on page 84.

« Membership testing is very efficient. A set may have millions of elements, but an
element can be located directly by computing its hash code and deriving an index
offset, with the possible overhead of a small number of tries to find a matching
element or exhaust the search.

o Sets have a significant memory overhead, compared to a low-level array pointers
to its elements—which would be more compact but also much slower to search
beyond a handful of elements.

« Element ordering depends on insertion order, but not in a useful or reliable way.
If two elements are different but have the same hash code, their position depends
on which element is added first.

+ Adding elements to a set may change the order of existing elements. That’s
because the algorithm becomes less efficient if the hash table is more than two-
thirds full, so Python may need to move and resize the table as it grows. When
this happens, elements are reinserted and their relative ordering may change.

See “Internals of sets and dicts” at fluentpython.com for details.

Let’s now review the rich assortment of operations provided by sets.

Set Operations

Figure 3-2 gives an overview of the methods you can use on mutable and immutable
sets. Many of them are special methods that overload operators, such as & and >=.
Table 3-2 shows the math set operators that have corresponding operators or meth-
ods in Python. Note that some operators and methods perform in-place changes on
the target set (e.g., &=, difference_update, etc.). Such operations make no sense in
the ideal world of mathematical sets, and are not implemented in frozenset.

Practical Consequences of How Sets Work | 107

https://fpy.li/hashint
http://fluentpython.com

The infix operators in Table 3-2 require that both operands be sets,
but all other methods take one or more iterable arguments. For
example, to produce the union of four collections, a, b, ¢, and d,
you can call a.unton(b, c, d), where a must be a set, but b, c,
and d can be iterables of any type that produce hashable items. If
you need to create a new set with the union of four iterables,
instead of updating an existing set, you can write {*a, *b, *c,
*d} since Python 3.5 thanks to PEP 448—Additional Unpacking

Generalizations.
Set
isdisjoint MutableSet
_le__ add
_ discard
Collection _ gt remove
__contains__ :] _ge__ :] pop
__iter__ _eq__ clear
__len__ __ne__ __ior__
_and__ __jand__
_or__ __ixor__
_sub__ __isub__
__Xor__

Figure 3-2. Simplified UML class diagram for MutableSet and its superclasses from
collections.abc (names in italic are abstract classes and abstract methods; reverse
operator methods omitted for brevity).

Table 3-2. Mathematical set operations: these methods either produce a new set or update
the target set in place, if it’s mutable

Math Python Method Description
symbol operator
SnZ s & z s.__and__(z) Intersection of s and z
z &s s.__rand__(z) Reversed & operator
s.intersection(it, ..) Intersection of s and all sets built from
iterables it, etc.
s &= z s.__iand__(z) s updated with intersection of s and z
s.intersection_update(it, ..) s updated with intersection of s and all
sets built from iterables 1t, etc.
SuZ s | z s._or__(z) Union of s and z
z | s s._ror__(z) Reversed |
s.union(it, ..) Union of s and all sets built from iterables
it, etc.

108 | Chapter 3: Dictionaries and Sets

https://fpy.li/pep448
https://fpy.li/pep448

Math
symbol

S\Z

SAZ

Python Method
operator
s |=z s.__lor__(z)

s.update(it, ..)

-z s._sub__(z)

-'s s.__rsub__(z)

s.difference(it, ..)

-= z s.__isub__(z)

s.difference_update(it, ..)

Nz s.__xor__(z)

NS s.__rxor__(z)
s.symmetric_difference(it)

A=z s.__ixor__(z)

s.symmetric_differ
ence_update(it, ..)

Description

s updated with union of s and z

s updated with union of s and all sets built
from iterables 1t, etc.

Relative complement or difference between
sand z

Reversed - operator

Difference between s and all sets built
from iterables it, etc.

s updated with difference between s and
z

s updated with difference between s and
all sets built from iterables it, etc.

Symmetric difference (the complement of
the intersections & z)

Reversed ~ operator
Complementof s & set(it)

s updated with symmetric difference of s
and z

s updated with symmetric difference of s
and all sets built from iterables 1 t, etc.

Table 3-3 lists set predicates: operators and methods that return True or False.

Table 3-3. Set comparison operators and methods that return a bool

Math symbol Python operator Method Description

SNi=0 s.isdisjoint(z) s and z are disjoint (no elements in common)
ees e in s s.__contains__(e) Elemente isamemberof s
Sci s <=z s.__le__(2) s is a subset of the z set
s.issubset(it) s is a subset of the set built from the iterable 1t
Sci’ s <z s.__lt__(2) s is a proper subset of the z set
=V s >=z s._ge__(z) s is a superset of the z set
s.issuperset(it) sisa superset of the set built from the iterable 1t
=y s >z s._gt_(2) s is a proper superset of the z set

In addition to the operators and methods derived from math set theory, the set types
implement other methods of practical use, summarized in Table 3-4.

Practical Consequences of How Sets Work | 109

Table 3-4. Additional set methods

set frozenset

s.add(e) L] Add elemente to s

s.clear() L4 Remove all elements of s

s.copy() o o Shallow copy of s

s.discard(e) ® Remove element e from s if it is present

s.__iter_() ® e Get iterator over s

s._len_() ©® e® len(s)

s.pop() L4 Remove and return an element from s, raising KeyError if s is empty
s.remove(e) @ Remove element e from s, raising KeyErrorife not in s

This completes our overview of the features of sets. As promised in “Dictionary
Views” on page 101, we’ll now see how two of the dictionary view types behave very
much like a frozenset.

Set Operations on dict Views

Table 3-5 shows that the view objects returned by the dict methods .keys()
and .1items() are remarkably similar to frozenset.

Table 3-5. Methods implemented by frozenset, dict_keys, and dict_itens

frozenset dict_keys dict_items Description

s.__and__(z) ° ° o s & z (intersection of s and z)
s.__rand__(z) L4 L4 L4 Reversed & operator
s.__contains__() L4 L4 L4 e in s

s.copy() o Shallow copy of s

s.difference(it, ..) L4 Difference between s and iterables it, etc.
s.intersection(it, ..) L] Intersection of s and iterables it, etc.
s.isdisjoint(z) L4 L4 L4 s and z are disjoint (no elements in common)
s.issubset(it) o s is a subset of iterable i1t
s.issuperset(it) L4 s is a superset of iterable 1t
s.__iter__() L4 L4 L4 Get iterator over s

s.__len__() L4 L4 L4 len(s)

s._or_(z) o L L4 s | z(unionof s and z)
s._ror__() L L L4 Reversed | operator
s.__reversed__() L] L4 Get iterator over s in reverse order
s.__rsub__(z) L4 L4 L4 Reversed - operator

s.__sub__(z) L4 L4 L4 s - z(difference between s and z)

110 | Chapter 3: Dictionaries and Sets

frozenset dict_keys dict_items Description

s.symmetric_differ L4 Complementof s & set(it)
ence(it)

s.union(it, ..) L] Union of s and iterables it, etc.
s._xor__() L4 L4 L4 s ~ z (symmetric difference of s and z)
s.__rxor__() L4 4 L4 Reversed ~ operator

In particular, dict_keys and dict_items implement the special methods to support
the powerful set operators & (intersection), | (union), - (difference), and ~ (symmet-
ric difference).

For example, using & is easy to get the keys that appear in two dictionaries:

>>> d1 = dict(a=1, b=2, c=3, d=4)

>>> d2 = dict(b=20, d=40, e=50)

>>> dil.keys() & d2.keys()

{ b s d’ }
Note that the return value of & is a set. Even better: the set operators in dictionary
views are compatible with set instances. Check this out:

>>> s = {'a', 'e', '"1'}

>>> dl.keys() & s

{'a"}

>>> dl.keys() | s

{:Ial, lcl’ |b|, ldl’ I-.L" lel:}

A dict_items view only works as a set if all values in the dict are

hashable. Attempting set operations on a dict_items view with an

unhashable value raises TypeError: unhashable type 'T',with T
. as the type of the offending value.

On the other hand, a dict_keys view can always be used as a set,
because every key is hashable—by definition.

Using set operators with views will save a lot of loops and ifs when inspecting the
contents of dictionaries in your code. Let Python’s efficient implementation in C
work for you!

With this, we can wrap up this chapter.

Set Operations on dict Views | 111

Chapter Summary

Dictionaries are a keystone of Python. Over the years, the familiar {k1: v1, k2: v2}
literal syntax was enhanced to support unpacking with **, pattern matching, as well
as dict comprehensions.

Beyond the basic dict, the standard library offers handy, ready-to-use specialized
mappings like defaultdict, ChainMap, and Counter, all defined in the collections
module. With the new dict implementation, OrderedDict is not as useful as before,
but should remain in the standard library for backward compatibility—and has spe-
cific characteristics that dict doesn’t have, such as taking into account key ordering
in == comparisons. Also in the collections module is the UserDict, an easy to use
base class to create custom mappings.

Two powerful methods available in most mappings are setdefault and update. The
setdefault method can update items holding mutable values—for example, in a
dict of list values—avoiding a second search for the same key. The update method
allows bulk insertion or overwriting of items from any other mapping, from iterables
providing (key, value) pairs, and from keyword arguments. Mapping constructors
also use update internally, allowing instances to be initialized from mappings, itera-
bles, or keyword arguments. Since Python 3.9, we can also use the |= operator to
update a mapping, and the | operator to create a new one from the union of two
mappings.

A clever hook in the mapping API is the __missing__ method, which lets you cus-
tomize what happens when a key is not found when using the d[k] syntax that
invokes __getitem__.

The collections.abc module provides the Mapping and MutableMapping abstract
base classes as standard interfaces, useful for runtime type checking. The Mapping
ProxyType from the types module creates an immutable facade for a mapping
you want to protect from accidental change. There are also ABCs for Set and
MutableSet.

Dictionary views were a great addition in Python 3, eliminating the memory over-
head of the Python 2 .keys(), .values(), and .items() methods that built lists
duplicating data in the target dict instance. In addition, the dict_keys and
dict_1items classes support the most useful operators and methods of frozenset.

112 | Chapter 3:Dictionaries and Sets

Further Reading

In The Python Standard Library documentation, “collections—Container datatypes”,
includes examples and practical recipes with several mapping types. The Python
source code for the module Lib/collections/__init__.py is a great reference for anyone
who wants to create a new mapping type or grok the logic of the existing ones. Chap-
ter 1 of the Python Cookbook, 3rd ed. (O’'Reilly) by David Beazley and Brian K. Jones
has 20 handy and insightful recipes with data structures—the majority using dict in
clever ways.

Greg Gandenberger advocates for the continued use of collections.OrderedDict,
on the grounds that “explicit is better than implicit,” backward compatibility, and the
fact that some tools and libraries assume the ordering of dict keys is irrelevant—his
post: “Python Dictionaries Are Now Ordered. Keep Using OrderedDict”.

PEP 3106—Revamping dict.keys(), .values() and .items() is where Guido van Rossum
presented the dictionary views feature for Python 3. In the abstract, he wrote that the
idea came from the Java Collections Framework.

PyPy was the first Python interpreter to implement Raymond Hettinger’s proposal of
compact dicts, and they blogged about it in “Faster, more memory efficient and more
ordered dictionaries on PyPy”, acknowledging that a similar layout was adopted in
PHP 7, described in PHP’s new hashtable implementation. It’s always great when cre-
ators cite prior art.

At PyCon 2017, Brandon Rhodes presented “The Dictionary Even Mightier”, a sequel
to his classic animated presentation “The Mighty Dictionary”—including animated
hash collisions! Another up-to-date, but more in-depth video on the internals of
Python’s dict is “Modern Dictionaries” by Raymond Hettinger, where he tells that
after initially failing to sell compact dicts to the CPython core devs, he lobbied the
PyPy team, they adopted it, the idea gained traction, and was finally contributed to
CPython 3.6 by INADA Naoki. For all details, check out the extensive comments in
the CPython code for Objects/dictobject.c and the design document Objects/dict-
notes.txt.

The rationale for adding sets to Python is documented in PEP 218—Adding a Built-
In Set Object Type. When PEP 218 was approved, no special literal syntax was adop-
ted for sets. The set literals were created for Python 3 and backported to Python 2.7,
along with dict and set comprehensions. At PyCon 2019, I presented “Set Practice:
learning from Python’s set types” describing use cases of sets in real programs, cover-
ing their API design, and the implementation of uintset, a set class for integer ele-
ments using a bit vector instead of a hash table, inspired by an example in Chapter 6
of the excellent The Go Programming Language, by Alan Donovan and Brian Ker-
nighan (Addison-Wesley).

FurtherReading | 113

https://fpy.li/collec
https://fpy.li/pycook3
https://fpy.li/3-18
https://fpy.li/pep3106
https://fpy.li/3-19
https://fpy.li/3-20
https://fpy.li/3-20
https://fpy.li/3-21
https://fpy.li/3-22
https://fpy.li/3-23
https://fpy.li/3-24
https://fpy.li/3-25
https://fpy.li/3-26
https://fpy.li/3-27
https://fpy.li/3-27
https://fpy.li/pep218
https://fpy.li/pep218
https://fpy.li/3-29
https://fpy.li/3-29
https://fpy.li/3-30
http://gopl.io

IEEE’s Spectrum magazine has a story about Hans Peter Luhn, a prolific inventor
who patented a punched card deck to select cocktail recipes depending on ingredi-
ents available, among other diverse inventions including...hash tables! See “Hans
Peter Luhn and the Birth of the Hashing Algorithm”.

Soapbox

Syntactic Sugar

My friend Geraldo Cohen once remarked that Python is “simple and correct.”
Programming language purists like to dismiss syntax as unimportant.

Syntactic sugar causes cancer of the semicolon.

—Alan Perlis

Syntax is the user interface of a programming language, so it does matter in practice.

Before finding Python, I did some web programming using Perl and PHP. The syntax
for mappings in these languages is very useful, and I badly miss it whenever I have to
use Java or C.

A good literal syntax for mappings is very convenient for configuration, table-driven
implementations, and to hold data for prototyping and testing. That’s one lesson the
designers of Go learned from dynamic languages. The lack of a good way to express
structured data in code pushed the Java community to adopt the verbose and overly
complex XML as a data format.

JSON was proposed as “The Fat-Free Alternative to XML” and became a huge suc-
cess, replacing XML in many contexts. A concise syntax for lists and dictionaries
makes an excellent data interchange format.

PHP and Ruby imitated the hash syntax from Perl, using => to link keys to values.
JavaScript uses : like Python. Why use two characters when one is readable enough?

JSON came from JavaScript, but it also happens to be an almost exact subset of
Python syntax. JSON is compatible with Python except for the spelling of the values
true, false, and null.

Armin Ronacher tweeted that he likes to hack Python’s global namespace to add
JSON-compatible aliases for Python’s True, False, and None so he can paste JSON
directly in the console. The basic idea:

114 | Chapter 3: Dictionaries and Sets

https://fpy.li/3-31
https://fpy.li/3-31
https://fpy.li/3-32
https://fpy.li/3-33

>>> true, false, null = True, False, None
>>> fruit = {

.. "type": "banana",
e "avg_weight": 123.2,
.. "edible_peel": false,
. "species": ["acuminata", "balbisiana", "paradisiaca"],
eee "i{ssues": null,
oo }
>>> fruit

{'type': 'banana', 'avg_weight': 123.2, 'edible_peel': False,
'species': ['acuminata', 'balbisiana', 'paradisiaca'], 'issues': None}

The syntax everybody now uses for exchanging data is Python’s dict and list syn-
tax. Now we have the nice syntax with the convenience of preserved insertion order.

Simple and correct.

Further Reading |

115

CHAPTER 4

Unicode Text Versus Bytes

Humans use text. Computers speak bytes.

—Esther Nam and Travis Fischer, “Character Encoding and Unicode in Python™

Python 3 introduced a sharp distinction between strings of human text and sequen-
ces of raw bytes. Implicit conversion of byte sequences to Unicode text is a thing of
the past. This chapter deals with Unicode strings, binary sequences, and the encod-
ings used to convert between them.

Depending on the kind of work you do with Python, you may think that understand-
ing Unicode is not important. That’s unlikely, but anyway there is no escaping the
str versus byte divide. As a bonus, you'll find that the specialized binary sequence
types provide features that the “all-purpose” Python 2 str type did not have.

In this chapter, we will visit the following topics:

Characters, code points, and byte representations

Unique features of binary sequences: bytes, bytearray, and memoryview
Encodings for full Unicode and legacy character sets

Avoiding and dealing with encoding errors

Best practices when handling text files

The default encoding trap and standard I/O issues

Safe Unicode text comparisons with normalization

1 Slide 12 of PyCon 2014 talk “Character Encoding and Unicode in Python” (slides, video).

117

https://fpy.li/4-1
https://fpy.li/4-2

o Utility functions for normalization, case folding, and brute-force diacritic
removal

« Proper sorting of Unicode text with locale and the pyuca library
o Character metadata in the Unicode database

o Dual-mode APIs that handle str and bytes

What's New in This Chapter

Support for Unicode in Python 3 has been comprehensive and stable, so the most
notable addition is “Finding Characters by Name” on page 151, describing a utility for
searching the Unicode database—a great way to find circled digits and smiling cats
from the command line.

One minor change worth mentioning is the Unicode support on Windows, which is
better and simpler since Python 3.6, as we'll see in “Beware of Encoding Defaults” on
page 134.

Let’s start with the not-so-new, but fundamental concepts of characters, code points,

and bytes.

For the second edition, I expanded the section about the struct
module and published it online at “Parsing binary records with
struct”, in the fluentpython.com companion website.

There you will also find “Building Multi-character Emojis”,
describing how to make country flags, rainbow flags, people with
different skin tones, and diverse family icons by combining Uni-
code characters.

Character Issues

The concept of “string” is simple enough: a string is a sequence of characters. The
problem lies in the definition of “character.”

In 2021, the best definition of “character” we have is a Unicode character. Accord-
ingly, the items we get out of a Python 3 str are Unicode characters, just like the
items of a unicode object in Python 2—and not the raw bytes we got from a Python 2
str.

The Unicode standard explicitly separates the identity of characters from specific
byte representations:

118 | Chapter4: Unicode Text Versus Bytes

https://fpy.li/4-3
https://fpy.li/4-3
http://fluentpython.com
https://fpy.li/4-4

o The identity of a character—its code point—is a number from 0 to 1,114,111
(base 10), shown in the Unicode standard as 4 to 6 hex digits with a “U+” prefix,
from U+0000 to U+10FFFF. For example, the code point for the letter A is U
+0041, the Euro sign is U+20AC, and the musical symbol G clef is assigned to
code point U+1D11E. About 13% of the valid code points have characters
assigned to them in Unicode 13.0.0, the standard used in Python 3.10.0b4.

o The actual bytes that represent a character depend on the encoding in use. An
encoding is an algorithm that converts code points to byte sequences and vice
versa. The code point for the letter A (U+0041) is encoded as the single byte \x41
in the UTF-8 encoding, or as the bytes \x41\x00 in UTF-16LE encoding. As
another example, UTF-8 requires three bytes—\xe2\x82\xac—to encode the
Euro sign (U+20AC), but in UTF-16LE the same code point is encoded as two
bytes: \xac\x20.

Converting from code points to bytes is encoding; converting from bytes to code
points is decoding. See Example 4-1.

Example 4-1. Encoding and decoding

>>> s = 'café'

>>> len(s) (1)

4

>>> b = s.encode('utf8"') (2]
>>> b

b'caf\xc3\xa9' (3]

>>> len(b) @

5

>>> b.decode('utfg') @
'café’

The str 'café' has four Unicode characters.
Encode str to bytes using UTF-8 encoding.
bytes literals have a b prefix.

bytes b has five bytes (the code point for “é” is encoded as two bytes in UTF-8).

® 6 o o

Decode bytes to str using UTF-8 encoding.

Character Issues | 119

If you need a memory aid to help distinguish .decode()
from .encode(), convince yourself that byte sequences can be
cryptic machine core dumps, while Unicode str objects are
“human” text. Therefore, it makes sense that we decode bytes to
str to get human-readable text, and we encode str to bytes for
storage or transmission.

Although the Python 3 str is pretty much the Python 2 unicode type with a new
name, the Python 3 bytes is not simply the old str renamed, and there is also the
closely related bytearray type. So it is worthwhile to take a look at the binary
sequence types before advancing to encoding/decoding issues.

Byte Essentials

The new binary sequence types are unlike the Python 2 str in many regards. The first
thing to know is that there are two basic built-in types for binary sequences: the
immutable bytes type introduced in Python 3 and the mutable bytearray, added
way back in Python 2.6 The Python documentation sometimes uses the generic
term “byte string” to refer to both bytes and bytearray. I avoid that confusing term.

Each item in bytes or bytearray is an integer from 0 to 255, and not a one-character
string like in the Python 2 str. However, a slice of a binary sequence always produces
a binary sequence of the same type—including slices of length 1. See Example 4-2.

Example 4-2. A five-byte sequence as bytes and as bytearray

>>> cafe = bytes('café', encoding='utf_8") (1]
>>> cafe

b'caf\xc3\xa9'

>>> cafe[0] (2]

99

>>> cafe[:1] (3]

b'c'

>>> cafe_arr = bytearray(cafe)
>>> cafe_arr
bytearray(b'caf\xc3\xa9')

>>> cafe_arr[-1:]
bytearray(b'\xa9")

© bytes can be built from a str, given an encoding.

® FEachitemis an integer in range(256).

2 Python 2.6 and 2.7 also had bytes, but it was just an alias to the str type.

120 | Chapter4: Unicode Text Versus Bytes

Slices of bytes are also bytes—even slices of a single byte.

There is no literal syntax for bytearray: they are shown as bytearray() with a
bytes literal as argument.

© A slice of bytearray is also a bytearray.

The fact that my_bytes[0] retrieves an int but my_bytes[:1]
returns a bytes sequence of length 1 is only surprising because we
are used to Python’s str type, where s[0] == s[:1]. For all other

\ sequence types in Python, 1 item is not the same as a slice of
length 1.

Although binary sequences are really sequences of integers, their literal notation
reflects the fact that ASCII text is often embedded in them. Therefore, four different
displays are used, depending on each byte value:

o For bytes with decimal codes 32 to 126—from space to ~ (tilde)—the ASCII char-
acter itself is used.

o For bytes corresponding to tab, newline, carriage return, and \, the escape
sequences \t, \n, \r, and \\ are used.

o If both string delimiters ' and " appear in the byte sequence, the whole sequence
is delimited by ', and any ' inside are escaped as \ '

o For other byte values, a hexadecimal escape sequence is used (e.g., \x00 is the

null byte).

That is why in Example 4-2 you see b'caf\xc3\xa9": the first three bytes b'caf"' are
in the printable ASCII range, the last two are not.

Both bytes and bytearray support every str method except those that do format-
ting (format, format_map) and those that depend on Unicode data, including case
fold, isdecimal, isidentifier, isnumeric, isprintable, and encode. This means
that you can use familiar string methods like endswith, replace, strip, translate,
upper, and dozens of others with binary sequences—only using bytes and not str
arguments. In addition, the regular expression functions in the re module also work

3 Trivia: the ASCII “single quote” character that Python uses by default as the string delimiter is actually named
APOSTROPHE in the Unicode standard. The real single quotes are asymmetric: left is U+2018 and right is
U+2019.

Byte Essentials | 121

on binary sequences, if the regex is compiled from a binary sequence instead of a str.
Since Python 3.5, the % operator works with binary sequences again.*

Binary sequences have a class method that str doesn’t have, called fromhex, which
builds a binary sequence by parsing pairs of hex digits optionally separated by spaces:

>>> bytes.fromhex('31 4B CE A9')
b'1K\xce\xa9'

The other ways of building bytes or bytearray instances are calling their construc-
tors with:

o A str and an encoding keyword argument
« An iterable providing items with values from 0 to 255

o An object that implements the buffer protocol (e.g., bytes, bytearray, memory
view, array.array) that copies the bytes from the source object to the newly cre-
ated binary sequence

Until Python 3.5, it was also possible to call bytes or bytearray
with a single integer to create a binary sequence of that size initial-
ized with null bytes. This signature was deprecated in Python 3.5

\ and removed in Python 3.6. See PEP 467—Minor API improve-
ments for binary sequences.

Building a binary sequence from a buffer-like object is a low-level operation that may
involve type casting. See a demonstration in Example 4-3.

Example 4-3. Initializing bytes from the raw data of an array
>>> import

>>> numbers = array.array('h', [-2, -1, 0, 1, 2]) (1)

>>> octets = bytes(numbers)

>>> octets
b' \xfe\xFF\xFF\xFf\x00\x00\x01\x00\x02\x00' ©

@ Typecode 'h' creates an array of short integers (16 bits).
® octets holds a copy of the bytes that make up numbers.

© These are the 10 bytes that represent the 5 short integers.

4 It did not work in Python 3.0 to 3.4, causing much pain to developers dealing with binary data. The reversal is
documented in PEP 461—Adding % formatting to bytes and bytearray.

122 | Chapter4: Unicode Text Versus Bytes

https://fpy.li/pep461
https://fpy.li/pep467
https://fpy.li/pep467

Creating a bytes or bytearray object from any buffer-like source will always copy
the bytes. In contrast, memoryview objects let you share memory between binary data
structures, as we saw in “Memory Views” on page 62.

After this basic exploration of binary sequence types in Python, let’s see how they are
converted to/from strings.

Basic Encoders/Decoders

The Python distribution bundles more than 100 codecs (encoder/decoders) for text to
byte conversion and vice versa. Each codec has a name, like 'utf_8', and often
aliases, such as 'utf8', 'utf-8', and 'U8', which you can use as the encoding argu-
ment in functions like open(), str.encode(), bytes.decode(), and so on.
Example 4-4 shows the same text encoded as three different byte sequences.

Example 4-4. The string “El Nifio” encoded with three codecs producing very different
byte sequences

>>> for codec in ['latin_1', 'utf_8', 'utf_16']:
print(codec, 'El Nino'.encode(codec), sep="\t')

latin_1 b'El Ni\xf1o'
utf_8 b'El Ni\xc3\xblo'
utf_16 b'\xff\xfeE\x001\x00 \x00N\x001\x00\xf1\x000\x00'

Figure 4-1 demonstrates a variety of codecs generating bytes from characters like the
letter “A” through the G-clef musical symbol. Note that the last three encodings are
variable-length, multibyte encodings.

char. code point ascii latinl cpl252 cpd37 gh2312 utf-8 utf-16le
A U+0041 41 41 41 41 41 41 41 00
é U+0OBF * BF BF A8 * C2 BF BF 00
A U+00C3 * Cc3 C3 * * C3 83 C3 00
a U+0OE1 * E1 E1 AO A8 A2 C3 A1 E1 00
Q U+03A9 * * * EA A6 B8 CE A9 A9 03
3 U+06BF * * * * * DA BF BF 06
“ u+201C * * 93 * Al BO E2 80 9C 1C 20
€ U+20AC * * 80 * * E2 82 AC AC 20
r U+250C * * * DA A9 BO E2 94 8C oC 25
S U+6C14 * * * * C6 F8 E6 BO 94 14 6C
& U+6C23 * * * * * E6 BO A3 23 6C
é U+1D11E * * * * * FO 9D 84 9E 34 D8 1E DD

Figure 4-1. Twelve characters, their code points, and their byte representation (in hex)
in 7 different encodings (asterisks indicate that the character cannot be represented in
that encoding).

Basic Encoders/Decoders |

123

All those asterisks in Figure 4-1 make clear that some encodings, like ASCII and even
the multibyte GB2312, cannot represent every Unicode character. The UTF encod-
ings, however, are designed to handle every Unicode code point.

The encodings shown in Figure 4-1 were chosen as a representative sample:

latini a.k.a. 1so8859_1
Important because it is the basis for other encodings, such as cp1252 and Uni-
code itself (note how the latin1 byte values appear in the cp1252 bytes and even
in the code points).

cpl1252
A useful latin1 superset created by Microsoft, adding useful symbols like curly
quotes and € (euro); some Windows apps call it “ANSI,” but it was never a real
ANSI standard.

cp437
The original character set of the IBM PC, with box drawing characters. Incom-
patible with latin1, which appeared later.

gb2312
Legacy standard to encode the simplified Chinese ideographs used in mainland
China; one of several widely deployed multibyte encodings for Asian languages.

utf-8
The most common 8-bit encoding on the web, by far, as of July 2021, “W>Techs:
Usage statistics of character encodings for websites” claims that 97% of sites use
UTF-8, up from 81.4% when I wrote this paragraph in the first edition of this
book in September 2014.

utf-16le
One form of the UTF 16-bit encoding scheme; all UTF-16 encodings support
code points beyond U+FFFF through escape sequences called “surrogate pairs.”

UTEF-16 superseded the original 16-bit Unicode 1.0 encoding—
UCS-2—way back in 1996. UCS-2 is still used in many systems
despite being deprecated since the last century because it only sup-

\ ports code points up to U+FFFF. As of 2021, more than 57% of the
allocated code points are above U+FFFF, including the all-
important emojis.

With this overview of common encodings now complete, we move to handling issues
in encoding and decoding operations.

124 | Chapter4: Unicode Text Versus Bytes

https://fpy.li/4-5
https://fpy.li/4-5

Understanding Encode/Decode Problems

Although there is a generic UnicodeError exception, the error reported by Python is
usually more specific: either a UnicodeEncodeError (when converting str to binary
sequences) or a UnicodeDecodeError (when reading binary sequences into str).
Loading Python modules may also raise SyntaxError when the source encoding is
unexpected. We'll show how to handle all of these errors in the next sections.

The first thing to note when you get a Unicode error is the exact
type of the exception. Is it a UnicodeEncodeError, a UnicodeDeco
deError, or some other error (e.g., SyntaxError) that mentions an
encoding problem? To solve the problem, you have to understand
it first.

Coping with UnicodeEncodeError

Most non-UTF codecs handle only a small subset of the Unicode characters. When
converting text to bytes, if a character is not defined in the target encoding, Unico
deEncodeError will be raised, unless special handling is provided by passing an
errors argument to the encoding method or function. The behavior of the error han-
dlers is shown in Example 4-5.

Example 4-5. Encoding to bytes: success and error handling

>>> city = 'Sdo Paulo'

>>> city.encode('utf_8") (1)

b'S\xc3\xa3o Paulo'

>>> city.encode('utf_16")

b'\xff\xfeS\x00\xe3\x000\x00 \x00P\x00a\x00u\x001\x000\x00"
>>> city.encode('1s08859_1")

b'S\xe3o0 Paulo'

>>> city.encode('cp437') (3]

File "<stdin>", line 1, in <module>
File "/.../lib/python3.4/encodings/cp437.py", line 12, in encode
return codecs.charmap_encode(input,errors,encoding_map)

UnicodeEncodeError: 'charmap' codec can't encode character '\xe3' in
position 1: character maps to <undefined>
>>> city.encode('cp437', errors='ignore')
b'So Paulo'
>>> city.encode('cp437', errors='replace') (5)
b'S?0 Paulo'
>>> city.encode('cp437', errors='xmlcharrefreplace') (6]
b'Sã0 Paulo'

Understanding Encode/Decode Problems | 125

The UTF encodings handle any str.
1s08859_1 also works for the 'Sdo Paulo' string.

cp437 can’t encode the 'd' (“a” with tilde). The default error handler
—'strict'—raises UnicodeEncodeError.

O The error="ignore' handler skips characters that cannot be encoded; this is
usually a very bad idea, leading to silent data loss.

©® When encoding, error="'replace' substitutes unencodable characters with '?";
data is also lost, but users will get a clue that something is amiss.

O 'xmlcharrefreplace' replaces unencodable characters with an XML entity. If
you can’t use UTF, and you can’t afford to lose data, this is the only option.

The codecs error handling is extensible. You may register extra
strings for the errors argument by passing a name and an error
handling function to the codecs.register_error function. See the
codecs.register_error documentation.

ASCII is a common subset to all the encodings that I know about, therefore encoding
should always work if the text is made exclusively of ASCII characters. Python 3.7
added a new boolean method str.isascii() to check whether your Unicode text is
100% pure ASCIL. If it is, you should be able to encode it to bytes in any encoding
without raising UnicodeEncodeError.

Coping with UnicodeDecodeError

Not every byte holds a valid ASCII character, and not every byte sequence is valid
UTEF-8 or UTF-16; therefore, when you assume one of these encodings while convert-
ing a binary sequence to text, you will get a UnicodeDecodeError if unexpected bytes
are found.

On the other hand, many legacy 8-bit encodings like 'cp1252', 'i{s08859_1', and
'koi8_r' are able to decode any stream of bytes, including random noise, without
reporting errors. Therefore, if your program assumes the wrong 8-bit encoding, it
will silently decode garbage.

126 | Chapter4: Unicode Text Versus Bytes

https://fpy.li/4-6
https://fpy.li/4-6
https://fpy.li/4-7

Garbled characters are known as gremlins or mojibake (3 F 1t (+
—Japanese for “transformed text”).

Example 4-6 illustrates how using the wrong codec may produce gremlins or a
UnicodeDecodeError.

Example 4-6. Decoding from str to bytes: success and error handling

>>> octets = b'Montr\xe9al' (1]
>>> octets.decode('cp1252") (2]

'Montréal'’

>>> octets.decode('1s08859_7"') (3]
'Montrial’

>>> octets.decode('koi8_r") (4)
'Montrial’

>>> octets.decode('utf_8') (5]

File "<stdin>", line 1, in <module>

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xe9 in position 5:
invalid continuation byte

>>> octets.decode('utf_8', errors='replace') (6]

'Montreal’

o
(2]

7%

The word “Montréal” encoded as latini; '\xe9' is the byte for “é”.
Decoding with Windows 1252 works because it is a superset of latini.

ISO-8859-7 is intended for Greek, so the '\xe9' byte is misinterpreted, and no
error is issued.

KOI8-R is for Russian. Now '\xe9' stands for the Cyrillic letter “I1”.

The 'utf_8' codec detects that octets is not valid UTFE-8, and raises UnicodeDe
codeError.

Using 'replace' error handling, the \xe9 is replaced by “@” (code point
U+FFFD), the official Unicode REPLACEMENT CHARACTER intended to represent
unknown characters.

Understanding Encode/Decode Problems | 127

SyntaxError When Loading Modules with Unexpected Encoding

UTF-8 is the default source encoding for Python 3, just as ASCII was the default for
Python 2. If you load a .py module containing non-UTF-8 data and no encoding dec-
laration, you get a message like this:

SyntaxError: Non-UTF-8 code starting with '\xel' in file ola.py on line
1, but no encoding declared; see https://python.org/dev/peps/pep-0263/
for details
Because UTF-8 is widely deployed in GNU/Linux and macOS systems, a likely sce-
nario is opening a .py file created on Windows with cp1252. Note that this error hap-
pens even in Python for Windows, because the default encoding for Python 3 source
is UTF-8 across all platforms.

To fix this problem, add a magic coding comment at the top of the file, as shown in
Example 4-7.

Example 4-7. ola.py: “Hello, World!” in Portuguese
coding: cp1252

print('0l4, Mundo!')

Now that Python 3 source code is no longer limited to ASCII and
defaults to the excellent UTF-8 encoding, the best “fix” for source
code in legacy encodings like 'cp1252' is to convert them to
UTEF-8 already, and not bother with the coding comments. If your
editor does not support UTF-8, it’s time to switch.

Suppose you have a text file, be it source code or poetry, but you don’t know its
encoding. How do you detect the actual encoding? Answers in the next section.

How to Discover the Encoding of a Byte Sequence

How do you find the encoding of a byte sequence? Short answer: you can’t. You must

be told.

Some communication protocols and file formats, like HTTP and XML, contain head-
ers that explicitly tell us how the content is encoded. You can be sure that some byte
streams are not ASCII because they contain byte values over 127, and the way UTF-8
and UTF-16 are built also limits the possible byte sequences.

128 | Chapter4: Unicode Text Versus Bytes

Leo’s Hack for Guessing UTF-8 Decoding

(The next paragraphs come from a note left by tech reviewer Leonardo Rochael in the
draft of this book.)

The way UTF-8 was designed, it’s almost impossible for a random sequence of bytes,
or even a nonrandom sequence of bytes coming from a non-UTF-8 encoding, to be
decoded accidentally as garbage in UTF-8, instead of raising UnicodeDecodeError.

The reasons for this are that UTF-8 escape sequences never use ASCII characters, and
these escape sequences have bit patterns that make it very hard for random data to be
valid UTF-8 by accident.

So if you can decode some bytes containing codes > 127 as UTF-8, it’s probably
UTE-8.

In dealing with Brazilian online services, some of which were attached to legacy back-
ends, I've had, on occasion, to implement a decoding strategy of trying to decode via
UTF-8 and treat a UnicodeDecodeError by decoding via cp1252. It was ugly but
effective.

However, considering that human languages also have their rules and restrictions,
once you assume that a stream of bytes is human plain text, it may be possible to sniff
out its encoding using heuristics and statistics. For example, if b'\x00' bytes are
common, it is probably a 16- or 32-bit encoding, and not an 8-bit scheme, because
null characters in plain text are bugs. When the byte sequence b'\x20\x00" appears
often, it is more likely to be the space character (U+0020) in a UTF-16LE encoding,
rather than the obscure U+2000 EN QUAD character—whatever that is.

That is how the package “Chardet—The Universal Character Encoding Detector”
works to guess one of more than 30 supported encodings. Chardet is a Python library
that you can use in your programs, but also includes a command-line utility, charde
tect. Here is what it reports on the source file for this chapter:

$ chardetect 04-text-byte.asciidoc

04-text-byte.asciidoc: utf-8 with confidence 0.99
Although binary sequences of encoded text usually don’t carry explicit hints of their

encoding, the UTF formats may prepend a byte order mark to the textual content.
That is explained next.

BOM: A Useful Gremlin

In Example 4-4, you may have noticed a couple of extra bytes at the beginning of a
UTF-16 encoded sequence. Here they are again:

Understanding Encode/Decode Problems | 129

https://fpy.li/4-8

>>> ul6 = 'ELl Nino'.encode('utf_16")
>>> ul6
b'\xff\xfeE\x001\x00 \x0ON\x001\x00\xf1\x000\x00'

The bytes are b'\xff\xfe'. That is a BOM—byte-order mark—denoting the “little-
endian” byte ordering of the Intel CPU where the encoding was performed.

On a little-endian machine, for each code point the least significant byte comes first:
the letter 'E', code point U+0045 (decimal 69), is encoded in byte offsets 2 and 3 as
69 and 0:

>>> list(ul6)

[255, 254, 69, 0, 108, 0, 32, 0, 78, 0, 105, 0, 241, 0, 111, 0]
On a big-endian CPU, the encoding would be reversed; 'E' would be encoded as @
and 69.

To avoid confusion, the UTF-16 encoding prepends the text to be encoded with the
special invisible character ZERO WIDTH NO-BREAK SPACE (U+FEFF). On a little-
endian system, that is encoded as b'\xff\xfe' (decimal 255, 254). Because, by
design, there is no U+FFFE character in Unicode, the byte sequence b'\xff\xfe'
must mean the ZERO WIDTH NO-BREAK SPACE on a little-endian encoding, so the
codec knows which byte ordering to use.

There is a variant of UTF-16—UTEF-16LE—that is explicitly little-endian, and
another one explicitly big-endian, UTF-16BE. If you use them, a BOM is not
generated:

>>> ul6le = 'EL Nifo'.encode('utf_16le")

>>> list(ul6le)

[69, 0, 108, 0, 32, 0, 78, 0, 105, 0, 241, 0, 111, 0]

>>> ulébe = 'EL Nino'.encode('utf_16be")

>>> list(ul6be)

[0, 69, 0, 108, 0, 32, 0, 78, 0, 105, 0, 241, 0, 111]
If present, the BOM is supposed to be filtered by the UTF-16 codec, so that you only
get the actual text contents of the file without the leading ZERO WIDTH NO-BREAK
SPACE. The Unicode standard says that if a file is UTF-16 and has no BOM, it should
be assumed to be UTF-16BE (big-endian). However, the Intel x86 architecture is
little-endian, so there is plenty of little-endian UTF-16 with no BOM in the wild.

This whole issue of endianness only affects encodings that use words of more than
one byte, like UTF-16 and UTF-32. One big advantage of UTF-8 is that it produces
the same byte sequence regardless of machine endianness, so no BOM is needed.
Nevertheless, some Windows applications (notably Notepad) add the BOM to UTF-8
files anyway—and Excel depends on the BOM to detect a UTF-8 file, otherwise it
assumes the content is encoded with a Windows code page. This UTF-8 encoding
with BOM is called UTF-8-SIG in Python’s codec registry. The character U+FEFF

130 | Chapter4: Unicode Text Versus Bytes

encoded in UTF-8-SIG is the three-byte sequence b'\xef\xbb\xbf"'. So if a file starts
with those three bytes, it is likely to be a UTF-8 file with a BOM.

Caleb’s Tip about UTF-8-SIG

Caleb Hattingh—one of the tech reviewers—suggests always using
the UTF-8-SIG codec when reading UTEF-8 files. This is harmless
because UTF-8-SIG reads files with or without a BOM correctly,
and does not return the BOM itself. When writing, I recommend
using UTF-8 for general interoperability. For example, Python
scripts can be made executable in Unix systems if they start with
the comment: #! /usr/bin/env python3. The first two bytes of the
file must be b'#! ' for that to work, but the BOM breaks that con-
vention. If you have a specific requirement to export data to apps
that need the BOM, use UTF-8-SIG but be aware that Python’s
codecs documentation says: “In UTF-8, the use of the BOM is dis-
couraged and should generally be avoided.”

We now move on to handling text files in Python 3.

Handling Text Files

The best practice for handling text I/O is the “Unicode sandwich” (Figure 4-2).° This
means that bytes should be decoded to str as early as possible on input (e.g., when
opening a file for reading). The “filling” of the sandwich is the business logic of your
program, where text handling is done exclusively on str objects. You should never be
encoding or decoding in the middle of other processing. On output, the str are enco-
ded to bytes as late as possible. Most web frameworks work like that, and we rarely
touch bytes when using them. In Django, for example, your views should output

Unicode str; Django itself takes care of encoding the response to bytes, using UTF-8
by default.

Python 3 makes it easier to follow the advice of the Unicode sandwich, because the
open() built-in does the necessary decoding when reading and encoding when
writing files in text mode, so all you get from my_file.read() and pass to
my_file.write(text) are str objects.

Therefore, using text files is apparently simple. But if you rely on default encodings,
you will get bitten.

5 I first saw the term “Unicode sandwich” in Ned Batchelder’s excellent “Pragmatic Unicode” talk at US PyCon
2012.

Handling TextFiles | 131

https://fpy.li/4-10
https://fpy.li/4-9

The Unicode sandwich

-> Stl" Decode bytes on input,

|00 7. ¢t process text only,

str> encode text on output.

Figure 4-2. Unicode sandwich: current best practice for text processing.

Consider the console session in Example 4-8. Can you spot the bug?

Example 4-8. A platform encoding issue (if you try this on your machine, you may or
may not see the problem)

>>> open('cafe.txt', '
4

>>> open('cafe.txt').read()
'cafhe’

w', encoding='utf_8').write('café")

The bug: I specified UTF-8 encoding when writing the file but failed to do so when
reading it, so Python assumed Windows default file encoding—code page 1252—and
the trailing bytes in the file were decoded as characters 'Ae" instead of 'é".

I ran Example 4-8 on Python 3.8.1, 64 bits, on Windows 10 (build 18363). The same
statements running on recent GNU/Linux or macOS work perfectly well because
their default encoding is UTF-8, giving the false impression that everything is fine. If
the encoding argument was omitted when opening the file to write, the locale default
encoding would be used, and we’d read the file correctly using the same encoding.
But then this script would generate files with different byte contents depending on
the platform or even depending on locale settings in the same platform, creating
compatibility problems.

Code that has to run on multiple machines or on multiple occa-
sions should never depend on encoding defaults. Always pass an
explicit encoding= argument when opening text files, because the
default may change from one machine to the next, or from one day
to the next.

132 | Chapter4: Unicode Text Versus Bytes

A curious detail in Example 4-8 is that the write function in the first statement
reports that four characters were written, but in the next line five characters are read.
Example 4-9 is an extended version of Example 4-8, explaining that and other details.

Example 4-9. Closer inspection of Example 4-8 running on Windows reveals the bug
and how to fix it

>>> fp = open('cafe.txt', 'w', encoding='utf 8")

>>> fp

<_10.TextIOWrapper name='cafe.txt' mode='w' encoding='utf_8'>
>>> fp.write('café') (2]

4

>>> fp.close()

>>> import

>>> os.stat('cafe.txt').st_size (3]

5

>>> fp2 = open('cafe.txt')

>>> fp2

<_1lo.TextIOWrapper name='cafe.txt' mode='r' encoding='cp1252'>
>>> fp2.encoding

'cp1252'

>>> fp2.read() (6]

'caffe’

>>> fp3 = open('cafe.txt', encoding='utf_8') (7]
>>> fp3

<_10.TextIOWrapper name='cafe.txt' mode='r' encoding='utf_8'>
>>> fp3.read() (8]

'café'’
>>> fp4 = open('cafe.txt', 'rb') (o]
>>> fp4 ®

<_1io.BufferedReader name='cafe.txt'>
>>> fp4.read()
b'caf\xc3\xa9'

© By default, open uses text mode and returns a TextIOWrapper object with a spe-
cific encoding.

® The write method on a TextIOWrapper returns the number of Unicode charac-
ters written.

os.stat says the file has 5 bytes; UTF-8 encodes 'é' as 2 bytes, 0xc3 and 0xa9.

Opening a text file with no explicit encoding returns a TextIOWrapper with the
encoding set to a default from the locale.

© A TextIOWrapper object has an encoding attribute that you can inspect: cp1252
in this case.

Handling TextFiles | 133

©

In the Windows cp1252 encoding, the byte 0xc3 is an “A” (A with tilde), and
0xa9 is the copyright sign.

Opening the same file with the correct encoding.
The expected result: the same four Unicode characters for 'café'.
The 'rb' flag opens a file for reading in binary mode.

The returned object is a BufferedReader and not a TextIOWrapper.

® 6 6 o0 ©

Reading that returns bytes, as expected.

Do not open text files in binary mode unless you need to analyze
the file contents to determine the encoding—even then, you should
be using Chardet instead of reinventing the wheel (see “How to
Discover the Encoding of a Byte Sequence” on page 128). Ordinary
code should only use binary mode to open binary files, like raster
images.

The problem in Example 4-9 has to do with relying on a default setting while opening
a text file. There are several sources for such defaults, as the next section shows.

Beware of Encoding Defaults

Several settings affect the encoding defaults for I/O in Python. See the default_encod-
ings.py script in Example 4-10.

Example 4-10. Exploring encoding defaults

import locale
import sys
expressions = """
locale.getpreferredencoding()
type(my_file)
my_file.encoding
sys.stdout.isatty()
sys.stdout.encoding
sys.stdin.isatty()
sys.stdin.encoding
sys.stderr.isatty()
sys.stderr.encoding
sys.getdefaultencoding()
sys.getfilesystemencoding()

134 | Chapter4: Unicode Text Versus Bytes

my_file = open('dummy'

s’ ‘W')

for expression in expressions.split():
value = eval(expression)
print(f'{expression:>30} -> {value!r}')

The output of Example 4-10 on GNU/Linux (Ubuntu 14.04 to 19.10) and macOS

(10.9 to 10.14) is identical, showing that UTF-8 is used everywhere in these systems:

$ python3 default_

encodings.py

locale.getpreferredencoding() -> 'UTF

type(my_file) -> <cla

my_file.encoding -> 'UTF
sys.stdout.isatty() -> True

sys.stdout.encoding -> 'utf-

sys.stdin.isatty() -> True

sys.stdin.encoding -> 'utf-

sys.stderr.isatty() -> True
sys.stderr.encoding -> 'utf
sys.getdefaultencoding() -> 'utf
sys.getfilesystemencoding() -> 'utf

-8'
SS
-8'

8'
8'
-8'

_8'
-8'

On Windows, however, the output is Example 4-11.

Example 4-11. Default encodings on Windows 10 PowerShell (output is the same on

cmd.exe)

> chcp (1]
Active code page: 437

> python default_encodings.py (2]
locale.getpreferredencoding() -> 'cp1252'

type(my_file) -> <class
my_file.
sys.stdout.
sys.stdout.
sys.stdin.
sys.stdin.
sys.stderr.
sys.stderr.

encoding -> 'cp1252'
isatty() -> True
encoding -> 'utf-8'
isatty() -> True
encoding -> 'utf-8'
isatty() -> True
encoding -> 'utf-8'

sys.getdefaultencoding() -> 'utf-8'
sys.getfilesystemencoding() -> 'utf-8'

(3]
_10.TextIOWrapper's

(4]

(5]

(6]

chcp shows the active code page for the console: 437.

_1o0.TextIOWrapper's>

locale.getpreferredencoding() is the most important setting.

o
® Running default_encodings.py with output to console.
(3]
o

Text files use locale.getpreferredencoding() by default.

Handling Text Files

135

© The output is going to the console, so sys.stdout.isatty() is True.

O Now, sys.stdout.encoding is not the same as the console code page reported by
chcp!

Unicode support in Windows itself, and in Python for Windows, got better since I
wrote the first edition of this book. Example 4-11 used to report four different encod-
ings in Python 3.4 on Windows 7. The encodings for stdout, stdin, and stderr used
to be the same as the active code page reported by the chcp command, but now
they’re all utf-8 thanks to PEP 528—Change Windows console encoding to UTF-8
implemented in Python 3.6, and Unicode support in PowerShell in cmd.exe (since
Windows 1809 from October 2018).° It’s weird that chcp and sys.stdout.encoding
say different things when stdout is writing to the console, but it’s great that now we
can print Unicode strings without encoding errors on Windows—unless the user
redirects output to a file, as we’ll soon see. That does not mean all your favorite emo-
jis will appear in the console: that also depends on the font the console is using.

Another change was PEP 529—Change Windows filesystem encoding to UTF-8, also
implemented in Python 3.6, which changed the filesystem encoding (used to repre-
sent names of directories and files) from Microsoft’s proprietary MBCS to UTE-8.

However, if the output of Example 4-10 is redirected to a file, like this:
Z:\>python default_encodings.py > encodings.log

then, the value of sys.stdout.isatty() becomes False, and sys.stdout.encoding
is set by Tlocale.getpreferredencoding(), 'cp1252' in that machine—but
sys.stdin.encoding and sys.stderr.encoding remain utf-8.

In Example 4-12 T use the '\N{}' escape for Unicode literals,
where we write the official name of the character inside the \N{}.
It’s rather verbose, but explicit and safe: Python raises SyntaxError
if the name doesn’t exist—much better than writing a hex number
that could be wrong, but you’ll only find out much later. You'd
probably want to write a comment explaining the character codes
anyway, so the verbosity of \N{} is easy to accept.

This means that a script like Example 4-12 works when printing to the console, but
may break when output is redirected to a file.

6 Source: “Windows Command-Line: Unicode and UTF-8 Output Text Buffer”.

136 | Chapter4: Unicode Text Versus Bytes

https://fpy.li/4-11
https://fpy.li/pep528
https://fpy.li/pep529

Example 4-12. stdout_check.py

import
from import name

print(sys.version)

print()

print('sys.stdout.isatty():', sys.stdout.isatty())
print('sys.stdout.encoding:', sys.stdout.encoding)
print()

test_chars = [
"\N{HORIZONTAL ELLIPSIS}', # exists in cp1252, not in cp437
"\N{INFINITY}', # exists in cp437, not in cp1252
"\N{CIRCLED NUMBER FORTY TWO}', # not in cp437 or in cp1252

1

for char in test_chars:
print(f'Trying to output {name(char)}:"')
print(char)

Example 4-12 displays the result of sys.stdout.isatty(), the value of sys.
stdout.encoding, and these three characters:

e '..' HORIZONTAL ELLIPSIS—existsin CP 1252 but notin CP 437.

e 'w' INFINITY—exists in CP 437 but not in CP 1252.

. " CIRCLED NUMBER FORTY TWO—doesn’t exist in CP 1252 or CP 437.

When I run stdout_check.py on PowerShell or cmd.exe, it works as captured in
Figure 4-3.

¥ Windows PowerShell - [} X

: py> chcp

Active code page: 437

PS C:\flupy> python stdout_check.py

3.8.1 (tags/v3.8.1:1b293b6, Dec 18 2019, 23:11:46) [MSC v.1916 64 bit (AMD64)]

sys.stdout.isatty(): True
sys.stdout.encoding: utf-8

Trying to output HORIZONTAL ELLIPSIS:

Trying to output INFINITY:
jc0

Trying to output CIRCLED NUMBER FORTY TWO:
0

PS C:\flupy>

Figure 4-3. Running stdout_check.py on PowerShell.

Handling TextFiles | 137

Despite chcp reporting the active code as 437, sys.stdout.encoding is UTF-8, so the
HORIZONTAL ELLIPSIS and INFINITY both output correctly. The CIRCLED NUMBER
FORTY TWO is replaced by a rectangle, but no error is raised. Presumably it is recog-
nized as a valid character, but the console font doesn’t have the glyph to display it.

However, when I redirect the output of stdout_check.py to a file, I get Figure 4-4.

¥ Windows PowerShell - [} X

PS C: upy> python stdout_check.py > out.txt
Traceback (most recent call last):
File "stdout_check.py", Tine 18, in <module>
print(char)
File "C:\Users\luciano\AppData\Local\Programs\Python\Python38\1ib\encodings\cp
1252.py", Tline 19, in encode
return codecs.charmap_encode(input,self.errors,encoding_table)[0]
UnicodeEncodeError: 'charmap' codec can't encode character '\u22le’' in position
0: character maps to <undefined>
PS C:\flupy> type .\out.txt
3.8.1 (tags/v3.8.1:1b293b6, Dec 18 2019, 23:11:46) [MSC v.1916 64 bit (AMD64)]

sys.stdout.isatty(): False
sys.stdout.encoding: cpl252

Trying to output HORIZONTAL ELLIPSIS:
a

Trying to output INFINITY:
Ps C:\flupy>

Figure 4-4. Running stdout_check.py on PowerShell, redirecting output.

The first problem demonstrated by Figure 4-4 is the UnicodeEncodeError mention-
ing character '\u22le', because sys.stdout.encoding is 'cp1252'—a code page
that doesn’t have the INFINITY character.

Reading out.txt with the type command—or a Windows editor like VS Code or Sub-
lime Text—shows that instead of HORIZONTAL ELLIPSIS, I got 'a4' (LATIN SMALL
LETTER A WITH GRAVE). As it turns out, the byte value 0x85 in CP 1252 means '..",
but in CP 437 the same byte value represents 'a'. So it seems the active code page
does matter, not in a sensible or useful way, but as partial explanation of a bad Uni-
code experience.

I used a laptop configured for the US market, running Windows 10
OEM to run these experiments. Windows versions localized for
other countries may have different encoding configurations. For
example, in Brazil the Windows console uses code page 850 by
default—not 437.

To wrap up this maddening issue of default encodings, let’s give a final look at the
different encodings in Example 4-11:

138 | Chapter4: Unicode Text Versus Bytes

o If you omit the encoding argument when opening a file, the default is given by
locale.getpreferredencoding() ('cp1252' in Example 4-11).

o The encoding of sys.stdout|stdin|stderr used to be set by the PYTHONIOENCOD
ING environment variable before Python 3.6—now that variable is ignored,
unless PYTHONLEGACYWINDOWSSTDIO is set to a nonempty string. Otherwise, the
encoding for standard I/O is UTF-8 for interactive I/O, or defined by
locale.getpreferredencoding() if the output/input is redirected to/from a file.

 sys.getdefaultencoding() is used internally by Python in implicit conversions
of binary data to/from str. Changing this setting is not supported.

o sys.getfilesystemencoding() is used to encode/decode filenames (not file
contents). It is used when open() gets a str argument for the filename; if the file-
name is given as a bytes argument, it is passed unchanged to the OS APIL

On GNU/Linux and macOS, all of these encodings are set to
UTF-8 by default, and have been for several years, so I/O handles
all Unicode characters. On Windows, not only are different encod-
ings used in the same system, but they are usually code pages like
'cp850' or 'cp1252' that support only ASCII, with 127 additional
characters that are not the same from one encoding to the other.
Therefore, Windows users are far more likely to face encoding
errors unless they are extra careful.

To summarize, the most important encoding setting is that returned by locale.get
preferredencoding(): it is the default for opening text files and for sys.stdout/
stdin/stderr when they are redirected to files. However, the documentation reads
(in part):

locale.getpreferredencoding(do_setlocale=True)
Return the encoding used for text data, according to user preferences. User pref-
erences are expressed differently on different systems, and might not be available
programmatically on some systems, so this function only returns a guess. [...]

Therefore, the best advice about encoding defaults is: do not rely on them.

You will avoid a lot of pain if you follow the advice of the Unicode sandwich and
always are explicit about the encodings in your programs. Unfortunately, Unicode is
painful even if you get your bytes correctly converted to str. The next two sections
cover subjects that are simple in ASCII-land, but get quite complex on planet Uni-
code: text normalization (i.e., converting text to a uniform representation for
comparisons) and sorting.

Handling TextFiles | 139

https://fpy.li/4-12
https://fpy.li/4-12
https://fpy.li/4-13
https://fpy.li/4-14

Normalizing Unicode for Reliable Comparisons

String comparisons are complicated by the fact that Unicode has combining charac-
ters: diacritics and other marks that attach to the preceding character, appearing as
one when printed.

7%

For example, the word “café” may be composed in two ways, using four or five code
points, but the result looks exactly the same:

>>> s1 = 'café'

>>> s2 = 'cafe\N{COMBINING ACUTE ACCENT}'
>>> s1, s2

('café', 'café')

>>> len(sl), len(s2)

(4, 5)

>>> sl == s2

False

Placing COMBINING ACUTE ACCENT (U+0301) after “e” renders “¢”. In the Unicode
standard, sequences like 'é' and 'e\u@301' are called “canonical equivalents,” and
applications are supposed to treat them as the same. But Python sees two different
sequences of code points, and considers them not equal.

The solution is unicodedata.normalize(). The first argument to that function is one
of four strings: 'NFC', 'NFD', 'NFKC', and 'NFKD'. Let’s start with the first two.

Normalization Form C (NFC) composes the code points to produce the shortest
equivalent string, while NFD decomposes, expanding composed characters into base
characters and separate combining characters. Both of these normalizations make
comparisons work as expected, as the next example shows:

>>> from import normalize

>>> s1 = 'café'

>>> s2 = 'cafe\N{COMBINING ACUTE ACCENT}'

>>> len(sl), len(s2)

4, 5

>>> len(normalize('NFC', s1)), len(normalize('NFC', s2))
4, 4

>>> len(normalize('NFD', s1)), len(normalize('NFD', s2))
(5, 5

>>> normalize('NFC', s1) == normalize('NFC', s2)

True

>>> normalize('NFD', s1) == normalize('NFD', s2)

True

Keyboard drivers usually generate composed characters, so text typed by users will be
in NFC by default. However, to be safe, it may be good to normalize strings with
normalize('NFC', user_text) before saving. NFC is also the normalization form

recommended by the W3C in “Character Model for the World Wide Web: String
Matching and Searching”.

140 | Chapter4: Unicode Text Versus Bytes

https://fpy.li/4-15
https://fpy.li/4-15

Some single characters are normalized by NFC into another single character. The
symbol for the ohm (Q) unit of electrical resistance is normalized to the Greek upper-
case omega. They are visually identical, but they compare as unequal, so it is essential
to normalize to avoid surprises:

>>> from import normalize, name
>>> ohm = '\u2126'

>>> name(ohm)

'OHM SIGN'

>>> ohm_c = normalize('NFC', ohm)

>>> name(ohm_c)

'GREEK CAPITAL LETTER OMEGA'

>>> ohm == ohm_c

False

>>> normalize('NFC', ohm) == normalize('NFC', ohm_c)
True

The other two normalization forms are NFKC and NFKD, where the letter K stands
for “compatibility.” These are stronger forms of normalization, affecting the so-called
“compatibility characters.” Although one goal of Unicode is to have a single “canoni-
cal” code point for each character, some characters appear more than once for
compatibility with preexisting standards. For example, the MICRO SIGN, p (U+00B5),
was added to Unicode to support round-trip conversion to latin1, which includes it,
even though the same character is part of the Greek alphabet with code point U+83BC
(GREEK SMALL LETTER MU). So, the micro sign is considered a “compatibility
character.”

In the NFKC and NFKD forms, each compatibility character is replaced by a “com-
patibility decomposition” of one or more characters that are considered a “preferred”
representation, even if there is some formatting loss—ideally, the formatting should
be the responsibility of external markup, not part of Unicode. To exemplify, the
compatibility decomposition of the one-half fraction '%' (U+00BD) is the sequence of
three characters '1/2', and the compatibility decomposition of the micro sign 'p' (U
+00B5) is the lowercase mu 'p' (U+03BC).”

Here is how the NFKC works in practice:

>>> from import normalize, name
>>> half = '"\N{VULGAR FRACTION ONE HALF}'
>>> print(half)

%

>>> pormalize('NFKC', half)

'1/2"'

7 Curiously, the micro sign is considered a “compatibility character,” but the ohm symbol is not. The end result
is that NFC doesn’t touch the micro sign but changes the ohm symbol to capital omega, while NFKC and
NFKD change both the ohm and the micro into Greek characters.

Normalizing Unicode for Reliable Comparisons | 141

>>> for char in normalize('NFKC', half):
print(char, name(char), sep="\t')

1 DIGIT ONE

/ FRACTION SLASH

2 DIGIT TWO

>>> four_squared = '42'

>>> normalize('NFKC', four_squared)
42

>>> micro = 'p
>>> micro_kc = normalize('NFKC', micro)
>>> micro, micro_kc

(IR TAD)

>>> ord(micro), ord(micro_kc)

(181, 956)

>>> name(micro), name(micro_kc)

('MICRO SIGN', 'GREEK SMALL LETTER MU')

Although '1/2' is a reasonable substitute for '%', and the micro sign is really a low-
ercase Greek mu, converting '42' to '42' changes the meaning. An application
could store '42' as '4²', but the normalize function knows nothing
about formatting. Therefore, NFKC or NFKD may lose or distort information,
but they can produce convenient intermediate representations for searching and
indexing.

Unfortunately, with Unicode everything is always more complicated than it first
seems. For the VULGAR FRACTION ONE HALF, the NFKC normalization produced 1
and 2 joined by FRACTION SLASH, instead of SOLIDUS, a.k.a. “slash”—the familiar
character with ASCII code decimal 47. Therefore, searching for the three-character
ASCII sequence '1/2"' would not find the normalized Unicode sequence.

NFKC and NFKD normalization cause data loss and should be
applied only in special cases like search and indexing, and not for
permanent storage of text.

When preparing text for searching or indexing, another operation is useful: case fold-
ing, our next subject.
Case Folding

Case folding is essentially converting all text to lowercase, with some additional
transformations. It is supported by the str.casefold() method.

For any string s containing only latin1 characters, s.casefold() produces the same
result as s. lower (), with only two exceptions—the micro sign 'p' is changed to the

142 | Chapter4: Unicode Text Versus Bytes

Greek lowercase mu (which looks the same in most fonts) and the German Eszett or
“sharp s” (3) becomes “ss™:

>>> micro = 'p

>>> name(micro)

'MICRO SIGN'

>>> micro_cf = micro.casefold()

>>> name(micro_cf)

'GREEK SMALL LETTER MU'

>>> micro, micro_cf

(G RPN AD)

>>> eszett = 'R’

>>> name(eszett)

'"LATIN SMALL LETTER SHARP S'

>>> eszett_cf = eszett.casefold()

>>> eszett, eszett_cf

('B', 'ss'")
There are nearly 300 code points for which str.casefold() and str.lower() return
different results.

As usual with anything related to Unicode, case folding is a hard issue with plenty of
linguistic special cases, but the Python core team made an effort to provide a solution
that hopefully works for most users.

In the next couple of sections, we’ll put our normalization knowledge to use develop-
ing utility functions.
Utility Functions for Normalized Text Matching

As we’ve seen, NFC and NFD are safe to use and allow sensible comparisons between
Unicode strings. NFC is the best normalized form for most applications. str.case
fold() is the way to go for case-insensitive comparisons.

If you work with text in many languages, a pair of functions like nfc_equal and

fold_equal in Example 4-13 are useful additions to your toolbox.

Example 4-13. normeq.py: normalized Unicode string comparison

nwnn

Utility functions for normalized Unicode string comparison.

Using Normal Form C, case sensitive:

>>> s1 = 'café'’

>>> s2 = 'cafel\ud301’
>>> s1 == s2

False

>>> nfc_equal(sil, s2)
True

Normalizing Unicode for Reliable Comparisons | 143

>>> nfc_equal('A', 'a')
False

Using Normal Form C with case folding:

>>> s3 = 'Strafe’

>>> s4 = 'strasse'
>>> s3 == s4
False
>>> nfc_equal(s3, s4)
False
>>> fold equal(s3, s4)
True
>>> fold equal(s1, s2)
True
>>> fold equal('A', 'a')
True

from import normalize

def nfc_equal(stri, str2):
return normalize('NFC', str1) == normalize('NFC', str2)

def fold_equal(stri, str2):
return (normalize('NFC', stril).casefold() ==
normalize('NFC', str2).casefold())

Beyond Unicode normalization and case folding—which are both part of the Uni-
code standard—sometimes it makes sense to apply deeper transformations, like
changing 'café' into 'cafe'. We'll see when and how in the next section.

Extreme “Normalization”: Taking Out Diacritics

The Google Search secret sauce involves many tricks, but one of them apparently is
ignoring diacritics (e.g., accents, cedillas, etc.), at least in some contexts. Removing
diacritics is not a proper form of normalization because it often changes the meaning
of words and may produce false positives when searching. But it helps coping with
some facts of life: people sometimes are lazy or ignorant about the correct use of dia-
critics, and spelling rules change over time, meaning that accents come and go in liv-
ing languages.

Outside of searching, getting rid of diacritics also makes for more readable URLs, at
least in Latin-based languages. Take a look at the URL for the Wikipedia article about
the city of Sao Paulo:

https://en.wikipedia.org/wiki/S%C3%A30_Paulo

144 | Chapter4: Unicode Text Versus Bytes

The %C3%A3 part is the URL-escaped, UTF-8 rendering of the single letter “a” (“a”
with tilde). The following is much easier to recognize, even if it is not the right
spelling:

https://en.wikipedia.org/wiki/Sao_Paulo

To remove all diacritics from a str, you can use a function like Example 4-14.

Example 4-14. simplify.py: function to remove all combining marks

import
import

def shave_marks(txt):
"""Remove all diacritic marks
norm_txt = unicodedata.normalize('NFD', txt) (1)
shaved = ''.join(c for c in norm_txt
if not unicodedata.combining(c)) (2]
return unicodedata.normalize('NFC', shaved)

nwun

© Decompose all characters into base characters and combining marks.
@ Filter out all combining marks.

©® Recompose all characters.

Example 4-15 shows a couple of uses of shave_marks.

Example 4-15. Two examples using shave_marks from Example 4-14

>>> order = '“Herr VoR: ¢ % cup of Gtker™ caffe latte ¢ bowl of acai.”'
>>> shave_marks(order)

'"“Herr VoB: e % cup of Gtker™ caffe latte ¢ bowl of acai.”' (1)

>>> Greek = 'Zégupog, Zéfiro'

>>> shave_marks(Greek)

'Zegupog, Zefiro' (2]

© Only the letters “¢”, “¢”, and “i” were replaced.

® Both “¢” and “é¢” were replaced.

The function shave_marks from Example 4-14 works all right, but maybe it goes too
far. Often the reason to remove diacritics is to change Latin text to pure ASCII, but
shave_marks also changes non-Latin characters—like Greek letters—which will never
become ASCII just by losing their accents. So it makes sense to analyze each base

Normalizing Unicode for Reliable Comparisons | 145

character and to remove attached marks only if the base character is a letter from the
Latin alphabet. This is what Example 4-16 does.

Example 4-16. Function to remove combining marks from Latin characters (import
statements are omitted as this is part of the simplify.py module from Example 4-14)

def shave_marks_latin(txt):
"""Remove all diacritic marks from Latin base characters
norm_txt = unicodedata.normalize('NFD', txt) (1)
latin_base = False
preserve = []
for c in norm_txt:
if unicodedata.combining(c) and latin_base: (2]
continue # ignore diacritic on Latin base char
preserve.append(c)
1f it isn't a combining char, it's a new base char
if not unicodedata.combining(c):
latin_base = c in string.ascii_letters
shaved = ''.join(preserve)
return unicodedata.normalize('NFC', shaved) (5)

o

Decompose all characters into base characters and combining marks.
Skip over combining marks when base character is Latin.
Otherwise, keep current character.

Detect new base character and determine if it’s Latin.

® 6 o o0 o

Recompose all characters.

An even more radical step would be to replace common symbols in Western texts
(e.g., curly quotes, em dashes, bullets, etc.) into ASCII equivalents. This is what the
function asciize does in Example 4-17.

Example 4-17. Transform some Western typographical symbols into ASCII (this
snippet is also part of simplify.py from Example 4-14)

single_map = str.maketrans(""",f, ~¢ 7“7 e——"»"""] (1)

ML IAG T TII L s 1y
multi_map = str.maketrans({ (2]
"€': 'EWR',
L
"E': 'AE',
'a': 'ae',
'€¢': 'OE',
'e': 'oe',

146 | Chapter4: Unicode Text Versus Bytes

(T

'<per mille>',
Vst
k]

++ —+

Thkx!
s

i)

multi_map.update(single_map) (3]

def dewinize(txt):
"""Replace Win1252 symbols with ASCII chars or sequences"""
return txt.translate(multi_map) (4]

def asciize(txt):
no_marks = shave_marks_latin(dewinize(txt)) (5]
no_marks = no_marks.replace('R', 'ss')
return unicodedata.normalize('NFKC', no_marks) (7]

Build mapping table for char-to-char replacement.
Build mapping table for char-to-string replacement.

Merge mapping tables.

© o © ©

dewinize does not affect ASCII or latini text, only the Microsoft additions to
latinlin cp1252.

Apply dewinize and remove diacritical marks.

Replace the Eszett with “ss” (we are not using case fold here because we want to
preserve the case).

@ Apply NFKC normalization to compose characters with their compatibility code
points.

Example 4-18 shows asciize in use.

Example 4-18. Two examples using asciize from Example 4-17

>>> order = '“Herr VoR: ¢ % cup of Gtker™ caffe latte ¢ bowl of acai.”'
>>> dewinize(order)

'""Herr VoR: - % cup of OEtker(TM) caffé latte - bowl of agati."' (1]
>>> asciize(order)

'"Herr Voss: - 1/2 cup of OEtker(TM) caffe latte - bowl of acai."' (2]

Normalizing Unicode for Reliable Comparisons | 147

© dewinize replaces curly quotes, bullets, and ™ (trademark symbol).

©® asciize applies dewinize, drops diacritics, and replaces the 'R".

Different languages have their own rules for removing diacritics.

For example, Germans change the 'G' into 'ue'. Our asciize
function is not as refined, so it may or not be suitable for your lan-

\ guage. It works acceptably for Portuguese, though.

To summarize, the functions in simplify.py go way beyond standard normalization
and perform deep surgery on the text, with a good chance of changing its meaning.
Only you can decide whether to go so far, knowing the target language, your users,
and how the transformed text will be used.

This wraps up our discussion of normalizing Unicode text.

Now let’s sort out Unicode sorting.

Sorting Unicode Text

Python sorts sequences of any type by comparing the items in each sequence one by
one. For strings, this means comparing the code points. Unfortunately, this produces
unacceptable results for anyone who uses non-ASCII characters.

Consider sorting a list of fruits grown in Brazil:

>>> fruits = ['caju', 'atemoia', 'cajad', 'acal', 'acerola']

>>> sorted(fruits)

['acerola', 'atemoia', 'agai', 'caju', 'caja'l]
Sorting rules vary for different locales, but in Portuguese and many languages that
use the Latin alphabet, accents and cedillas rarely make a difference when sorting.® So
“caja” is sorted as “caja,” and must come before “caju.”

The sorted fruits list should be:
['acal', 'acerola', 'atemoia', 'cajd', 'caju'l]
The standard way to sort non-ASCII text in Python is to use the locale.strxfrm

function which, according to the locale module docs, “transforms a string to one
that can be used in locale-aware comparisons.”

8 Diacritics affect sorting only in the rare case when they are the only difference between two words—in that
case, the word with a diacritic is sorted after the plain word.

148 | Chapter4: Unicode Text Versus Bytes

https://fpy.li/4-16

To enable locale.strxfrm, you must first set a suitable locale for your application,
and pray that the OS supports it. The sequence of commands in Example 4-19 may
work for you.

Example 4-19. locale_sort.py: using the locale. strxfrm function as the sort key

import

my_locale = locale.setlocale(locale.LC_COLLATE, 'pt_BR.UTF-8")
print(my_locale)

fruits = ['caju', 'atemoia', 'cajd', 'acal', 'acerola']
sorted_fruits = sorted(fruits, key=locale.strxfrm)
print(sorted_fruits)

Running Example 4-19 on GNU/Linux (Ubuntu 19.10) with the pt_BR.UTF-8 locale
installed, I get the correct result:

'pt_BR.UTF-8'

['acail', 'acerola', 'atemoia', 'cajd', 'caju'l]
So you need to call setlocale(LC_COLLATE, «your_locale») before using
locale.strxfrm as the key when sorting.

There are some caveats, though:

 Because locale settings are global, calling setlocale in a library is not recom-
mended. Your application or framework should set the locale when the process
starts, and should not change it afterward.

e The locale must be installed on the OS, otherwise setlocale raises a
locale.Error: unsupported locale setting exception.

« You must know how to spell the locale name.

o The locale must be correctly implemented by the makers of the OS. I was suc-
cessful on Ubuntu 19.10, but not on macOS 10.14. On macOS, the call setlo
cale(LC_COLLATE, 'pt_BR.UTF-8') returns the string 'pt_BR.UTF-8' with no
complaints. But sorted(fruits, key=locale.strxfrm) produced the same
incorrect result as sorted(fruits) did. I also tried the fr_FR, es_ES, and de_DE
locales on macOS, but locale.strxfrm never did its job.’

So the standard library solution to internationalized sorting works, but seems to be
well supported only on GNU/Linux (perhaps also on Windows, if you are an expert).
Even then, it depends on locale settings, creating deployment headaches.

9 Again, I could not find a solution, but did find other people reporting the same problem. Alex Martelli, one of
the tech reviewers, had no problem using setlocale and locale.strxfrm on his Macintosh with macOS
10.9. In summary: your mileage may vary.

Sorting Unicode Text | 149

Fortunately, there is a simpler solution: the pyuca library, available on PyPI.

Sorting with the Unicode Collation Algorithm

James Tauber, prolific Django contributor, must have felt the pain and created pyuca,
a pure-Python implementation of the Unicode Collation Algorithm (UCA).
Example 4-20 shows how easy it is to use.

Example 4-20. Using the pyuca. Collator. sort_key method

>>> import

>>> coll = pyuca.Collator()

>>> fruits = ['caju', 'atemoia', 'cajad', 'acail', 'acerola']
>>> sorted_fruits = sorted(fruits, key=coll.sort_key)

>>> sorted_fruits

['acal', 'acerola', 'atemoia', 'cajd', 'caju'l]

This is simple and works on GNU/Linux, macOS, and Windows, at least with my
small sample.

pyuca does not take the locale into account. If you need to customize the sorting, you
can provide the path to a custom collation table to the Collator() constructor. Out
of the box, it uses allkeys.txt, which is bundled with the project. That’s just a copy of
the Default Unicode Collation Element Table from Unicode.org.

PylCU: Miro’s Recommendation for Unicode Sorting

(Tech reviewer Miroslav Sedivy is a polyglot and an expert on Uni-
code. This is what he wrote about pyuca.)

pyuca has one sorting algorithm that does not respect the sorting
order in individual languages. For instance, A in German is
between A and B, while in Swedish it comes after Z. Have a look at
PyICU that works like locale without changing the locale of the
process. It is also needed if you want to change the case of il/1l in
Turkish. PyICU includes an extension that must be compiled, so it
may be harder to install in some systems than pyuca, which is just
Python.

By the way, that collation table is one of the many data files that comprise the Uni-
code database, our next subject.

The Unicode Database

The Unicode standard provides an entire database—in the form of several structured
text files—that includes not only the table mapping code points to character names,

150 | Chapter4: Unicode Text Versus Bytes

https://fpy.li/4-17
https://fpy.li/4-18
https://fpy.li/4-19
https://fpy.li/4-20

but also metadata about the individual characters and how they are related. For
example, the Unicode database records whether a character is printable, is a letter, is
a decimal digit, or is some other numeric symbol. That’s how the str methods isal
pha, isprintable, isdecimal, and isnumeric work. str.casefold also uses infor-
mation from a Unicode table.

The unicodedata.category(char) function returns the two-letter
category of char from the Unicode database. The higher-level str
methods are easier to use. For example, label.isalpha() returns
True if every character in label belongs to one of these categories:
Lm, Lt, Lu, L1, or Lo. To learn what those codes mean, see “General
Category” in the English Wikipedia’s “Unicode character property”
article.

Finding Characters by Name

The unicodedata module has functions to retrieve character metadata, including uni

codedata.name(), which returns a character’s official name in the standard.
Figure 4-5 demonstrates that function.'

>>> from unicodedata import name

>>> name('A')

'"LATIN CAPITAL LETTER A'

>>> name('3')

'"LATIN SMALL LETTER A WITH TILDE'
>>> name('W)

'"BLACK CHESS QUEEN'

>>> name('& ')

'GRINNING CAT FACE WITH SMILING EYES'

Figure 4-5. Exploring unicodedata. name() in the Python console.

You can use the name() function to build apps that let users search for characters by
name. Figure 4-6 demonstrates the cf.py command-line script that takes one or more
words as arguments, and lists the characters that have those words in their official
Unicode names. The full source code for c¢f.py is in Example 4-21.

10 That’s an image—not a code listing—because emojis are not well supported by O’Reilly’s digital publishing
toolchain as I write this.

The Unicode Database | 151

https://fpy.li/4-21
https://fpy.li/4-22
https://fpy.li/4-22
https://fpy.li/4-23
https://fpy.li/4-23

$./cf.py cat smiling

U+1F638 & GRINNING CAT FACE WITH SMILING EYES
U+1F63A & SMILING CAT FACE WITH OPEN MOUTH
U+1F63B & SMILING CAT FACE WITH HEART-SHAPED EYES

Figure 4-6. Using cf.py to find smiling cats.

Emoji support varies widely across operating systems and apps. In
recent years the macOS terminal offers the best support for emojis,
followed by modern GNU/Linux graphic terminals. Windows

\ cmd.exe and PowerShell now support Unicode output, but as I
write this section in January 2020, they still don’t display emojis—
at least not “out of the box.” Tech reviewer Leonardo Rochael told
me about a new, open source Windows Terminal by Microsoft,
which may have better Unicode support than the older Microsoft
consoles. I did not have time to try it.

In Example 4-21, note the if statement in the find function using the .issubset()
method to quickly test whether all the words in the query set appear in the list of
words built from the character’s name. Thanks to Python’s rich set API, we don’t
need a nested for loop and another if to implement this check.

Example 4-21. cf.py: the character finder utility

#!/usr/bin/env python3
import
import

START, END = ord(' '), sys.maxunicode + 1

o
def find(*query_words, start=START, end=END): (2]
query = {w.upper() for w in query_words} (3]

for code in range(start, end):
char = chr(code) (4]
name = unicodedata.name(char, None) (5]
if name and query.issubset(name.split()): (6]
print(f'U+{code:04X}\t{char}\t{name}") (7]

def main(words):
if words:
find(*words)
else:
print('Please provide words to find.')

if __pame__ == '__main__
main(sys.argv[1:])

152 | Chapter4: Unicode Text Versus Bytes

https://fpy.li/4-24

© o

© 6 6 o

(7]

Set defaults for the range of code points to search.

find accepts query_words and optional keyword-only arguments to limit the
range of the search, to facilitate testing.

Convert query_words into a set of uppercased strings.
Get the Unicode character for code.
Get the name of the character, or None if the code point is unassigned.

If there is a name, split it into a list of words, then check that the query set is a
subset of that list.

Print out line with code point in U+9999 format, the character, and its name.

The unicodedata module has other interesting functions. Next, we’ll see a few that
are related to getting information from characters that have numeric meaning.

Numeric Meaning of Characters

The unicodedata module includes functions to check whether a Unicode character
represents a number and, if so, its numeric value for humans—as opposed to its code
point number. Example 4-22 shows the use of unicodedata.name() and unicode
data.numeric(), along with the .isdecimal() and .isnumeric() methods of str.

Example 4-22. Demo of Unicode database numerical character metadata (callouts
describe each column in the output)

import
import

re_digit = re.compile(r'\d")

sample = '1\xbc\xb2\u0969\u136b\u216b\u2466\u2480\u3285'

for char in sample:

print(f'U+{ord(char):04x}", (1]
char.center(6), (2}
're_dig' if re_digit.match(char) else '-', (3)
'{sdig' if char.isdigit() else '-' (4]
"isnum' if char.isnumeric() else '-', (5]

(6]
(7]

f'{unicodedata.numeric(char):5.2f}",
unicodedata.name(char),
sep="\t")

The Unicode Database | 153

Code point in U+0000 format.

Character centralized in a str of length 6.

Show re_dig if character matches the r'\d' regex.
Show isdig if char.isdigit() is True.

Show isnum if char.isnumeric() is True.

© 6 6 o o o

Numeric value formatted with width 5 and 2 decimal places.

Unicode character name.

Running Example 4-22 gives you Figure 4-7, if your terminal font has all those
glyphs.

$ python3 numerics_demo.py

U+0031 1 re_dig 1isdig 1isnhum 1.00 DIGIT ONE

U+@@bc % - - isnum 0.25 VULGAR FRACTION ONE QUARTER
U+00b2 2 - isdig isnum 2.00 SUPERSCRIPT TWO

U+0969 3 re_dig isdig isnum 3.00 DEVANAGARI DIGIT THREE
U+136b £ - isdig isnum 3.00 ETHIOPIC DIGIT THREE

U+216b Xl - . isnum 12.00 ROMAN NUMERAL TWELVE
U+2466 @ - isdig isnum 7.00 CIRCLED DIGIT SEVEN

U+2480 (©)] - - isnum 13.00 PARENTHESIZED NUMBER THIRTEEN
U+i285 @ - - isnum 6.00 CIRCLED IDEOGRAPH SIX

$

Figure 4-7. macOS terminal showing numeric characters and metadata about them;
re_dig means the character matches the regular expression r'\d’.

The sixth column of Figure 4-7 is the result of calling unicodedata.numeric(char)
on the character. It shows that Unicode knows the numeric value of symbols that
represent numbers. So if you want to create a spreadsheet application that supports
Tamil digits or Roman numerals, go for it!

Figure 4-7 shows that the regular expression r'\d' matches the digit “1” and the
Devanagari digit 3, but not some other characters that are considered digits by the
isdigit function. The re module is not as savvy about Unicode as it could be. The
new regex module available on PyPI was designed to eventually replace re and pro-
vides better Unicode support." We’ll come back to the re module in the next section.

11 Although it was not better than re at identifying digits in this particular sample.

154 | Chapter4: Unicode Text Versus Bytes

Throughout this chapter we’ve used several unicodedata functions, but there are
many more we did not cover. See the standard library documentation for the unicode
data module.

Next we’ll take a quick look at dual-mode APIs offering functions that accept str or
bytes arguments with special handling depending on the type.

Dual-Mode str and bytes APIs

Python’s standard library has functions that accept str or bytes arguments and
behave differently depending on the type. Some examples can be found in the re and
os modules.

str Versus bytes in Regular Expressions

If you build a regular expression with bytes, patterns such as \d and \w only match
ASCII characters; in contrast, if these patterns are given as str, they match Unicode
digits or letters beyond ASCII. Example 4-23 and Figure 4-8 compare how letters,
ASCII digits, superscripts, and Tamil digits are matched by str and bytes patterns.

Example 4-23. ramanujan.py: compare behavior of simple str and bytes regular
expressions

import

re_numbers_str = re.compile(r'\d+") (1)
re_words_str = re.compile(r'\w+')
re_numbers_bytes = re.compile(rb'\d+") (2}
re_words_bytes = re.compile(rb'\w+')

text_str = ("Ramanujan saw \uObe7\u@bed\uObe8\uObef" (3]
" as 1729 = 13 + 123 = 93 + 103.")

text_bytes = text_str.encode('utf_8') (5)

print(f'Text\n {text_str!r}')

print('Numbers')

print(' str :', re_numbers_str.findall(text_str)) (6]
print(' bytes:', re_numbers_bytes.findall(text_bytes)) (7)
print('Words"')

print(' str :', re_words_str.findall(text_str)) (&)
print(' bytes:', re_words_bytes.findall(text_bytes)) (o]

© The first two regular expressions are of the str type.

© The last two are of the bytes type.

Dual-Mode str and bytes APIs | 155

https://fpy.li/4-25
https://fpy.li/4-25

© Unicode text to search, containing the Tamil digits for 1729 (the logical line con-
tinues until the right parenthesis token).

©

This string is joined to the previous one at compile time (see “2.4.2. String literal
concatenation” in The Python Language Reference).

A bytes string is needed to search with the bytes regular expressions.
The str pattern r'\d+' matches the Tamil and ASCII digits.

The bytes pattern rb'\d+' matches only the ASCII bytes for digits.

© © © o

The str pattern r'\w+' matches the letters, superscripts, Tamil, and ASCII
digits.

<]

The bytes pattern rb' \w+' matches only the ASCII bytes for letters and digits.

8 00 1. bash
$ python3 ramanujan.py
Text
'Ramanujan saw eeze as 1729 = 13 + 123 = 93 + 103.'
Numbers
str : [eees', '1729', '1', '12', '9', '10']
bytes: [b'1729', b'l', b'12', b'9', b'10']
Words
str : ['Ramanujan', 'saw', 'sees', 'as', '1729", '13", '123', '93' '103']
bytes: [b'Ramanujan', b'saw', b'as', b'1729', b'l', b'12', b'9", b'10']

LY | |

Figure 4-8. Screenshot of running ramanujan.py from Example 4-23.

Example 4-23 is a trivial example to make one point: you can use regular expressions
on str and bytes, but in the second case, bytes outside the ASCII range are treated as
nondigits and nonword characters.

For str regular expressions, there is a re.ASCII flag that makes \w, \W, \b, \B, \d, \D,
\s, and \S perform ASCII-only matching. See the documentation of the re module
for full details.

Another important dual-mode module is os.

str Versus bytes in os Functions

The GNU/Linux kernel is not Unicode savvy, so in the real world you may find file-
names made of byte sequences that are not valid in any sensible encoding scheme,
and cannot be decoded to str. File servers with clients using a variety of OSes are
particularly prone to this problem.

156 | Chapter4: Unicode Text Versus Bytes

https://fpy.li/4-26
https://fpy.li/4-26
https://fpy.li/4-27

In order to work around this issue, all os module functions that accept filenames or
pathnames take arguments as str or bytes. If one such function is called with a str
argument, the argument will be automatically converted using the codec named by
sys.getfilesystemencoding(), and the OS response will be decoded with the same
codec. This is almost always what you want, in keeping with the Unicode sandwich
best practice.

But if you must deal with (and perhaps fix) filenames that cannot be handled in that
way, you can pass bytes arguments to the os functions to get bytes return values.
This feature lets you deal with any file or pathname, no matter how many gremlins
you may find. See Example 4-24.

Example 4-24. listdir with str and bytes arguments and results

>>> os.listdir('.') @

['abc.txt', 'digits-of-n.txt']

>>> 0s.listdir(b'.') @

[b'abc.txt', b'digits-of-\xcf\x80.txt']

© The second filename is “digits-of-m.txt” (with the Greek letter pi).

©® Given a byte argument, listdir returns filenames as bytes: b'\xcf\x80' is the
UTF-8 encoding of the Greek letter pi.

To help with manual handling of str or bytes sequences that are filenames or path-
names, the os module provides special encoding and decoding functions os.fsen
code(name_or_path) and os.fsdecode(name_or_path). Both of these functions
accept an argument of type str, bytes, or an object implementing the os.PathLike
interface since Python 3.6.

Unicode is a deep rabbit hole. Time to wrap up our exploration of str and bytes.

Chapter Summary

We started the chapter by dismissing the notion that 1 character == 1 byte. As the
world adopts Unicode, we need to keep the concept of text strings separated from the
binary sequences that represent them in files, and Python 3 enforces this separation.

After a brief overview of the binary sequence data types—bytes, bytearray, and
memoryview—we jumped into encoding and decoding, with a sampling of important
codecs, followed by approaches to prevent or deal with the infamous UnicodeEnco
deError, UnicodeDecodeError, and the SyntaxError caused by wrong encoding in
Python source files.

Chapter Summary | 157

We then considered the theory and practice of encoding detection in the absence of
metadata: in theory, it can’t be done, but in practice the Chardet package pulls it off
pretty well for a number of popular encodings. Byte order marks were then presented
as the only encoding hint commonly found in UTF-16 and UTF-32 files—sometimes
in UTF-8 files as well.

In the next section, we demonstrated opening text files, an easy task except for one
pitfall: the encoding= keyword argument is not mandatory when you open a text file,
but it should be. If you fail to specify the encoding, you end up with a program that
manages to generate “plain text” that is incompatible across platforms, due to con-
flicting default encodings. We then exposed the different encoding settings that
Python uses as defaults and how to detect them. A sad realization for Windows users
is that these settings often have distinct values within the same machine, and the val-
ues are mutually incompatible; GNU/Linux and macOS users, in contrast, live in a
happier place where UTF-8 is the default pretty much everywhere.

Unicode provides multiple ways of representing some characters, so normalizing is a
prerequisite for text matching. In addition to explaining normalization and case fold-
ing, we presented some utility functions that you may adapt to your needs, including
drastic transformations like removing all accents. We then saw how to sort Unicode
text correctly by leveraging the standard locale module—with some caveats—and an
alternative that does not depend on tricky locale configurations: the external pyuca
package.

We leveraged the Unicode database to program a command-line utility to search for
characters by name—in 28 lines of code, thanks to the power of Python. We glanced
at other Unicode metadata, and had a brief overview of dual-mode APIs where some
functions can be called with str or bytes arguments, producing different results.

Further Reading

Ned Batchelder’s 2012 PyCon US talk “Pragmatic Unicode, or, How Do I Stop the
Pain?” was outstanding. Ned is so professional that he provides a full transcript of the
talk along with the slides and video.

“Character encoding and Unicode in Python: How to (< °[0°)” — L—L with dig-
nity” (slides, video) was the excellent PyCon 2014 talk by Esther Nam and Travis
Fischer, where I found this chapter’s pithy epigraph: “Humans use text. Computers
speak bytes.”

Lennart Regebro—one of the technical reviewers for the first edition of this book—
shares his “Useful Mental Model of Unicode (UMMU)” in the short post “Unconfus-
ing Unicode: What Is Unicode?”. Unicode is a complex standard, so Lennart’s
UMMU is a really useful starting point.

158 | Chapter4: Unicode Text Versus Bytes

https://fpy.li/4-28
https://fpy.li/4-28
https://fpy.li/4-1
https://fpy.li/4-2
https://fpy.li/4-31
https://fpy.li/4-31

The official “Unicode HOWTO? in the Python docs approaches the subject from sev-
eral different angles, from a good historic intro, to syntax details, codecs, regular
expressions, filenames, and best practices for Unicode-aware I/O (i.e., the Unicode
sandwich), with plenty of additional reference links from each section. Chapter 4,
“Strings”, of Mark Pilgrim’s awesome book Dive into Python 3 (Apress) also provides
a very good intro to Unicode support in Python 3. In the same book, Chapter 15
describes how the Chardet library was ported from Python 2 to Python 3, a valuable
case study given that the switch from the old str to the new bytes is the cause of
most migration pains, and that is a central concern in a library designed to detect
encodings.

If you know Python 2 but are new to Python 3, Guido van Rossum’s “What’s New in
Python 3.0” has 15 bullet points that summarize what changed, with lots of links.
Guido starts with the blunt statement: “Everything you thought you knew about
binary data and Unicode has changed.” Armin Ronacher’s blog post “The Updated
Guide to Unicode on Python” is deep and highlights some of the pitfalls of Unicode
in Python 3 (Armin is not a big fan of Python 3).

Chapter 2, “Strings and Text,” of the Python Cookbook, 3rd ed. (O’Reilly), by David
Beazley and Brian K. Jones, has several recipes dealing with Unicode normalization,
sanitizing text, and performing text-oriented operations on byte sequences. Chapter 5
covers files and I/0O, and it includes “Recipe 5.17. Writing Bytes to a Text File,” show-
ing that underlying any text file there is always a binary stream that may be accessed
directly when needed. Later in the cookbook, the struct module is put to use in
“Recipe 6.11. Reading and Writing Binary Arrays of Structures.”

Nick Coghlan’s “Python Notes” blog has two posts very relevant to this chapter:
“Python 3 and ASCII Compatible Binary Protocols” and “Processing Text Files in
Python 3”. Highly recommended.

A list of encodings supported by Python is available at “Standard Encodings” in the
codecs module documentation. If you need to get that list programmatically, see how
it’'s done in the /Tools/unicode/listcodecs.py script that comes with the CPython
source code.

The books Unicode Explained by Jukka K. Korpela (O’Reilly) and Unicode Demysti-
fied by Richard Gillam (Addison-Wesley) are not Python-specific but were very help-
ful as I studied Unicode concepts. Programming with Unicode by Victor Stinner is a
free, self-published book (Creative Commons BY-SA) covering Unicode in general,
as well as tools and APIs in the context of the main operating systems and a few pro-
gramming languages, including Python.

The W3C pages “Case Folding: An Introduction” and “Character Model for the
World Wide Web: String Matching” cover normalization concepts, with the former
being a gentle introduction and the latter a working group note written in dry

FurtherReading | 159

https://fpy.li/4-32
https://fpy.li/4-33
https://fpy.li/4-33
https://fpy.li/4-34
https://fpy.li/4-35
https://fpy.li/4-36
https://fpy.li/4-36
https://fpy.li/4-37
https://fpy.li/4-37
https://fpy.li/pycook3
https://fpy.li/4-38
https://fpy.li/4-39
https://fpy.li/4-39
https://fpy.li/4-40
https://fpy.li/4-41
https://fpy.li/4-42
https://fpy.li/4-43
https://fpy.li/4-43
https://fpy.li/4-44
https://fpy.li/4-45
https://fpy.li/4-15
https://fpy.li/4-15

standard-speak—the same tone of the “Unicode Standard Annex #15—Unicode Nor-
malization Forms”. The “Frequently Asked Questions, Normalization” section from
Unicode.org is more readable, as is the “NFC FAQ” by Mark Davis—author of several
Unicode algorithms and president of the Unicode Consortium at the time of this
writing.

In 2016, the Museum of Modern Art (MoMA) in New York added to its collection
the original emoji, the 176 emojis designed by Shigetaka Kurita in 1999 for NTT
DOCOMO—the Japanese mobile carrier. Going further back in history, Emojipedia
published “Correcting the Record on the First Emoji Set”, crediting Japan’s SoftBank
for the earliest known emoji set, deployed in cell phones in 1997. SoftBank’s set is the
source of 90 emojis now in Unicode, including U+1F4A9 (PILE OF P00). Matthew
Rothenberg’s emojitracker.com is a live dashboard showing counts of emoji usage on
Twitter, updated in real time. As I write this, FACE WITH TEARS OF JOY (U+1F602)
is the most popular emoji on Twitter, with more than 3,313,667,315 recorded
occurrences.

Soapbox

Non-ASCIl Names in Source Code: Should You Use Them?
Python 3 allows non-ASCII identifiers in source code:

>>> agdo = 'PBR' # agdo = stock

>>> g = 10%*-6 # € = epsilon
Some people dislike the idea. The most common argument to stick with ASCII iden-
tifiers is to make it easy for everyone to read and edit code. That argument misses the
point: you want your source code to be readable and editable by its intended audi-
ence, and that may not be “everyone.” If the code belongs to a multinational corpora-
tion or is open source and you want contributors from around the world, the
identifiers should be in English, and then all you need is ASCIIL.

But if you are a teacher in Brazil, your students will find it easier to read code that
uses Portuguese variable and function names, correctly spelled. And they will have no
difficulty typing the cedillas and accented vowels on their localized keyboards.

Now that Python can parse Unicode names and UTF-8 is the default source encod-
ing, I see no point in coding identifiers in Portuguese without accents, as we used to
do in Python 2 out of necessity—unless you need the code to run on Python 2 also. If
the names are in Portuguese, leaving out the accents won’t make the code more read-
able to anyone.

This is my point of view as a Portuguese-speaking Brazilian, but I believe it applies
across borders and cultures: choose the human language that makes the code easier to
read by the team, then use the characters needed for correct spelling.

160 | Chapter4: Unicode Text Versus Bytes

https://fpy.li/4-47
https://fpy.li/4-47
https://fpy.li/4-48
https://fpy.li/4-49
https://fpy.li/4-50
https://fpy.li/4-51
https://fpy.li/4-52
https://fpy.li/4-53
https://fpy.li/4-54

What Is “Plain Text"?

For anyone who deals with non-English text on a daily basis, “plain text” does not
imply “ASCIL” The Unicode Glossary defines plain text like this:

Computer-encoded text that consists only of a sequence of code points from a given
standard, with no other formatting or structural information.

That definition starts very well, but I don’t agree with the part after the comma.
HTML is a great example of a plain-text format that carries formatting and structural
information. But it’s still plain text because every byte in such a file is there to repre-
sent a text character, usually using UTF-8. There are no bytes with nontext meaning,
as you can find in a .png or .xIs document where most bytes represent packed binary
values like RGB values and floating-point numbers. In plain text, numbers are repre-
sented as sequences of digit characters.

I am writing this book in a plain-text format called—ironically—AsciiDoc, which is
part of the toolchain of O’Reilly’s excellent Atlas book publishing platform. AsciiDoc
source files are plain text, but they are UTF-8, not ASCIIL. Otherwise, writing this
chapter would have been really painful. Despite the name, AsciiDoc is just great.

The world of Unicode is constantly expanding and, at the edges, tool support is not
always there. Not all characters I wanted to show were available in the fonts used to
render the book. That’s why I had to use images instead of listings in several examples
in this chapter. On the other hand, the Ubuntu and macOS terminals display most
Unicode text very well—including the Japanese characters for the word “mojibake”:

XFET.

How Are str Code Points Represented in RAM?

The official Python docs avoid the issue of how the code points of a str are stored in
memory. It is really an implementation detail. In theory, it doesn’t matter: whatever
the internal representation, every str must be encoded to bytes on output.

In memory, Python 3 stores each str as a sequence of code points using a fixed num-
ber of bytes per code point, to allow efficient direct access to any character or slice.

Since Python 3.3, when creating a new str object, the interpreter checks the charac-
ters in it and chooses the most economic memory layout that is suitable for that par-
ticular stre: if there are only characters in the latini range, that str will use just one
byte per code point. Otherwise, two or four bytes per code point may be used,
depending on the str. This is a simplification; for the full details, look up PEP 393—
Flexible String Representation.

The flexible string representation is similar to the way the int type works in Python
3: if the integer fits in a machine word, it is stored in one machine word. Otherwise,
the interpreter switches to a variable-length representation like that of the Python 2
long type. It is nice to see the spread of good ideas.

FurtherReading | 161

https://fpy.li/4-55
https://fpy.li/4-56
https://fpy.li/4-57
https://fpy.li/pep393
https://fpy.li/pep393

However, we can always count on Armin Ronacher to find problems in Python 3. He
explained to me why that was not such as great idea in practice: it takes a single RAT
(U+1F400) to inflate an otherwise all-ASCII text into a memory-hogging array using
four bytes per character, when one byte would suffice for each character except the
RAT. In addition, because of all the ways Unicode characters combine, the ability to
quickly retrieve an arbitrary character by position is overrated—and extracting arbi-
trary slices from Unicode text is naive at best, and often wrong, producing mojibake.
As emojis become more popular, these problems will only get worse.

162 | Chapter4: Unicode Text Versus Bytes

CHAPTER 5
Data Class Builders

Data classes are like children. They are okay as a starting point, but to participate as a
grownup object, they need to take some responsibility.

—Martin Fowler and Kent Beck!

Python offers a few ways to build a simple class that is just a collection of fields, with
little or no extra functionality. That pattern is known as a “data class”—and data
classes is one of the packages that supports this pattern. This chapter covers three
different class builders that you may use as shortcuts to write data classes:

collections.namedtuple
The simplest way—available since Python 2.6.

typing.NamedTuple
An alternative that requires type hints on the fields—since Python 3.5, with
class syntax added in 3.6.

@dataclasses.dataclass
A class decorator that allows more customization than previous alternatives,
adding lots of options and potential complexity—since Python 3.7.

After covering those class builders, we will discuss why Data Class is also the name of
a code smell: a coding pattern that may be a symptom of poor object-oriented design.

1 From Refactoring, first edition, Chapter 3, “Bad Smells in Code, Data Class” section, page 87 (Addison-
Wesley).

163

typing.TypedDict may seem like another data class builder. It uses
similar syntax and is described right after typing.NamedTuple
in the typing module documentation for Python 3.9.

However, TypedDict does not build concrete classes that you can
instantiate. It’s just syntax to write type hints for function parame-
ters and variables that will accept mapping values used as records,
with keys as field names. We'll see them in Chapter 15,
“TypedDict” on page 526.

What's New in This Chapter

This chapter is new in the second edition of Fluent Python. The section “Classic
Named Tuples” on page 169 appeared in Chapter 2 of the first edition, but the rest of
the chapter is completely new.

We begin with a high-level overview of the three class builders.

Overview of Data Class Builders

Consider a simple class to represent a geographic coordinate pair, as shown in
Example 5-1.

Example 5-1. class/coordinates.py
class Coordinate:

def __init__ (self, lat, lon):
self.lat = lat
self.lon = lon

That Coordinate class does the job of holding latitude and longitude attributes. Writ-
ing the __init__ boilerplate becomes old real fast, especially if your class has more
than a couple of attributes: each of them is mentioned three times! And that boiler-
plate doesn’t buy us basic features we’d expect from a Python object:

>>> from import Coordinate

>>> moscow = Coordinate(55.76, 37.62)

>>> MOSCOW

<coordinates.Coordinate object at 0x107142f10> (1]
>>> location = Coordinate(55.76, 37.62)

>>> location == moscow

False

>>> (location.lat, location.lon) == (moscow.lat, moscow.lon) (3]
True

164 | Chapter5: Data Class Builders

https://fpy.li/5-1

© _ repr__inherited from object is not very helpful.
©® Meaningless ==; the __eq__ method inherited from object compares object IDs.

© Comparing two coordinates requires explicit comparison of each attribute.

The data class builders covered in this chapter provide the necessary __init__,
__repr__,and __eq__ methods automatically, as well as other useful features.

None of the class builders discussed here depend on inheritance to
do their work. Both collections.namedtuple and typing.Name
dTuple build classes that are tuple subclasses. @dataclass is a class
decorator that does not affect the class hierarchy in any way. Each
of them uses different metaprogramming techniques to inject
methods and data attributes into the class under construction.

Here is a Coordinate class built with namedtuple—a factory function that builds a
subclass of tuple with the name and fields you specify:

>>> from import namedtuple

>>> Coordinate = namedtuple('Coordinate', 'lat lon')
>>> issubclass(Coordinate, tuple)

True

>>> moscow = Coordinate(55.756, 37.617)

>>> MOSCOW

Coordinate(lat=55.756, lon=37.617) @

>>> moscow == Coordinate(lat=55.756, lon=37.617) @
True

©® Useful repr__.

® Meaningful __eq__

The newer typing.NamedTuple provides the same functionality, adding a type anno-
tation to each field:

>>> import

>>> Coordinate = typing.NamedTuple('Coordinate',
[('lat', float), ('lon', float)])

>>> issubclass(Coordinate, tuple)

True

>>> typing.get_type_hints(Coordinate)

{'lat': <class 'float's, 'lon': <class 'float's}

Overview of Data Class Builders | 165

A typed named tuple can also be constructed with the fields given
as keyword arguments, like this:

Coordinate = typing.NamedTuple('Coordinate', lat=float, lon=float)

This is more readable, and also lets you provide the mapping of
fields and types as **fields_and_types.

Since Python 3.6, typing.NamedTuple can also be used in a class statement, with
type annotations written as described in PEP 526—Syntax for Variable Annotations.
This is much more readable, and makes it easy to override methods or add new ones.
Example 5-2 is the same Coordinate class, with a pair of float attributes and a cus-
tom __str__ to display a coordinate formatted like 55.8°N, 37.6°E.

Example 5-2. typing_namedtuple/coordinates.py
from typing import NamedTuple

class Coordinate(NamedTuple):
lat: float
lon: float

def __str__(self):
ns = 'N'" if self.lat >= 0 else 'S'
we = 'E' i1f self.lon >= 0 else 'W'
return f'{abs(self.lat):.1f}°{ns}, {abs(self.lon):.1f}°{we}’

Although NamedTuple appears in the class statement as a super-
class, it’s actually not. typing.NamedTuple uses the advanced func-
tionality of a metaclass® to customize the creation of the user’s
class. Check this out:

>>> issubclass(Coordinate, typing.NamedTuple)
False

>>> issubclass(Coordinate, tuple)

True

In the __init__ method generated by typing.NamedTuple, the fields appear as
parameters in the same order they appear in the class statement.

Like typing.NamedTuple, the dataclass decorator supports PEP 526 syntax to
declare instance attributes. The decorator reads the variable annotations and auto-
matically generates methods for your class. For comparison, check out the equivalent

2 Metaclasses are one of the subjects covered in Chapter 24, “Class Metaprogramming”.

166 | Chapter5: Data Class Builders

https://fpy.li/pep526
https://fpy.li/pep526

Coordinate class written with the help of the dataclass decorator, as shown in
Example 5-3.

Example 5-3. dataclass/coordinates.py
from import dataclass

(frozen=True)
class Coordinate:
lat: float
lon: float

def __str_ (self):
ns = 'N' if self.lat >= 0 else 'S'
we = 'E' if self.lon >= 0 else 'W'
return f'{abs(self.lat):.1f}°{ns}, {abs(self.lon):.1f}°{we}’

Note that the body of the classes in Example 5-2 and Example 5-3 are identical—the
difference is in the class statement itself. The @dataclass decorator does not depend
on inheritance or a metaclass, so it should not interfere with your own use of these
mechanisms.* The Coordinate class in Example 5-3 is a subclass of object.

Main Features

The different data class builders have a lot in common, as summarized in Table 5-1.

Table 5-1. Selected features compared across the three data class builders; x stands for an
instance of a data class of that kind

namedtuple NamedTuple dataclass
mutable instances NO NO YES
class statement syntax ~ NO YES YES
construct dict x._asdict() x._asdict() dataclasses.asdict(x)
get field names x._fields x._fields [f.name for f in dataclasses.fields(x)]
get defaults x._field_defaults x._field_defaults [f.default for f in dataclasses.fields(x)]
get field types N/A X.__annotations__ X.__annotations__
new instance with x._replace(...) x._replace(...) dataclasses.replace(x, ...)
changes
new class at runtime namedtuple(...) NamedTuple(...) dataclasses.make_dataclass(. . .)

3 Class decorators are covered in Chapter 24, “Class Metaprogramming,” along with metaclasses. Both are ways
of customizing class behavior beyond what is possible with inheritance.

Overview of Data Class Builders | 167

The classes built by typing.NamedTuple and @dataclass have an
__annotations__ attribute holding the type hints for the fields.
However, reading from __annotations__ directly is not recom-

\ mended. Instead, the recommended best practice to get that
information is to call inspect.get_annotations(MyClass) (added
in Python 3.10) or typing.get_type_hints(MyClass) (Python 3.5
to 3.9). That’s because those functions provide extra services, like
resolving forward references in type hints. We’ll come back to this
issue much later in the book, in “Problems with Annotations at
Runtime” on page 538.

Now let’s discuss those main features.

Mutable instances

A key difference between these class builders is that collections.namedtuple and
typing.NamedTuple build tuple subclasses, therefore the instances are immutable.
By default, @dataclass produces mutable classes. But the decorator accepts a key-
word argument frozen—shown in Example 5-3. When frozen=True, the class will
raise an exception if you try to assign a value to a field after the instance is initialized.

Class statement syntax

Only typing.NamedTuple and dataclass support the regular class statement syn-
tax, making it easier to add methods and docstrings to the class you are creating.

Construct dict

Both named tuple variants provide an instance method (._asdict) to construct a
dict object from the fields in a data class instance. The dataclasses module pro-
vides a function to do it: dataclasses.asdict.

Get field names and default values

All three class builders let you get the field names and default values that may be con-
figured for them. In named tuple classes, that metadata is in the ._fields
and ._fields_defaults class attributes. You can get the same metadata from a data
class decorated class using the fields function from the dataclasses module. It
returns a tuple of Field objects that have several attributes, including name and
default.

168 | Chapter5: Data Class Builders

https://fpy.li/5-2
https://fpy.li/5-3

Get field types

Classes defined with the help of typing.NamedTuple and @dataclass have a mapping
of field names to type the __annotations__ class attribute. As mentioned, use the
typing.get_type_hints function instead of reading __annotations__ directly.

New instance with changes

Given a named tuple instance x, the call x._replace(**kwargs) returns a new
instance with some attribute values replaced according to the keyword arguments
given. The dataclasses.replace(x, **kwargs) module-level function does the
same for an instance of a dataclass decorated class.

New class at runtime

Although the class statement syntax is more readable, it is hardcoded. A framework
may need to build data classes on the fly, at runtime. For that, you can use the default
function call syntax of collections.namedtuple, which is likewise supported by
typing.NamedTuple. The dataclasses module provides a make_dataclass function
for the same purpose.

After this overview of the main features of the data class builders, let’s focus on each
of them in turn, starting with the simplest.

Classic Named Tuples

The collections.namedtuple function is a factory that builds subclasses of tuple
enhanced with field names, a class name, and an informative __repr__. Classes built
with namedtuple can be used anywhere where tuples are needed, and in fact many
functions of the Python standard library that are used to return tuples now return
named tuples for convenience, without affecting the user’s code at all.

Each instance of a class built by namedtuple takes exactly the same
amount of memory as a tuple because the field names are stored in
the class.

Example 5-4 shows how we could define a named tuple to hold information about a
city.
Example 5-4. Defining and using a named tuple type

>>> from import namedtuple
>>> City = namedtuple('City', 'name country population coordinates') (1)

(lassicNamed Tuples | 169

>>> tokyo = City('Tokyo', 'JP', 36.933, (35.689722, 139.691667)) @

>>> tokyo

City(name='Tokyo', country='JP', population=36.933, coordinates=(35.689722,
139.691667))

>>> tokyo.population (3]

36.933

>>> tokyo.coordinates

(35.689722, 139.691667)

>>> tokyo[1]

“Jp"

© Two parameters are required to create a named tuple: a class name and a list of
field names, which can be given as an iterable of strings or as a single space-
delimited string.

© TField values must be passed as separate positional arguments to the constructor
(in contrast, the tuple constructor takes a single iterable).

© You can access the fields by name or position.

As a tuple subclass, City inherits useful methods such as __eq__ and the special
methods for comparison operators—including __1t__, which allows sorting lists of
City instances.

A named tuple offers a few attributes and methods in addition to those inherited
from the tuple. Example 5-5 shows the most useful: the _fields class attribute, the
class method _make(iterable), and the _asdict() instance method.

Example 5-5. Named tuple attributes and methods (continued from the previous
example)

>>> City._fields @

('name', 'country', 'population', 'location')

>>> Coordinate = namedtuple('Coordinate', 'lat lon')

>>> delhi_data = ('Delhi NCR', '"IN', 21.935, Coordinate(28.613889, 77.208889))
>>> delhi = City._make(delhi_data) @

>>> delhi._asdict()

{'name': 'Delhi NCR', 'country': "IN', 'population': 21.935,
'location': Coordinate(lat=28.613889, lon=77.208889)}

>>> import

>>> json.dumps(delhi._asdict()) (4)

'{"name": "Delhi NCR", "country": "IN", "population": 21.935,
"location": [28.613889, 77.208889]}"

O ._fields is a tuple with the field names of the class.

® . make() builds City from an iterable; City(*delhi_data) would do the same.

170 | Chapter5: Data Class Builders

© . _asdict() returns a dict built from the named tuple instance.

O . _asdict() is useful to serialize the data in JSON format, for example.

The _asdict method returned an OrderedDict until Python 3.7.
Since Python 3.8, it returns a simple dict—which is OK now that
we can rely on key insertion order. If you must have an Ordered

\ Dict, the _asdict documentation recommends building one from
the result: OrderedDict(x._asdict()).

Since Python 3.7, namedtuple accepts the defaults keyword-only argument provid-
ing an iterable of N default values for each of the N rightmost fields of the class.
Example 5-6 shows how to define a Coordinate named tuple with a default value for
a reference field.

Example 5-6. Named tuple attributes and methods, continued from Example 5-5

>>> Coordinate = namedtuple('Coordinate', 'lat lon reference', defaults=['WGS84'])
>>> Coordinate(0, 0)

Coordinate(lat=0, lon=0, reference='WGS84')

>>> Coordinate._field_defaults

{'reference': 'WGS84'}

In “Class statement syntax” on page 168, I mentioned it’s easier to code methods with
the class syntax supported by typing.NamedTuple and @dataclass. You can also add
methods to a namedtuple, but it’s a hack. Skip the following box if you're not interes-
ted in hacks.

Hacking a namedtuple to Inject a Method
Recall how we built the Card class in Example 1-1 in Chapter 1:
Card = collections.namedtuple('Card', ['rank', 'suit'])

Later in Chapter 1, I wrote a spades_high function for sorting. It would be nice if
that logic was encapsulated in a method of Card, but adding spades_high to Card
without the benefit of a class statement requires a quick hack: define the function
and then assign it to a class attribute. Example 5-7 shows how.

Example 5-7. frenchdeck.doctest: Adding a class attribute and a method to Card,
the namedtuple from “A Pythonic Card Deck” on page 5

>>> Card.suit_values = dict(spades=3, hearts=2, diamonds=1, clubs=0) (1]
>>> def spades_high(card): (2]
rank_value = FrenchDeck.ranks.index(card.rank)

(lassicNamed Tuples | 171

https://fpy.li/5-4

suit_value = card.suit_values[card.suit]
return rank_value * len(card.suit_values) + suit_value

>>> Card.overall_rank = spades_high (3]
>>> lowest_card = Card('2', 'clubs')
>>> highest_card = Card('A', 'spades')

>>> lowest_card.overall_rank() (4]
0

>>> highest_card.overall_rank()

51

© Attach a class attribute with values for each suit.

@ spades_high will become a method; the first argument doesn’t need to be named
self. Anyway, it will get the receiver when called as a method.

© Attach the function to the Card class as a method named overall_rank.
O It works!

For readability and future maintenance, it’s much better to code methods inside a

class statement. But it’s good to know this hack is possible, because it may come in
handy.*

This was a small detour to showcase the power of a dynamic language.

Now let’s check out the typing.NamedTuple variation.

Typed Named Tuples

The Coordinate class with a default field from Example 5-6 can be written using
typing.NamedTuple, as shown in Example 5-8.

Example 5-8. typing_namedtuple/coordinates2.py
from import NamedTuple
class Coordinate(NamedTuple):

lat: float

lon: float
reference: str = 'WGS84' ©

4 If you know Ruby, you know that injecting methods is a well-known but controversial technique among
Rubyists. In Python, it’s not as common, because it doesn’t work with any built-in type—str, list, etc. I con-
sider this limitation of Python a blessing.

172 | Chapter5: Data Class Builders

© Every instance field must be annotated with a type.
® The reference instance field is annotated with a type and a default value.

Classes built by typing.NamedTuple don’t have any methods beyond those that col
lections.namedtuple also generates—and those that are inherited from tuple. The
only difference is the presence of the __annotations__ class attribute—which Python
completely ignores at runtime.

Given that the main feature of typing.NamedTuple are the type annotations, we’ll
take a brief look at them before resuming our exploration of data class builders.

Type Hints 101

Type hints—a.k.a. type annotations—are ways to declare the expected type of func-
tion arguments, return values, variables, and attributes.

The first thing you need to know about type hints is that they are not enforced at all
by the Python bytecode compiler and interpreter.

This is a very brief introduction to type hints, just enough to make
sense of the syntax and meaning of the annotations used in typ
ing.NamedTuple and @dataclass declarations. We will cover type
hints for function signatures in Chapter 8 and more advanced
annotations in Chapter 15. Here we’ll mostly see hints with simple
built-in types, such as str, int, and float, which are probably the
most common types used to annotate fields of data classes.

No Runtime Effect

Think about Python type hints as “documentation that can be verified by IDEs and
type checkers.”

That’s because type hints have no impact on the runtime behavior of Python pro-
grams. Check out Example 5-9.

Example 5-9. Python does not enforce type hints at runtime

>>> import

>>> class Coordinate(typing.NamedTuple):
lat: float
lon: float

>>> trash = Coordinate('Ni!', None)
>>> print(trash)
Coordinate(lat='Ni!"', lon=None) (1]

TypeHints101 | 173

© I told you: no type checking at runtime!

If you type the code of Example 5-9 in a Python module, it will run and display a
meaningless Coordinate, with no error or warning:

$ python3 nocheck_demo.py
Coordinate(lat="'Ni!"', lon=None)

The type hints are intended primarily to support third-party type checkers, like Mypy
or the PyCharm IDE built-in type checker. These are static analysis tools: they check
Python source code “at rest,” not running code.

To see the effect of type hints, you must run one of those tools on your code—like a
linter. For instance, here is what Mypy has to say about the previous example:

$ mypy nocheck_demo.py

nocheck_demo.py:8: error: Argument 1 to "Coordinate" has
incompatible type "str"; expected "float"
nocheck_demo.py:8: error: Argument 2 to "Coordinate" has
incompatible type "None"; expected "float"

As you can see, given the definition of Coordinate, Mypy knows that both arguments
to create an instance must be of type float, but the assignment to trash uses a str
and None.?

Now let’s talk about the syntax and meaning of type hints.

Variable Annotation Syntax

Both typing.NamedTuple and @dataclass use the syntax of variable annotations
defined in PEP 526. This is a quick introduction to that syntax in the context defining
attributes in class statements.

The basic syntax of variable annotation is:

var_name: some_type

The “Acceptable type hints” section in PEP 484 explains what are acceptable types,
but in the context of defining a data class, these types are more likely to be useful:

« A concrete class, for example, str or FrenchDeck

o A parameterized collection type, like 1ist[int], tuple[str, float], etc.

5 In the context of type hints, None is not the NoneType singleton, but an alias for NoneType itself. This is strange
when we stop to think about it, but appeals to our intuition and makes function return annotations easier to
read in the common case of functions that return None.

174 | Chapter5: Data Class Builders

https://fpy.li/mypy
https://fpy.li/5-5
https://fpy.li/pep526
https://fpy.li/5-6

 typing.Optional, for example, Optional[str]—to declare a field that can be a
str or None

You can also initialize the variable with a value. In a typing.NamedTuple or @data
class declaration, that value will become the default for that attribute if the corre-
sponding argument is omitted in the constructor call:

var_name: some_type = a_value

The Meaning of Variable Annotations

We saw in “No Runtime Effect” on page 173 that type hints have no effect at runtime.
But at import time—when a module is loaded—Python does read them to build the
__annotations__ dictionary that typing.NamedTuple and @dataclass then use to
enhance the class.

We'll start this exploration with a simple class in Example 5-10, so that we can later
see what extra features are added by typing.NamedTuple and @dataclass.

Example 5-10. meaning/demo_plain.py: a plain class with type hints

class DemoPlainClass:
a: int
b: float = 1.1
c = 'spam'

o000

© abecomes an entry in __annotations__, but is otherwise discarded: no attribute
named a is created in the class.

® b is saved as an annotation, and also becomes a class attribute with value 1.1.

©® cisjustaplain old class attribute, not an annotation.

We can verify that in the console, first reading the __annotations__ of the Demo
PlainClass, then trying to get its attributes named a, b, and c:

>>> from import DemoPlainClass
>>> DemoPlainClass.__annotations__

{'a': <class 'int'>, 'b': <class 'float'>}
>>> DemoPlainClass.a

File "<stdin>", line 1, in <module>
AttributeError: type object 'DemoPlainClass' has no attribute 'a'
>>> DemoPlainClass.b
1.1
>>> DemoPlainClass.c
'spam’

TypeHints101 | 175

Note that the __annotations__ special attribute is created by the interpreter to

record the type hints that appear in the source code—even in a plain class.

The a survives only as an annotation. It doesn’t become a class attribute because no
value is bound to it.* The b and c are stored as class attributes because they are bound
to values.

None of those three attributes will be in a new instance of DemoPlainClass. If you
create an object o = DemoPlainClass(), o.a will raise AttributeError, while 0.b
and o.c will retrieve the class attributes with values 1.1 and 'spam'—that’s just nor-
mal Python object behavior.

Inspecting a typing.NamedTuple

Now let’s examine a class built with typing.NamedTuple (Example 5-11), using the
same attributes and annotations as DemoPlainClass from Example 5-10.

Example 5-11. meaning/demo_nt.py: a class built with typing.NamedTuple

import

class DemoNTClass(typing.NamedTuple):
(1]

a: int
b: float = 1.1 @
c = 'spam' (3]

a becomes an annotation and also an instance attribute.

b is another annotation, and also becomes an instance attribute with default
value 1.1.

©® cisjustaplain old class attribute; no annotation will refer to it.
Inspecting the DemoNTClass, we get:

>>> from import DemoNTClass

>>> DemoNTClass.__annotations__

{'a"': <class 'int'>, 'b': <class 'float'>}

>>> DemoNTClass.a

<_collections._tuplegetter object at 0x101f0f940>
>>> DemoNTClass.b

<_collections._tuplegetter object at 0x101f0f8bo>
>>> DemoNTClass.c

'spam’

6 Python has no concept of undefined, one of the silliest mistakes in the design of JavaScript. Thank Guido!

176 | Chapter5: Data Class Builders

Here we have the same annotations for a and b as we saw in Example 5-10. But typ
ing.NamedTuple creates a and b class attributes. The c attribute is just a plain class
attribute with the value 'spam’.

The a and b class attributes are descriptors—an advanced feature covered in Chap-
ter 23. For now, think of them as similar to property getters: methods that don’t
require the explicit call operator () to retrieve an instance attribute. In practice, this
means a and b will work as read-only instance attributes—which makes sense when
we recall that DemoNTClass instances are just fancy tuples, and tuples are immutable.

DemoNTClass also gets a custom docstring:

>>> DemoNTClass.__doc__
'DemoNTClass(a, b)'

Let’s inspect an instance of DemoNTClass:

>>> nt = DemoNTClass(8)

>>> nt.a

8

>>> nt.b

1.1

>>> nt.c

'spam’
To construct nt, we need to give at least the a argument to DemoNTClass. The con-
structor also takes a b argument, but it has a default value of 1.1, so it’s optional. The
nt object has the a and b attributes as expected; it doesn’t have a c attribute, but
Python retrieves it from the class, as usual.

If you try to assign values to nt.a, nt.b, nt.c, or even nt.z, youll get Attribute
Error exceptions with subtly different error messages. Try that and reflect on the
messages.

Inspecting a class decorated with dataclass

Now, we'll examine Example 5-12.

Example 5-12. meaning/demo_dc.py: a class decorated with @dataclass

from import dataclass

class DemoDataClass:
a: int
b: float = 1.1
c = 'spam'

o000

Type Hints101 | 177

© o becomes an annotation and also an instance attribute controlled by a
descriptor.

® b is another annotation, and also becomes an instance attribute with a descriptor
and a default value 1.1.

© cisjusta plain old class attribute; no annotation will refer to it.

Now let’s check out __annotations__, _doc__, and the a, b, c attributes on Demo
DataClass:
>>> from import DemoDataClass

>>> DemoDataClass.__annotations__

{'a': <class 'int'>, 'b': <class 'float'>}
>>> DemoDataClass.__doc__
'DemoDataClass(a: int, b: float = 1.1)'
>>> DemoDataClass.a

File "<stdin>", 1line 1, in <module>

AttributeError: type object 'DemoDataClass' has no attribute 'a'

>>> DemoDataClass.b

1.1

>>> DemoDataClass.c

'spam’
The __annotations__and __doc__ are not surprising. However, there is no attribute
named a in DemoDataClass—in contrast with DemoNTClass from Example 5-11,
which has a descriptor to get a from the instances as read-only attributes (that myste-
rious <_collections._tuplegetters>). That’s because the a attribute will only exist
in instances of DemoDataClass. It will be a public attribute that we can get and set,
unless the class is frozen. But b and c exist as class attributes, with b holding the
default value for the b instance attribute, while c is just a class attribute that will not
be bound to the instances.

Now let’s see how a DemoDataClass instance looks:

>>> dc = DemoDataClass(9)
>>> dc.a

9

>>> dc.b

1.1

>>> dc.c

'spam’

Again, a and b are instance attributes, and c is a class attribute we get via the instance.

As mentioned, DemoDataClass instances are mutable—and no type checking is done
at runtime:

178 | Chapter5: Data Class Builders

>>> dc.a 10
>>> dc.b = 'oops'

We can do even sillier assignments:

>>> dc.c = 'whatever'
>>> dc.z = 'secret stash'

Now the dc instance has a c attribute—but that does not change the c class attribute.
And we can add a new z attribute. This is normal Python behavior: regular instances
can have their own attributes that don’t appear in the class.”

More About @dataclass

We've only seen simple examples of @dataclass use so far. The decorator accepts
several keyword arguments. This is its signature:

(*, init=True, repr=True, eq=True, order=False,
unsafe_hash=False, frozen=False)

The * in the first position means the remaining parameters are keyword-only.
Table 5-2 describes them.

Table 5-2. Keyword parameters accepted by the @dataclass decorator

Option Meaning Default Notes
init Generate __init__ True Ignored if __init__isimplemented by
user.
repr Generate __repr__ True Ignored if __repr__ isimplemented by
user.
eq Generate __eq__ True Ignored if __eq__ is implemented by
user.
order Generate __1t__, False If True, raises exceptions if eq=False,
le, gt , or if any of the comparison methods that
__ge__ would be generated are defined or
inherited.
unsafe_hash Generate __hash__ False Complex semantics and several caveats—
see: dataclass documentation.
frozen Make instances False Instances will be reasonably safe from
“immutable” accidental change, but not really
immutable.?

? @dataclass emulates immutability by generating __setattr__and __delattr__, which raise data
class.FrozenInstanceError—a subdass of AttributeError—when the user attempts to set or delete a field.

7 Setting an attribute after __init__ defeats the __dict__ key-sharing memory optimization mentioned in
“Practical Consequences of How dict Works” on page 102.

More About @dataclass | 179

https://fpy.li/5-7

The defaults are really the most useful settings for common use cases. The options
you are more likely to change from the defaults are:

frozen=True
Protects against accidental changes to the class instances.

order=True
Allows sorting of instances of the data class.

Given the dynamic nature of Python objects, it’s not too hard for a nosy programmer
to go around the protection afforded by frozen=True. But the necessary tricks should
be easy to spot in a code review.

If the eq and frozen arguments are both True, @dataclass produces a suitable
__hash__ method, so the instances will be hashable. The generated __hash__ will use
data from all fields that are not individually excluded using a field option we’ll see in
“Field Options” on page 180. If frozen=False (the default), @dataclass will set
__hash__ to None, signalling that the instances are unhashable, therefore overriding
__hash__ from any superclass.

PEP 557—Data Classes has this to say about unsafe_hash:

Although not recommended, you can force Data Classes to create a __hash__ method
with unsafe_hash=True. This might be the case if your class is logically immutable but
can nonetheless be mutated. This is a specialized use case and should be considered
carefully.

I will leave unsafe_hash at that. If you feel you must use that option, check the data
classes.dataclass documentation.

Further customization of the generated data class can be done at a field level.

Field Options

We've already seen the most basic field option: providing (or not) a default value
with the type hint. The instance fields you declare will become parameters in the gen-
erated __init__. Python does not allow parameters without defaults after parameters
with defaults, therefore after you declare a field with a default value, all remaining
fields must also have default values.

Mutable default values are a common source of bugs for beginning Python develop-
ers. In function definitions, a mutable default value is easily corrupted when one
invocation of the function mutates the default, changing the behavior of further invo-
cations—an issue we’ll explore in “Mutable Types as Parameter Defaults: Bad Idea”
on page 214 (Chapter 6). Class attributes are often used as default attribute values for
instances, including in data classes. And @dataclass uses the default values in the

180 | Chapter5: Data Class Builders

https://fpy.li/pep557
https://fpy.li/5-7
https://fpy.li/5-7

type hints to generate parameters with defaults for __init__. To prevent bugs, @data
class rejects the class definition in Example 5-13.

Example 5-13. dataclass/club_wrong.py: this class raises ValueError

class ClubMember:
name: str
guests: list = []

If you load the module with that ClubMember class, this is what you get:

$ python3 club_wrong.py
Traceback (most recent call last):
File "club_wrong.py", line 4, in <module>
class ClubMember:
...several lines omitted...
ValueError: mutable default <class 'list's for field guests is not allowed:
use default_factory

The ValueError message explains the problem and suggests a solution: use
default_factory. Example 5-14 shows how to correct ClubMember.

Example 5-14. dataclass/club.py: this ClubMember definition works

from import dataclass, field

class ClubMember:
name: str
guests: list = field(default_factory=1list)

In the guests field of Example 5-14, instead of a literal list, the default value is set by
calling the dataclasses.field function with default_factory=1list.

The default_factory parameter lets you provide a function, class, or any other call-
able, which will be invoked with zero arguments to build a default value each time an
instance of the data class is created. This way, each instance of ClubMember will have
its own list—instead of all instances sharing the same list from the class, which is
rarely what we want and is often a bug.

It’s good that @dataclass rejects class definitions with a list
default value in a field. However, be aware that it is a partial solu-
tion that only applies to list, dict, and set. Other mutable values

\ used as defaults will not be flagged by @dataclass. It’s up to you to
understand the problem and remember to use a default factory to
set mutable default values.

More About @dataclass | 181

If you browse the dataclasses module documentation, you'll see a 1ist field defined
with a novel syntax, as in Example 5-15.

Example 5-15. dataclass/club_generic.py: this ClubMember definition is more precise

from import dataclass, field

class ClubMember:
name: str
guests: list[str] = field(default_factory=list) (1)

© 1list[str] means “alist of str.”

The new syntax list[str] is a parameterized generic type: since Python 3.9, the list
built-in accepts that bracket notation to specify the type of the list items.

Prior to Python 3.9, the built-in collections did not support generic
type notation. As a temporary workaround, there are correspond-
ing collection types in the typing module. If you need a parameter-

\ ized list type hint in Python 3.8 or earlier, you must import the
List type from typing and use it: List[str]. For more about this
issue, see “Legacy Support and Deprecated Collection Types” on
page 272.

We'll cover generics in Chapter 8. For now, note that Examples 5-14 and 5-15 are
both correct, and the Mypy type checker does not complain about either of those
class definitions.

The difference is that guests: 1ist means that guests can be a list of objects of
any kind, while guests: 1list[str] says that guests must be a 1ist in which every
item is a str. This will allow the type checker to find (some) bugs in code that puts
invalid items in the list, or that read items from it.

The default_factory is likely to be the most common option of the field function,
but there are several others, listed in Table 5-3.

Table 5-3. Keyword arguments accepted by the field function

Option Meaning Default

default Default value for field _MISSING_TYPE?
default_factory 0-parameter function used to produce a default _MISSING_TYPE
init Include field in parameters to __init__ True

repr Include fieldin __repr__ True

182 | Chapter5: Data Class Builders

https://fpy.li/5-9

Option Meaning Default

compare Use field in comparison methods __eq__, True
_ Lt et

hash Include field in __hash__ calculation None®

metadata Mapping with user-defined data; ignored by None
the @dataclass

ddataclass._MISSING_TYPE is a sentinel value indicating the option was not provided. It exists so we can set None
as an actual default value, a common use case.

b The option hash=None means the field will be used in __hash__ only if compare=True.

The default option exists because the field call takes the place of the default value
in the field annotation. If you want to create an athlete field with a default value of
False, and also omit that field from the __repr__ method, you'd write this:

class ClubMember:
name: str
guests: list = fileld(default_factory=1list)
athlete: bool = field(default=False, repr=False)

Post-init Processing

The __init__ method generated by @dataclass only takes the arguments passed and
assigns them—or their default values, if missing—to the instance attributes that are
instance fields. But you may need to do more than that to initialize the instance.
If that’s the case, you can provide a __post_init__ method. When that method
exists, @dataclass will add code to the generated __init__to call __post_init__as
the last step.

Common use cases for __post_init__ are validation and computing field values
based on other fields. We’ll study a simple example that uses __post_init__ for both
of these reasons.

First, let’s look at the expected behavior of a ClubMember subclass named HackerClub
Member, as described by doctests in Example 5-16.

Example 5-16. dataclass/hackerclub.py: doctests for HackerClubMember

*“HackerClubMember ** objects accept an optional ‘handle’" argument::
>>> anna = HackerClubMember('Anna Ravenscroft', handle='AnnaRaven')
>>> anna

HackerClubMember (name='Anna Ravenscroft', guests=[], handle='AnnaRaven')

If ““handle'' is omitted, it's set to the first part of the member's name::

More About @datadlass | 183

>>> leo = HackerClubMember('Leo Rochael')
>>> leo
HackerClubMember (name="'Leo Rochael', guests=[], handle='Leo')

Members must have a unique handle. The following "‘leo2'" will not be created,
because its '‘handle’ " would be 'Leo', which was taken by "‘leo’’::

>>> leo2 = HackerClubMember('Leo DaVinci')
Traceback (most recent call last):

ValueError: handle 'Leo' already exists.
To fix, '‘leo2'’ must be created with an explicit "‘handle’'::

>>> leo2 = HackerClubMember('Leo DaVinci', handle='Neo')
>>> leo2
HackerClubMember (name="'Leo DaVinci', guests=[], handle='Neo')

wn

Note that we must provide handle as a keyword argument, because HackerClubMem
ber inherits name and guests from ClubMember, and adds the handle field. The gen-
erated docstring for HackerClubMember shows the order of the fields in the
constructor call:

>>> HackerClubMember.__doc__
"HackerClubMember(name: str, guests: list = <factory>, handle: str = '')"

Here, <factory> is a short way of saying that some callable will produce the default

value for guests (in our case, the factory is the 1ist class). The point is: to provide a
handle but no guests, we must pass handle as a keyword argument.

The “Inheritance” section of the dataclasses module documentation explains how
the order of the fields is computed when there are several levels of inheritance.

In Chapter 14 we’ll talk about misusing inheritance, particularly
when the superclasses are not abstract. Creating a hierarchy of data
classes is usually a bad idea, but it served us well here to make
Example 5-17 shorter, focusing on the handle field declaration and
__post_1init__ validation.

Example 5-17 shows the implementation.

Example 5-17. dataclass/hackerclub.py: code for Hacker ClubMember

from dataclasses import dataclass
from club import ClubMember

184 | Chapter5: Data Class Builders

https://fpy.li/5-10

class HackerClubMember (ClubMember):
all_handles = set()
handle: str = "'

o000

def _ post_init__ (self):

cls = self.__class__

if self.handle == '':
self.handle = self.name.split()[0]

if self.handle in cls.all_handles: (6]
msg = f'handle {self.handle!r} already exists.'
raise ValueError(msg)

cls.all_handles.add(self.handle) (7]

®0o

HackerClubMember extends ClubMember.
all_handles is a class attribute.

handle is an instance field of type str with an empty string as its default value;
this makes it optional.

Get the class of the instance.
If self.handle is the empty string, set it to the first part of name.

If self.handle is in cls.all_handles, raise ValueError.

(4]
(5]
(6]
© Add the new handle to cls.all_handles.

Example 5-17 works as intended, but is not satisfactory to a static type checker. Next,
we’ll see why, and how to fix it.

Typed Class Attributes

If we type check Example 5-17 with Mypy, we are reprimanded:

$ mypy hackerclub.py

hackerclub.py:37: error: Need type annotation for "all_handles"

(hint: "all_handles: Set[<type>] = ...")

Found 1 error in 1 file (checked 1 source file)
Unfortunately, the hint provided by Mypy (version 0.910 as I review this) is not help-
ful in the context of @dataclass usage. First, it suggests using Set, but I am using
Python 3.9 so I can use set—and avoid importing Set from typing. More impor-
tantly, if we add a type hint like set[..] to all_handles, @dataclass will find that
annotation and make all_handles an instance field. We saw this happening in
“Inspecting a class decorated with dataclass” on page 177.

More About @datadlass | 185

The workaround defined in PEP 526—Syntax for Variable Annotations is ugly. To
code a class variable with a type hint, we need to use a pseudotype named typ
ing.ClassVar, which leverages the generics [] notation to set the type of the variable
and also declare it a class attribute.

To make the type checker and @dataclass happy, this is how we are supposed to
declare all_handles in Example 5-17:

all_handles: ClassVar[set[str]] = set()
That type hint is saying:

all_handles is a class attribute of type set-of-str, with an empty set as its default
value.

To code that annotation, we must import ClassVar from the typing module.

The @dataclass decorator doesn’t care about the types in the annotations, except in
two cases, and this is one of them: if the type is ClassVar, an instance field will not be
generated for that attribute.

The other case where the type of the field is relevant to @dataclass is when declaring
init-only variables, our next topic.

Initialization Variables That Are Not Fields

Sometimes you may need to pass arguments to __init__ that are not instance fields.
Such arguments are called init-only variables by the dataclasses documentation. To
declare an argument like that, the dataclasses module provides the pseudotype Init
Var, which uses the same syntax of typing.ClassVar. The example given in the doc-
umentation is a data class that has a field initialized from a database, and the database
object must be passed to the constructor.

Example 5-18 shows the code that illustrates the “Init-only variables” section.

Example 5-18. Example from the dataclasses module documentation

class C:
i: int
j: int = None
database: InitVar[DatabaseType] = None
def _ post_init__ (self, database):
if self.j is None and database is not None:

self.j = database.lookup('j')

c = C(10, database=my_database)

186 | Chapter5: Data Class Builders

https://fpy.li/5-11
https://fpy.li/initvar
https://fpy.li/initvar
https://fpy.li/initvar

Note how the database attribute is declared. InitVar will prevent @dataclass from
treating database as a regular field. It will not be set as an instance attribute, and the
dataclasses.fields function will not list it. However, database will be one of the
arguments that the generated __init__ will accept, and it will be also passed to
__post_init__. If you write that method, you must add a corresponding argument to
the method signature, as shown in Example 5-18.

This rather long overview of @dataclass covered the most useful features—some of
them appeared in previous sections, like “Main Features” on page 167 where we cov-
ered all three data class builders in parallel. The dataclasses documentation and
PEP 526—Syntax for Variable Annotations have all the details.

In the next section, I present a longer example with @dataclass.

@dataclass Example: Dublin Core Resource Record

Often, classes built with @dataclass will have more fields than the very short exam-
ples presented so far. Dublin Core provides the foundation for a more typical @data
class example.

The Dublin Core Schema is a small set of vocabulary terms that can be used to describe
digital resources (video, images, web pages, etc.), as well as physical resources such as
books or CDs, and objects like artworks.?

—Dublin Core on Wikipedia
The standard defines 15 optional fields; the Resource class in Example 5-19 uses 8 of

them.

Example 5-19. dataclass/resource.py: code for Resource, a class based on Dublin Core
terms

from import dataclass, field
from import Optional

from import Enum, auto

from import date

class ResourceType(Enum): (1)
BOOK = auto()
EBOOK = auto()
VIDEO = auto()

8 Source: Dublin Core article in the English Wikipedia.

More About @dataclass | 187

https://fpy.li/5-13
https://fpy.li/initvar
https://fpy.li/pep526
https://fpy.li/5-12

class Resource:
"""Media resource description.
identifier: str
title: str = '<untitled>'
creators: list[str] = field(default_factory=1list)
date: Optional[date] = None
type: ResourceType = ResourceType.BOOK
description: str = ''
language: str = "'
subjects: list[str] = field(default_factory=1list)

nwun

0 00

This Enum will provide type-safe values for the Resource. type field.
identifier is the only required field.

title is the first field with a default. This forces all fields below to provide
defaults.

O The value of date can be a datetime.date instance, or None.

© The type field default is ResourceType .BOOK.

Example 5-20 shows a doctest to demonstrate how a Resource record appears in
code.

Example 5-20. dataclass/resource.py: code for Resource, a class based on Dublin Core
terms

>>> description = 'Improving the design of existing code'
>>> book = Resource('978-0-13-475759-9', 'Refactoring, 2nd Edition',

['Martin Fowler', 'Kent Beck'], date(2018, 11, 19),

ResourceType.BOOK, description, 'EN',
. ['computer programming', 'OOP'])
>>> book # doctest: +NORMALIZE_WHITESPACE
Resource(identifier='978-0-13-475759-9', title='Refactoring, 2nd Edition',
creators=['Martin Fowler', 'Kent Beck'], date=datetime.date(2018, 11, 19),
type=<ResourceType.BOOK: 1>, description='Improving the design of existing code',
language="EN', subjects=['computer programming', 'OOP'])

The __repr__ generated by @dataclass is OK, but we can make it more readable.
This is the format we want from repr(book):

>>> book # doctest: +NORMALIZE_WHITESPACE
Resource(
identifier = '978-0-13-475759-9',
title = 'Refactoring, 2nd Edition',
creators = ['Martin Fowler', 'Kent Beck'],
date = datetime.date(2018, 11, 19),
type = <ResourceType.BOOK: 1>,

188 | Chapter5: Data Class Builders

description = 'Improving the design of existing code',
language "EN',
subjects = ['computer programming', 'OOP'],

)

Example 5-21 is the code of __repr__ to produce the format shown in the last snip-
pet. This example uses dataclass. fields to get the names of the data class fields.

Example 5-21. dataclass/resource_repr.py: code for __repr__ method
implemented in the Resource class from Example 5-19

def __repr__(self):

cls = self.__class__

cls_name = cls.__name__

indent = ' ' * 4

res = [f'{cls_name}(']

for f in fields(cls):
value = getattr(self, f.name)
res.append(f'{indent}{f.name} = {value!r},")

res.append(')"')
return '\n'.join(res)

©0 0000

O Start the res list to build the output string with the class name and open
parenthesis.

For each field f in the class...
...get the named attribute from the instance.

Append an indented line with the name of the field and repr(value)—that’s
what the !'r does.

© Append closing parenthesis.

O Build a multiline string from res and return it.

With this example inspired by the soul of Dublin, Ohio, we conclude our tour of
Python’s data class builders.

Data classes are handy, but your project may suffer if you overuse them. The next
section explains.

More About @dataclass | 189

Data Class as a Code Smell

Whether you implement a data class by writing all the code yourself or leveraging
one of the class builders described in this chapter, be aware that it may signal a prob-
lem in your design.

In Refactoring: Improving the Design of Existing Code, 2nd ed. (Addison-Wesley),
Martin Fowler and Kent Beck present a catalog of “code smells”—patterns in code
that may indicate the need for refactoring. The entry titled “Data Class” starts like
this:

These are classes that have fields, getting and setting methods for fields, and nothing
else. Such classes are dumb data holders and are often being manipulated in far too
much detail by other classes.

In Fowler’s personal website, there’s an illuminating post titled “Code Smell”. The
post is very relevant to our discussion because he uses data class as one example of a
code smell and suggests how to deal with it. Here is the post, reproduced in full.’

Code Smell

By Martin Fowler

A code smell is a surface indication that usually corresponds to a deeper problem in
the system. The term was first coined by Kent Beck while helping me with my Refac-
toring book.

The quick definition above contains a couple of subtle points. Firstly, a smell is by
definition something that’s quick to spot—or sniffable as I've recently put it. A long
method is a good example of this—just looking at the code and my nose twitches if I
see more than a dozen lines of Java.

The second is that smells don’t always indicate a problem. Some long methods are
just fine. You have to look deeper to see if there is an underlying problem there—
smells aren’t inherently bad on their own—they are often an indicator of a problem
rather than the problem themselves.

The best smells are something that’s easy to spot and most of the time lead you to
really interesting problems. Data classes (classes with all data and no behavior) are
good examples of this. You look at them and ask yourself what behavior should be in
this class. Then you start refactoring to move that behavior in there. Often simple
questions and initial refactorings can be the vital step in turning anemic objects into
something that really has class.

9 I am fortunate to have Martin Fowler as a colleague at Thoughtworks, so it took just 20 minutes to get his
permission.

190 | Chapter5: Data Class Builders

https://martinfowler.com/books/refactoring.html
https://fpy.li/5-14
https://fpy.li/5-15
https://fpy.li/5-15

One of the nice things about smells is that it’s easy for inexperienced people to spot
them, even if they don’t know enough to evaluate if there’s a real problem or to cor-
rect them. I've heard of lead developers who will pick a “smell of the week” and ask
people to look for the smell and bring it up with the senior members of the team.
Doing it one smell at a time is a good way of gradually teaching people on the team to
be better programmers.

The main idea of object-oriented programming is to place behavior and data together
in the same code unit: a class. If a class is widely used but has no significant behavior
of its own, it’s possible that code dealing with its instances is scattered (and even
duplicated) in methods and functions throughout the system—a recipe for mainte-
nance headaches. That’s why Fowler’s refactorings to deal with a data class involve
bringing responsibilities back into it.

Taking that into account, there are a couple of common scenarios where it makes
sense to have a data class with little or no behavior.

Data Class as Scaffolding

In this scenario, the data class is an initial, simplistic implementation of a class to
jump-start a new project or module. With time, the class should get its own methods,
instead of relying on methods of other classes to operate on its instances. Scaffolding
is temporary; eventually your custom class may become fully independent from the
builder you used to start it.

Python is also used for quick problem solving and experimentation, and then it’s OK
to leave the scaffolding in place.

Data Class as Intermediate Representation

A data class can be useful to build records about to be exported to JSON or some
other interchange format, or to hold data that was just imported, crossing some sys-
tem boundary. Python’s data class builders all provide a method or function to con-
vert an instance to a plain dict, and you can always invoke the constructor with a
dict used as keyword arguments expanded with **. Such a dict is very close to a
JSON record.

In this scenario, the data class instances should be handled as immutable objects—
even if the fields are mutable, you should not change them while they are in this
intermediate form. If you do, you’re losing the key benefit of having data and behav-
ior close together. When importing/exporting requires changing values, you should
implement your own builder methods instead of using the given “as dict” methods or
standard constructors.

Data Class asa Code Smell | 191

Now we change the subject to see how to write patterns that match instances of arbi-
trary classes, and not just the sequences and mappings we’ve seen in “Pattern Match-
ing with Sequences” on page 38 and “Pattern Matching with Mappings” on page 81.

Pattern Matching Class Instances

Class patterns are designed to match class instances by type and—optionally—by
attributes. The subject of a class pattern can be any class instance, not only instances
of data classes.'

There are three variations of class patterns: simple, keyword, and positional. We’ll
study them in that order.

Simple Class Patterns

We’ve already seen an example with simple class patterns used as subpatterns in “Pat-
tern Matching with Sequences” on page 38:

case [str(name), _, _, (float(lat), float(lon))]:

That pattern matches a four-item sequence where the first item must be an instance
of str, and the last item must be a 2-tuple with two instances of float.

The syntax for class patterns looks like a constructor invocation. The following is a
class pattern that matches float values without binding a variable (the case body can
refer to x directly if needed):

match x:
case float():
do_something_with(x)

But this is likely to be a bug in your code:

match x:
case float: # DANGER!!!
do_something_with(x)
In the preceding example, case float: matches any subject, because Python sees
float as a variable, which is then bound to the subject.

The simple pattern syntax of float(x) is a special case that applies only to nine
blessed built-in types, listed at the end of the “Class Patterns” section of PEP 634—
Structural Pattern Matching: Specification:

bytes dict float frozenset 1int 1list set str tuple

10 I put this content here because it is the earliest chapter focusing on user-defined classes, and I thought pattern
matching with classes was too important to wait until Part II of the book. My philosophy: it’s more important
to know how to use classes than to define classes.

192 | Chapter5: Data Class Builders

https://fpy.li/5-16
https://fpy.li/pep634
https://fpy.li/pep634

In those classes, the variable that looks like a constructor argument—e.g., the x in
float(x)—is bound to the whole subject instance or the part of the subject that
matches a subpattern, as exemplified by str(name) in the sequence pattern we saw
earlier:

case [str(name), _, _, (float(lat), float(lon))]:

If the class is not one of those nine blessed built-ins, then the argument-like variables
represent patterns to be matched against attributes of an instance of that class.

Keyword Class Patterns

To understand how to use keyword class patterns, consider the following City class
and five instances in Example 5-22.

Example 5-22. City class and a few instances
import

class City(typing.NamedTuple):
continent: str
name: str
country: str

cities = [
City('Asia', 'Tokyo', 'JP'),
City('Asia', 'Delhi', 'IN'),
City('North America', 'Mexico City', 'MX'),
City('North America', 'New York', 'US'),
City('South America', 'Sdo Paulo', 'BR'),

1

Given those definitions, the following function would return a list of Asian cities:

def match_asian_cities():
results = []
for city in cities:
match city:
case City(continent="Asia'):
results.append(city)
return results

The pattern City(continent='Asia') matches any City instance where the conti
nent attribute value is equal to 'Asia’, regardless of the values of the other attributes.

If you want to collect the value of the country attribute, you could write:

def match_asian_countries():
results = []
for city in cities:

Pattern Matching Class Instances | 193

match city:
case City(continent="Asia', country=cc):
results.append(cc)
return results

The pattern City(continent="'Asia', country=cc) matches the same Asian cities as
before, but now the cc variable is bound to the country attribute of the instance. This
also works if the pattern variable is called country as well:

match city:
case City(continent='Asia', country=country):
results.append(country)

Keyword class patterns are very readable, and work with any class that has public
instance attributes, but they are somewhat verbose.

Positional class patterns are more convenient in some cases, but they require explicit
support by the class of the subject, as we’ll see next.

Positional Class Patterns

Given the definitions from Example 5-22, the following function would return a list
of Asian cities, using a positional class pattern:

def match_asian_cities_pos():
results = []
for city in cities:
match city:
case City('Asia'):
results.append(city)
return results

The pattern City('Asia') matches any City instance where the first attribute value
is 'Asia’, regardless of the values of the other attributes.

If you want to collect the value of the country attribute, you could write:

def match_asian_countries_pos():
results = []
for city in cities:
match city:
case City('Asia', _, country):
results.append(country)
return results

The pattern City('Asia', _, country) matches the same cities as before, but now
the country variable is bound to the third attribute of the instance.

I’ve mentioned “first” or “third” attribute, but what does that really mean?

194 | Chapter5: Data Class Builders

What makes City or any class work with positional patterns is the presence of a spe-
cial class attribute named __match_args__, which the class builders in this chapter
automatically create. This is the value of __match_args__ in the City class:

>>> Cilty._ _match_args__

('continent', 'name', 'country')

As you can see, __match_args__ declares the names of the attributes in the order they
will be used in positional patterns.

In “Supporting Positional Pattern Matching” on page 377 we’ll write code to define
__match_args__ for a class we’ll create without the help of a class builder.

You can combine keyword and positional arguments in a pattern.
Some, but not all, of the instance attributes available for matching
may be listed in __match_args__. Therefore, sometimes you may
need to use keyword arguments in addition to positional argu-
ments in a pattern.

Time for a chapter summary.

Chapter Summary

The main topic of this chapter was the data class builders collections.namedtuple,
typing.NamedTuple, and dataclasses.dataclass. We saw that each generates data
classes from descriptions provided as arguments to a factory function, or from class
statements with type hints in the case of the latter two. In particular, both named
tuple variants produce tuple subclasses, adding only the ability to access fields by
name, and providing a _fields class attribute listing the field names as a tuple of
strings.

Next we studied the main features of the three class builders side by side, including
how to extract instance data as a dict, how to get the names and default values of
fields, and how to make a new instance from an existing one.

This prompted our first look into type hints, particularly those used to annotate
attributes in a class statement, using the notation introduced in Python 3.6 with
PEP 526—Syntax for Variable Annotations. Probably the most surprising aspect of
type hints in general is the fact that they have no effect at all at runtime. Python
remains a dynamic language. External tools, like Mypy, are needed to take advantage
of typing information to detect errors via static analysis of the source code. After a
basic overview of the syntax from PEP 526, we studied the effect of annotations in a
plain class and in classes built by typing.NamedTuple and @dataclass.

Chapter Summary | 195

https://fpy.li/pep526

Next, we covered the most commonly used features provided by @dataclass and the
default_factory option of the dataclasses.field function. We also looked into
the special pseudotype hints typing.ClassvVar and dataclasses.InitVar that are
important in the context of data classes. This main topic concluded with an example
based on the Dublin Core Schema, which illustrated how to use dataclasses.fields
to iterate over the attributes of a Resource instance in a custom __repr__.

Then, we warned against possible abuse of data classes defeating a basic principle of
object-oriented programming: data and the functions that touch it should be together
in the same class. Classes with no logic may be a sign of misplaced logic.

In the last section, we saw how pattern matching works with subjects that are instan-
ces of any class—not just classes built with the class builders presented in this
chapter.

Further Reading

Python’s standard documentation for the data class builders we covered is very good,
and has quite a few small examples.

For @dataclass in particular, most of PEP 557—Data Classes was copied into the
dataclasses module documentation. But PEP 557 has a few very informative sec-
tions that were not copied, including “Why not just use namedtuple?”, “Why not just
use typing.NamedTuple?”, and the “Rationale” section, which concludes with this
Q&A:

Where is it not appropriate to use Data Classes?

API compatibility with tuples or dicts is required. Type validation beyond that pro-
vided by PEPs 484 and 526 is required, or value validation or conversion is required.

—Eric V. Smith, PEP 557 “Rationale”

Over at RealPython.com, Geir Arne Hjelle wrote a very complete “Ultimate guide to
data classes in Python 3.7”.

At PyCon US 2018, Raymond Hettinger presented “Dataclasses: The code generator
to end all code generators” (video).

For more features and advanced functionality, including validation, the attrs project
led by Hynek Schlawack appeared years before dataclasses, and offers more fea-
tures, promising to “bring back the joy of writing classes by relieving you from the
drudgery of implementing object protocols (aka dunder methods).” The influence of
attrs on @dataclass is acknowledged by Eric V. Smith in PEP 557. This probably
includes Smith’s most important API decision: the use of a class decorator instead of
a base class and/or a metaclass to do the job.

196 | Chapter5: Data Class Builders

https://fpy.li/pep557
https://fpy.li/5-9
https://fpy.li/pep557
https://fpy.li/5-18
https://fpy.li/5-19
https://fpy.li/5-19
https://fpy.li/5-20
https://fpy.li/5-21
https://fpy.li/5-22
https://fpy.li/5-22
https://fpy.li/5-23
https://fpy.li/5-23
https://fpy.li/5-24

Glyph—founder of the Twisted project—wrote an excellent introduction to attrs in
“The One Python Library Everyone Needs”. The attrs documentation includes a dis-
cussion of alternatives.

Book author, instructor, and mad computer scientist Dave Beazley wrote cluegen, yet
another data class generator. If you’ve seen any of Dave’s talks, you know he is a mas-
ter of metaprogramming Python from first principles. So I found it inspiring to learn
from the cluegen README.md file the concrete use case that motivated him to write
an alternative to Python’s @dataclass, and his philosophy of presenting an approach
to solve the problem, in contrast to providing a tool: the tool may be quicker to use at
first, but the approach is more flexible and can take you as far as you want to go.

Regarding data class as a code smell, the best source I found was Martin Fowler’s
book Refactoring, 2nd ed. This newest version is missing the quote from the epigraph
of this chapter, “Data classes are like children...,” but otherwise it’s the best edition of
Fowler’s most famous book, particularly for Pythonistas because the examples are
in modern JavaScript, which is closer to Python than Java—the language of the first
edition.

The website Refactoring Guru also has a description of the data class code smell.

Soapbox

The entry for “Guido” in “The Jargon File” is about Guido van Rossum. It says,
among other things:

Mythically, Guido’s most important attribute besides Python itself is Guido’s time
machine, a device he is reputed to possess because of the unnerving frequency with
which user requests for new features have been met with the response “I just imple-
mented that last night...”

For the longest time, one of the missing pieces in Python’s syntax has been a quick,
standard way to declare instance attributes in a class. Many object-oriented languages
have that. Here is part of a Point class definition in Smalltalk:

Object subclass: #Point
instanceVariableNames: 'x y'
classVariableNames: "'
package: 'Kernel-BasicObjects'

The second line lists the names of the instance attributes x and y. If there were class
attributes, they would be in the third line.

Python has always offered an easy way to declare class attributes, if they have an ini-
tial value. But instance attributes are much more common, and Python coders have
been forced to look into the __init__ method to find them, always afraid that there
may be instance attributes created elsewhere in the class—or even created by external
functions or methods of other classes.

FurtherReading | 197

https://fpy.li/5-25
https://fpy.li/5-26
https://fpy.li/5-26
https://fpy.li/5-27
https://fpy.li/5-28
https://fpy.li/5-29
https://fpy.li/5-30
https://fpy.li/5-31

Now we have @dataclass, yay!
But they bring their own problems.

First, when you use @dataclass, type hints are not optional. We’ve been promised for
the last seven years, since PEP 484—Type Hints that they would always be optional.
Now we have a major new language feature that requires them. If you don’t like the
whole static typing trend, you may want to use attrs instead.

Second, the PEP 526 syntax for annotating instance and class attributes reverses the
established convention of class statements: everything declared at the top-level of a
class block was a class attribute (methods are class attributes, too). With PEP 526
and @dataclass, any attribute declared at the top level with a type hint becomes an
instance attribute:

class Spam:
repeat: int # instance attribute

Here, repeat is also an instance attribute:

class Spam:
repeat: int = 99 # instance attribute

But if there are no type hints, suddenly you are back in the good old times when dec-
larations at the top level of the class belong to the class only:

class Spam:
repeat = 99 # class attribute!

Finally, if you want to annotate that class attribute with a type, you can’t use regular
types because then it will become an instance attribute. You must resort to that pseu-
dotype ClassVar annotation:

class Spam:
repeat: ClassVar[int] = 99 # aargh!

Here we are talking about the exception to the exception to the rule. This seems
rather unPythonic to me.

I did not take part in the discussions leading to PEP 526 or PEP 557—Data Classes,
but here is an alternative syntax that I'd like to see:

class HackerClubMember:

.name: str (1]
.guests: list = field(default_factory=1list)
.handle: str = "'

all_handles = set() (2]

198 | Chapter5: Data Class Builders

https://fpy.li/pep484
https://fpy.li/5-24
https://fpy.li/pep526
https://fpy.li/pep557

@ Instance attributes must be declared with a . prefix.
® Any attribute name that doesn’t have a . prefix is a class attribute (as they always
have been).

The language grammar would have to change to accept that. I find this quite readable,
and it avoids the exception-to-the-exception issue.

I wish I could borrow Guido’s time machine to go back to 2017 and sell this idea to
the core team.

FurtherReading | 199

CHAPTER 6

Object References, Mutability,
and Recycling

“You are sad,” the Knight said in an anxious tone: “let me sing you a song to comfort
you. [...] The name of the song is called ‘ HADDOCKS’ EYES’.”

“Oh, that’s the name of the song, is it?” Alice said, trying to feel interested.

“No, you don’t understand,” the Knight said, looking a little vexed. “That’s what the
name is CALLED. The name really IS “THE AGED AGED MAN.”

—Adapted from Lewis Carroll, Through the Looking-Glass, and What Alice Found
There

Alice and the Knight set the tone of what we will see in this chapter. The theme is the
distinction between objects and their names. A name is not the object; a name is a
separate thing.

We start the chapter by presenting a metaphor for variables in Python: variables are
labels, not boxes. If reference variables are old news to you, the analogy may still be
handy if you need to explain aliasing issues to others.

We then discuss the concepts of object identity, value, and aliasing. A surprising trait
of tuples is revealed: they are immutable but their values may change. This leads to a
discussion of shallow and deep copies. References and function parameters are our
next theme: the problem with mutable parameter defaults and the safe handling of
mutable arguments passed by clients of our functions.

The last sections of the chapter cover garbage collection, the del command, and a
selection of tricks that Python plays with immutable objects.

This is a rather dry chapter, but its topics lie at the heart of many subtle bugs in real
Python programs.

201

What's New in This Chapter

The topics covered here are very fundamental and stable. There were no changes
worth mentioning in this second edition.

I added an example of using is to test for a sentinel object, and a warning about
misuses of the is operator at the end of “Choosing Between == and is” on page 206.

This chapter used to be in Part IV, but I decided to bring it up earlier because it
works better as an ending to Part II, “Data Structures,” than an opening to “Object-
Oriented Idioms.”

The section on “Weak References” from the first edition of this
book is now a post at fluentpython.com.

Let’s start by unlearning that a variable is like a box where you store data.

Variables Are Not Boxes

In 1997, I took a summer course on Java at MIT. The professor, Lynn Stein,' made
the point that the usual “variables as boxes” metaphor actually hinders the under-
standing of reference variables in object-oriented languages. Python variables are like
reference variables in Java; a better metaphor is to think of variables as labels with
names attached to objects. The next example and figure will help you understand
why.

Example 6-1 is a simple interaction that the “variables as boxes” idea cannot explain.
Figure 6-1 illustrates why the box metaphor is wrong for Python, while sticky notes
provide a helpful picture of how variables actually work.

Example 6-1. Variables a and b hold references to the same list, not copies of the list

>>>a=[1, 2,3 ©
>>> b = a (2]
>>> a.append(4) (3]
>>> b (4]
[1, 2, 3, 4]

1 Lynn Andrea Stein is an award-winning computer science educator who currently teaches at Olin College of
Engineering.

202 | Chapter 6: Object References, Mutability, and Recycling

https://fpy.li/6-1
https://fpy.li/6-1
https://fpy.li/weakref

Createalist [1, 2, 3] and bind the variable a to it.
Bind the variable b to the same value that a is referencing.

Modify the list referenced by a, by appending another item.

© © © ©

You can see the effect via the b variable. If we think of b as a box that stored a
copy of the [1, 2, 3] from the a box, this behavior makes no sense.

[1,2,3]

Figure 6-1. If you imagine variables are like boxes, you can’t make sense of assignment
in Python; instead, think of variables as sticky notes, and Example 6-1 becomes easy to
explain.

Therefore, the b = a statement does not copy the contents of box a into box b. It
attaches the label b to the object that already has the label a.

Prof. Stein also spoke about assignment in a very deliberate way. For example, when
talking about a seesaw object in a simulation, she would say: “Variable s is assigned to
the seesaw,” but never “The seesaw is assigned to variable s.” With reference vari-
ables, it makes much more sense to say that the variable is assigned to an object, and
not the other way around. After all, the object is created before the assignment.
Example 6-2 proves that the righthand side of an assignment happens first.

Since the verb “to assign” is used in contradictory ways, a useful alternative is “to
bind”: Python’s assignment statement x = .. binds the x name to the object created
or referenced on the righthand side. And the object must exist before a name can be
bound to it, as Example 6-2 proves.

Example 6-2. Variables are bound to objects only after the objects are created
>>> class Gizmo:
def __init__(self):
print(f'Gizmo id: {id(self)}')

>>> x = Gizmo()

Variables Are Not Boxes | 203

Gizmo id: 4301489152 @
>>> y = Gizmo() * 10 @
Gizmo id: 4301489432 ©

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for *: 'Gizmo' and 'int'
>>>

>>> dir() @
['Gizmo', '__builtins__', '__doc__', '__loader__', '__name__',
'__package__', '__spec__', 'x']

@ The output Gizmo id: ..isa side effect of creating a Gizmo instance.
©® Multiplying a Gizmo instance will raise an exception.

© Here is proof that a second Gizmo was actually instantiated before the multiplica-
tion was attempted.

O But variable y was never created, because the exception happened while the
righthand side of the assignment was being evaluated.

To understand an assignment in Python, read the righthand side
first: that’s where the object is created or retrieved. After that, the
variable on the left is bound to the object, like a label stuck to it.
Just forget about the boxes.

Because variables are mere labels, nothing prevents an object from having several
labels assigned to it. When that happens, you have aliasing, our next topic.

|dentity, Equality, and Aliases

Lewis Carroll is the pen name of Prof. Charles Lutwidge Dodgson. Mr. Carroll is not
only equal to Prof. Dodgson, they are one and the same. Example 6-3 expresses this
idea in Python.

Example 6-3. charles and lewis refer to the same object

>>> charles = {'name': 'Charles L. Dodgson', 'born': 1832}
>>> lewis = charles ©@

>>> lewis is charles

True

>>> id(charles), id(lewis) (2]

(4300473992, 4300473992)

>>> lewis['balance'] = 950 (3]

204 | Chapter 6: Object References, Mutability, and Recycling

>>> charles
{'name': 'Charles L. Dodgson', 'born': 1832, 'balance': 950}

O lewis is an alias for charles.
© The is operator and the id function confirm it.

©® Adding an item to lewis is the same as adding an item to charles.

However, suppose an impostor—let’s call him Dr. Alexander Pedachenko—claims he
is Charles L. Dodgson, born in 1832. His credentials may be the same, but Dr. Peda-
chenko is not Prof. Dodgson. Figure 6-2 illustrates this scenario.

Figure 6-2. charles and lewis are bound to the same object; alex is bound to a sepa-
rate object of equal value.

Example 6-4 implements and tests the alex object depicted in Figure 6-2.

Example 6-4. alex and charles compare equal, but alex is not charles

>>> alex = {'name': 'Charles L. Dodgson', 'born': 1832, 'balance': 950} (1)
>>> alex == charles

True

>>> alex is not charles ©

True

© alex refers to an object that is a replica of the object assigned to charles.

® The objects compare equal because of the __eq__ implementation in the dict
class.

© But they are distinct objects. This is the Pythonic way of writing the negative
identity comparison: a is not b.

Example 6-3 is an example of aliasing. In that code, lewis and charles are aliases:
two variables bound to the same object. On the other hand, alex is not an alias for

Identity, Equality, and Aliases | 205

char'les: these variables are bound to distinct objects. The objects bound to alex and
charles have the same value—that's what == compares—but they have different
identities.

In The Python Language Reference, “3.1. Objects, values and types” states:

An object’s identity never changes once it has been created; you may think of it as the
object’s address in memory. The is operator compares the identity of two objects; the
1d() function returns an integer representing its identity.

The real meaning of an object’s ID is implementation dependent. In CPython, i1d()
returns the memory address of the object, but it may be something else in another
Python interpreter. The key point is that the ID is guaranteed to be a unique integer
label, and it will never change during the life of the object.

In practice, we rarely use the id() function while programming. Identity checks are
most often done with the is operator, which compares the object IDs, so our code
doesn’t need to call id() explicitly. Next, we’ll talk about is versus ==.

For tech reviewer Leonardo Rochael, the most frequent use for
1d() is while debugging, when the repr() of two objects look alike,
but you need to understand whether two references are aliases or
point to separate objects. If the references are in different contexts
—such as different stack frames—using the is operator may not be
viable.

Choosing Between ==and is

The == operator compares the values of objects (the data they hold), while is com-
pares their identities.

While programming, we often care more about values than object identities, so ==
appears more frequently than is in Python code.

However, if you are comparing a variable to a singleton, then it makes sense to use
is. By far, the most common case is checking whether a variable is bound to None.
This is the recommended way to do it:

x is None
And the proper way to write its negation is:
x is not None

None is the most common singleton we test with is. Sentinel objects are another
example of singletons we test with is. Here is one way to create and test a sentinel
object:

206 | Chapter 6: Object References, Mutability, and Recycling

https://fpy.li/6-2

END_OF_DATA = object()

... many lines
def traverse(...):
... more lines
if node is END_OF_DATA:
return
etc.

The is operator is faster than ==, because it cannot be overloaded, so Python does
not have to find and invoke special methods to evaluate it, and computing is as sim-
ple as comparing two integer IDs. In contrast, a == b is syntactic sugar for
a.__eq__(b). The __eq__ method inherited from object compares object IDs, so it
produces the same result as is. But most built-in types override __eq__ with more
meaningful implementations that actually take into account the values of the object
attributes. Equality may involve a lot of processing—for example, when comparing
large collections or deeply nested structures.

Usually we are more interested in object equality than identity.
Checking for None is the only common use case for the is operator.
Most other uses I see while reviewing code are wrong. If you are
not sure, use ==. It’s usually what you want, and also works with
None—albeit not as fast.

To wrap up this discussion of identity versus equality, we’ll see that the famously
immutable tuple is not as unchanging as you may expect.

The Relative Immutability of Tuples

Tuples, like most Python collections—lists, dicts, sets, etc.—are containers: they hold
references to objects.” If the referenced items are mutable, they may change even if
the tuple itself does not. In other words, the immutability of tuples really refers to the
physical contents of the tuple data structure (i.e., the references it holds), and does
not extend to the referenced objects.

Example 6-5 illustrates the situation in which the value of a tuple changes as a result
of changes to a mutable object referenced in it. What can never change in a tuple is
the identity of the items it contains.

2 In contrast, flat sequences like str, bytes, and array.array don’t contain references but directly hold their
contents—characters, bytes, and numbers—in contiguous memory.

Identity, Equality, and Aliases | 207

Example 6-5. t1 and t2 initially compare equal, but changing a mutable item inside
tuple t1 makes it different

>>> t1 = (1, 2, [30, 40]) @
>>> t2 = (1, 2, [30, 40]) ©
>>> t1 == t2

True

>>> 1d(t1[-1]) @

4302515784

>>> t1[-1].append(99) (5]

>>> t1

(1, 2, [30, 40, 99])

>>> 1d(t1[-1]) O

4302515784

>>> t1 == t2 0

False

t1 is immutable, but t1[-1] is mutable.

Build a tuple t2 whose items are equal to those of t1.

Although distinct objects, t1 and t2 compare equal, as expected.
Inspect the identity of the list at t1[-1].

Modify the t1[-1] list in place.

The identity of t1[-1] has not changed, only its value.

®© © 6 6 o o o

t1 and t2 are now different.

This relative immutability of tuples is behind the riddle “A += Assignment Puzzler”
on page 54. It’s also the reason why some tuples are unhashable, as we’ve seen in

“What Is Hashable” on page 84.

The distinction between equality and identity has further implications when you
need to copy an object. A copy is an equal object with a different ID. But if an object
contains other objects, should the copy also duplicate the inner objects, or is it OK to

share them? There’s no single answer. Read on for a discussion.

Copies Are Shallow by Default

The easiest way to copy a list (or most built-in mutable collections) is to use the built-

in constructor for the type itself. For example:

>>> 11
>>> 12

[3, [55, 441, (7, 8, 9)]
Tist(11)

208 | Chapter 6: Object References, Mutability, and Recycling

>>> 12
[3, [55, 441, (7, 8, 9)]

>>> 12 == 11
True

>>> 12is 11 O
False

O list(1l1) creates a copy of 11.
© The copies are equal...

© ...but refer to two different objects.

For lists and other mutable sequences, the shortcut 12 = 11[:] also makes a copy.

However, using the constructor or [:] produces a shallow copy (i.e., the outermost
container is duplicated, but the copy is filled with references to the same items held
by the original container). This saves memory and causes no problems if all the items
are immutable. But if there are mutable items, this may lead to unpleasant surprises.

In Example 6-6, we create a shallow copy of a list containing another list and a tuple,

and then make changes to see how they affect the referenced objects.

If you have a connected computer on hand, I highly recommend
watching the interactive animation for Example 6-6 at the Online
Python Tutor. As I write this, direct linking to a prepared example
at pythontutor.com is not working reliably, but the tool is awesome,
so taking the time to copy and paste the code is worthwhile.

Example 6-6. Making a shallow copy of a list containing another list; copy and paste
this code to see it animated at the Online Python Tutor

11 = [3, [66, 55, 441, (7, 8, 9)]
12 = list(l1) o
11.append(100) (2]
11[1].remove(55) (3]
print('l1:', 11)

print('l2:', 12)

12[1] += [33, 221 @

12[2] += (10, 11) ©
print('l1:', 11)

print('12:', 12)

@ 12 isa shallow copy of 11. This state is depicted in Figure 6-3.

® Appending 100 to 11 has no effect on 12.

Copies Are Shallow by Default |

209

https://fpy.li/6-3
https://fpy.li/6-3

©® Here we remove 55 from the inner list 11[1]. This affects 12 because 12[1] is
bound to the same list as 11[1].

O For a mutable object like the list referred by 12[1], the operator += changes the
list in place. This change is visible at 11[1], which is an alias for 12[1].

© +=on a tuple creates a new tuple and rebinds the variable 12[2] here. This is the
same as doing 12[2] = 12[2] + (10, 11). Now the tuples in the last position of
11 and 12 are no longer the same object. See Figure 6-4.

Frames Objects
Global frame list list
’/——'—‘—-—~—§.U 1 2 0 1 2
L 3 66 | 55 | 44

12

e
Ry 8 /Qg
list
0o |1 ‘

3

Figure 6-3. Program state immediately after the assignment 12 = list(l1) in
Example 6-6. 11 and 12 refer to distinct lists, but the lists share references to the same
inner list object [66, 55, 44] and tuple (7, 8, 9). (Diagram generated by the
Online Python Tutor.)

The output of Example 6-6 is Example 6-7, and the final state of the objects is depic-
ted in Figure 6-4.

Example 6-7. Output of Example 6-6

11: [3, [66, 44], (7, 8, 9), 100]

12: [3, [66, 441, (7, 8, 9)]

11: [3, [66, 44, 33, 221, (7, 8, 9), 100]
12: [3, [66, 44, 33, 221, (7, 8, 9, 10, 11)]

210 | Chapter 6: Object References, Mutability, and Recycling

Frames Objects
Global frame list list
’/»—m___,.c 1 (2 |3 0 1 2 3
11 3 100 66 | 44 | 33 | 22
12
twe/
ML‘ 1 2
71819
list tuple
0o |1 /2 o |1 |2 |3 4
3 '/)7 718 9|10 | 11

Figure 6-4. Final state of 11 and 12: they still share references to the same list object,
now containing [66, 44, 33, 22], but the operation 12[2] += (10, 11) created a
new tuple with content (7, 8, 9, 10, 11), unrelated to the tuple (7, 8, 9) refer-
enced by 11[2]. (Diagram generated by the Online Python Tutor.)

It should be clear now that shallow copies are easy to make, but they may or may not
be what you want. How to make deep copies is our next topic.

Deep and Shallow Copies of Arbitrary Objects

Working with shallow copies is not always a problem, but sometimes you need to
make deep copies (i.e., duplicates that do not share references of embedded objects).
The copy module provides the deepcopy and copy functions that return deep and
shallow copies of arbitrary objects.

To illustrate the use of copy() and deepcopy(), Example 6-8 defines a simple class,
Bus, representing a school bus that is loaded with passengers and then picks up or
drops off passengers on its route.

Example 6-8. Bus picks up and drops off passengers
class Bus:

def __init__(self, passengers=None):
if passengers is None:
self.passengers = []
else:
self.passengers = list(passengers)

def pick(self, name):
self.passengers.append(name)

Copies Are Shallow by Default | 211

def drop(self, name):
self.passengers.remove(name)

Now, in the interactive Example 6-9, we will create a bus object (bus1) and two
clones—a shallow copy (bus2) and a deep copy (bus3)—to observe what happens as
bus1 drops off a student.

Example 6-9. Effects of using copy versus deepcopy

>>> import

>>> busl = Bus(['Alice', 'Bill', 'Claire', 'David'])
>>> bus2 = copy.copy(bus1)

>>> bus3 = copy.deepcopy(bus1)

>>> 1d(bus1), id(bus2), id(bus3)

(4301498296, 4301499416, 4301499752) (1]

>>> busi.drop('Bill')

>>> bus2.passengers

['Alice', 'Claire', 'David'] (2]

>>> 1d(bus1.passengers), id(bus2.passengers), id(bus3.passengers)
(4302658568, 4302658568, 4302657800)

>>> bus3.passengers

['Alice', 'Bill', 'Claire', 'David'] (4]

© Using copy and deepcopy, we create three distinct Bus instances.
® After bus1 drops 'Bill’, he is also missing from busz2.

© Inspection of the passengers attributes shows that bus1 and bus2 share the same
list object, because bus2 is a shallow copy of bus1.

O bus3isadeep copy of busi, so its passengers attribute refers to another list.

Note that making deep copies is not a simple matter in the general case. Objects may
have cyclic references that would cause a naive algorithm to enter an infinite loop.
The deepcopy function remembers the objects already copied to handle cyclic refer-
ences gracefully. This is demonstrated in Example 6-10.

Example 6-10. Cyclic references: b refers to a, and then is appended to a; deepcopy still

manages to copy a
>>> a = [10, 20]
= [a, 30]
.append(b)

>>>
>>>

Vv v O o

>>>
[10, 20, [[...], 30]]
>>> from import deepcopy

212 | Chapter 6: Object References, Mutability, and Recycling

>>> c = deepcopy(a)
>>> C
[10, 20, [[...], 30]]

Also, a deep copy may be too deep in some cases. For example, objects may refer
to external resources or singletons that should not be copied. You can control the
behavior of both copy and deepcopy by implementing the __copy__() and
__deepcopy__() special methods, as described in the copy module documentation.

The sharing of objects through aliases also explains how parameter passing works in
Python, and the problem of using mutable types as parameter defaults. These issues
will be covered next.

Function Parameters as References

The only mode of parameter passing in Python is call by sharing. That is the same
mode used in most object-oriented languages, including JavaScript, Ruby, and Java
(this applies to Java reference types; primitive types use call by value). Call by sharing
means that each formal parameter of the function gets a copy of each reference in the
arguments. In other words, the parameters inside the function become aliases of the
actual arguments.

The result of this scheme is that a function may change any mutable object passed as
a parameter, but it cannot change the identity of those objects (i.e., it cannot alto-
gether replace an object with another). Example 6-11 shows a simple function using
+= on one of its parameters. As we pass numbers, lists, and tuples to the function, the
actual arguments passed are affected in different ways.

Example 6-11. A function may change any mutable object it receives

>>> def f(a, b):

a+=b
return a

>>> x = 1

>>> y = 2

>>> f(x, y)

3

>5> X, y (1]

(1, 2)

>>> 3 = [1, 2]

>>> b = [3, 4]

>>> f(a, b)

[1, 2, 3, 4]

>>> a, b

([1, 2, 3, 41, [3, 4D
>>> t = (10, 20)

Function Parameters as References | 213

https://fpy.li/6-4

>>> u = (30, 40)

>>> f(t, u) ©
(10, 20, 30, 40)

>>> t, u

((10, 20), (30, 40))

© The number x is unchanged.
©® The list a is changed.

© The tuple t is unchanged.

Another issue related to function parameters is the use of mutable values for defaults,
as discussed next.

Mutable Types as Parameter Defaults: Bad Idea

Optional parameters with default values are a great feature of Python function defini-
tions, allowing our APIs to evolve while remaining backward compatible. However,
you should avoid mutable objects as default values for parameters.

To illustrate this point, in Example 6-12, we take the Bus class from Example 6-8 and
change its __init__ method to create HauntedBus. Here we tried to be clever, and
instead of having a default value of passengers=None, we have passengers=[], thus
avoiding the if in the previous __init__. This “cleverness” gets us into trouble.

Example 6-12. A simple class to illustrate the danger of a mutable default

class HauntedBus:
"""A bus model haunted by ghost passengers

mwnn

def __init__(self, passengers=[]): (1)
self.passengers = passengers

def pick(self, name):
self.passengers.append(name) (3]

def drop(self, name):
self.passengers.remove(name)

© When the passengers argument is not passed, this parameter is bound to the
default list object, which is initially empty.

® This assignment makes self.passengers an alias for passengers, which is itself
an alias for the default list, when no passengers argument is given.

214 | Chapter 6: Object References, Mutability, and Recycling

©® When the methods .remove() and .append() are used with self.passengers,
we are actually mutating the default list, which is an attribute of the function
object.

Example 6-13 shows the eerie behavior of the HauntedBus.

Example 6-13. Buses haunted by ghost passengers

>>> busl = HauntedBus(['Alice', 'Bill']) (1]
>>> busl.passengers
['Alice', 'Bill']

>>> busi1.pick('Charlie')
>>> busi.drop('Alice")

>>> busl.passengers
['Bill', 'Charlie']

>>> bus2 = HauntedBus() (3]
>>> bus2.pick('Carrie')

>>> bus2.passengers
['Carrie']

>>> bus3 = HauntedBus() (4]
>>> bus3.passengers
['Carrie']

>>> bus3.pick('Dave')

>>> bus2.passengers
['Carrie', 'Dave']

>>> bus2.passengers is bus3.passengers (7]
True

>>> busl.passengers (8
['Bill', 'Charlie']

© bus1 starts with a two-passenger list.

So far, so good: no surprises with bus1.

bus2 starts empty, so the default empty list is assigned to self.passengers.
bus3 also starts empty, again the default list is assigned.

The default is no longer empty!

Now Dave, picked by bus3, appears in bus2.

The problem: bus2.passengers and bus3. passengers refer to the same list.

© ©¢ © 6 6 o6 ©

But bus1.passengers is a distinct list.

Function Parameters as References | 215

The problem is that HauntedBus instances that don’t get an initial passenger list end
up sharing the same passenger list among themselves.

Such bugs may be subtle. As Example 6-13 demonstrates, when a HauntedBus is
instantiated with passengers, it works as expected. Strange things happen only when a
HauntedBus starts empty, because then self.passengers becomes an alias for the
default value of the passengers parameter. The problem is that each default value is
evaluated when the function is defined—i.e., usually when the module is loaded—and
the default values become attributes of the function object. So if a default value is
a mutable object, and you change it, the change will affect every future call of the
function.

After running the lines in Example 6-13, you can inspect the HauntedBus.__init__
object and see the ghost students haunting its __defaults__ attribute:

>>> dir(HauntedBus.__1init__) # doctest: +ELLIPSIS
['__annotations__', '__call__', ..., '__defaults__', ...]
>>> HauntedBus.__init__.__defaults__

(['Carrie', 'Dave'l,)

Finally, we can verify that bus2.passengers is an alias bound to the first element of
the HauntedBus. _init__.__defaults__ attribute:

>>> HauntedBus.__1init defaults__[0] is bus2.passengers

True

The issue with mutable defaults explains why None is commonly used as the default
value for parameters that may receive mutable values. In Example 6-8, __init__
checks whether the passengers argument is None. If it is, self.passengers is bound
to a new empty list. If passengers is not None, the correct implementation binds a
copy of that argument to self.passengers. The next section explains why copying
the argument is a good practice.

Defensive Programming with Mutable Parameters

When you are coding a function that receives a mutable parameter, you should care-
fully consider whether the caller expects the argument passed to be changed.

For example, if your function receives a dict and needs to modify it while processing
it, should this side effect be visible outside of the function or not? Actually it depends
on the context. It’s really a matter of aligning the expectation of the coder of the func-
tion and that of the caller.

The last bus example in this chapter shows how a TwilightBus breaks expectations
by sharing its passenger list with its clients. Before studying the implementation, see
in Example 6-14 how the TwilightBus class works from the perspective of a client of
the class.

216 | Chapter 6: Object References, Mutability, and Recycling

Example 6-14. Passengers disappear when dropped by a TwilightBus

>>> basketball_team = ['Sue', 'Tina', 'Maya', 'Diana', 'Pat'] (1)
>>> bus = TwilightBus(basketball_team) (2]

>>> bus.drop('Tina')

>>> bus.drop('Pat')

>>> basketball_team (4]

['Sue', 'Maya', 'Diana']

© basketball_team holds five student names.
® A TwilightBus is loaded with the team.
© The bus drops one student, then another.

O The dropped passengers vanished from the basketball team!

TwilightBus violates the “Principle of least astonishment,” a best practice of interface
design.’ It surely is astonishing that when the bus drops a student, their name is
removed from the basketball team roster.

Example 6-15 is the implementation TwilightBus and an explanation of the
problem.

Example 6-15. A simple class to show the perils of mutating received arguments

class TwilightBus:
"""A bus model that makes passengers vanish"""

def __init__(self, passengers=None):
if passengers is None:
self.passengers = [] (1)
else:
self.passengers = passengers (2]

def pick(self, name):
self.passengers.append(name)

def drop(self, name):
self.passengers.remove(name) (3]

3 See Principle of least astonishment in the English Wikipedia.

Function Parameters as References | 217

https://fpy.li/6-5

© Here we are careful to create a new empty list when passengers is None.

® However, this assignment makes self.passengers an alias for passengers,
which is itself an alias for the actual argument passed to __init__ (i.e., basket
ball_team in Example 6-14).

©® When the methods .remove() and .append() are used with self.passengers,
we are actually mutating the original list received as an argument to the con-
structor.

The problem here is that the bus is aliasing the list that is passed to the constructor.
Instead, it should keep its own passenger list. The fix is simple: in __init__, when the
passengers parameter is provided, self.passengers should be initialized with a
copy of it, as we did correctly in Example 6-8:

def __init__(self, passengers=None):
if passengers is None:
self.passengers = []
else:
self.passengers = list(passengers) (1)

© Make a copy of the passengers list, or convert it to a list if it’s not one.

Now our internal handling of the passenger list will not affect the argument used to
initialize the bus. As a bonus, this solution is more flexible: now the argument passed
to the passengers parameter may be a tuple or any other iterable, like a set or even
database results, because the list constructor accepts any iterable. As we create our
own list to manage, we ensure that it supports the necessary .remove()
and .append() operations we use in the .pick() and .drop() methods.

Unless a method is explicitly intended to mutate an object received
as an argument, you should think twice before aliasing the argu-
ment object by simply assigning it to an instance variable in your
class. If in doubt, make a copy. Your clients will be happier. Of
course, making a copy is not free: there is a cost in CPU and mem-
ory. However, an API that causes subtle bugs is usually a bigger
problem than one that is a little slower or uses more resources.

Now let’s talk about one of the most misunderstood of Python’s statements: del.

218 | Chapter 6: Object References, Mutability, and Recycling

del and Garbage Collection

Objects are never explicitly destroyed; however, when they become unreachable they
may be garbage-collected.

—“Data Model” chapter of The Python Language Reference

The first strange fact about del is that it’s not a function, it’s a statement. We write
del x and not del(x)—although the latter also works, but only because the expres-
sions x and (x) usually mean the same thing in Python.

The second surprising fact is that del deletes references, not objects. Python’s
garbage collector may discard an object from memory as an indirect result of del, if
the deleted variable was the last reference to the object. Rebinding a variable may also
cause the number of references to an object to reach zero, causing its destruction.

>>>a=[1, 2] ©@

>>> b = a (2]
>>> del a (3]
>>> b (4]
[1, 2]

>>> b = [3] (5]

Create object [1, 2] and bind a to it.
Bind b to the same [1, 2] object.
Delete reference a.

[1, 2] was not affected, because b still points to it.

® 6 o o o

Rebinding b to a different object removes the last remaining reference to [1, 2].
Now the garbage collector can discard that object.

There is a __del__ special method, but it does not cause the dis-
posal of the instance, and should not be called by your code.
__del__ is invoked by the Python interpreter when the instance is

. about to be destroyed to give it a chance to release external
resources. You will seldom need to implement __del__ in your
own code, yet some Python programmers spend time coding it for
no good reason. The proper use of __del__ is rather tricky. See the
__del__ special method documentation in the “Data Model” chap-
ter of The Python Language Reference.

In CPython, the primary algorithm for garbage collection is reference counting.
Essentially, each object keeps count of how many references point to it. As soon as

del and Garbage Collection | 219

https://fpy.li/6-6

that refcount reaches zero, the object is immediately destroyed: CPython calls the
__del__ method on the object (if defined) and then frees the memory allocated to the
object. In CPython 2.0, a generational garbage collection algorithm was added to
detect groups of objects involved in reference cycles—which may be unreachable
even with outstanding references to them, when all the mutual references are con-
tained within the group. Other implementations of Python have more sophisticated
garbage collectors that do not rely on reference counting, which means the __del__
method may not be called immediately when there are no more references to the
object. See “PyPy, Garbage Collection, and a Deadlock” by A. Jesse Jiryu Davis for
discussion of improper and proper use of __del__.

To demonstrate the end of an object’s life, Example 6-16 uses weakref.finalize to
register a callback function to be called when an object is destroyed.

Example 6-16. Watching the end of an object when no more references point to it

>>> import
>>> s1 = {1, 2, 3}
>>> s2 = sl
>>> def bye(): (2]
print('...like tears in the rain.')

>>> ender = weakref.finalize(s1, bye) (3]
>>> ender.alive

True

>>> del si

>>> ender.alive ©

True

>>> s2 = 'spam' (6]

...like tears in the rain.

>>> ender.alive

False

© siand s2 are aliases referring to the same set, {1, 2, 3}.

® This function must not be a bound method of the object about to be destroyed or
otherwise hold a reference to it.

Register the bye callback on the object referred by s1.
The .alive attribute is True before the finalize object is called.

As discussed, del did not delete the object, just the s1 reference to it.

© 6 6 o

Rebinding the last reference, s2, makes {1, 2, 3} unreachable. It is destroyed,
the bye callback is invoked, and ender.alive becomes False.

220 | Chapter 6: Object References, Mutability, and Recycling

https://fpy.li/6-7

The point of Example 6-16 is to make explicit that del does not delete objects, but
objects may be deleted as a consequence of being unreachable after del is used.

You may be wondering why the {1, 2, 3} object was destroyed in Example 6-16.
After all, the s1 reference was passed to the finalize function, which must have held
on to it in order to monitor the object and invoke the callback. This works because
finalize holds a weak reference to {1, 2, 3}. Weak references to an object do not
increase its reference count. Therefore, a weak reference does not prevent the target
object from being garbage collected. Weak references are useful in caching applica-
tions because you don’t want the cached objects to be kept alive just because they are
referenced by the cache.

Weak references is a very specialized topic. That's why I chose to
skip it in this second edition. Instead, I published “Weak Refer-
ences” on fluentpython.com.

Tricks Python Plays with Immutables

This optional section discusses some Python details that are not
really important for users of Python, and that may not apply to
other Python implementations or even future versions of CPython.
Nevertheless, I've seen people stumble upon these corner cases and
then start using the is operator incorrectly, so I felt they were
worth mentioning.

I was surprised to learn that, for a tuple t, t[:] does not make a copy, but returns a
reference to the same object. You also get a reference to the same tuple if you write
tuple(t).* Example 6-17 proves it.

Example 6-17. A tuple built from another is actually the same exact tuple

>>> t1 = (1, 2, 3)
>>> t2 = tuple(tl)
>>> t2 is t1

True

>>> t3 = t1[:]
>>> t3 is t1

True

4 This is clearly documented. Type help(tuple) in the Python console to read: “If the argument is a tuple, the
return value is the same object.” I thought I knew everything about tuples before writing this book.

Tricks Python Plays with Immutables | 221

https://fpy.li/weakref
https://fpy.li/weakref

© t1and t2 are bound to the same object.

® Andsois t3.

The same behavior can be observed with instances of str, bytes, and frozenset.
Note that a frozenset is not a sequence, so fs[:] does not work if fs is a frozenset.
But fs.copy() has the same effect: it cheats and returns a reference to the same
object, and not a copy at all, as Example 6-18 shows.’

Example 6-18. String literals may create shared objects

>>> t1 = (1, 2, 3)

>>> t3 = (1, 2, 3) @
>>> t3 is t1

False

>>> s1 = 'ABC'

>>> s2 = 'ABC' ©

>>> s2 is s1 @

True

O Creating a new tuple from scratch.
® t1and t3 are equal, but not the same object.
©® Creating a second str from scratch.

O Surprise: a and b refer to the same str!

The sharing of string literals is an optimization technique called interning. CPython
uses a similar technique with small integers to avoid unnecessary duplication of num-
bers that appear frequently in programs like 0, 1, -1, etc. Note that CPython does not
intern all strings or integers, and the criteria it uses to do so is an undocumented
implementation detail.

Never depend on str or int interning! Always use == instead of is
to compare strings or integers for equality. Interning is an optimi-
zation for internal use of the Python interpreter.

N

5 The harmless lie of having the copy method not copying anything is justified by interface compatibility: it
makes frozenset more compatible with set. Anyway, it makes no difference to the end user whether two
identical immutable objects are the same or are copies.

222 | Chapter 6: Object References, Mutability, and Recycling

The tricks discussed in this section, including the behavior of frozenset.copy(),
are harmless “lies” that save memory and make the interpreter faster. Do not worry
about them, they should not give you any trouble because they only apply to immuta-
ble types. Probably the best use of these bits of trivia is to win bets with fellow
Pythonistas.®

Chapter Summary

Every Python object has an identity, a type, and a value. Only the value of an object
may change over time.’

If two variables refer to immutable objects that have equal values (a == b is True), in
practice it rarely matters if they refer to copies or are aliases referring to the same
object, because the value of an immutable object does not change, with one excep-
tion. The exception being immutable collections such as tuples: if an immutable col-
lection holds references to mutable items, then its value may actually change when
the value of a mutable item changes. In practice, this scenario is not so common.
What never changes in an immutable collection are the identities of the objects
within. The frozenset class does not suffer from this problem because it can only
hold hashable elements, and the value of hashable objects cannot ever change, by
definition.

The fact that variables hold references has many practical consequences in Python
programming;:

« Simple assignment does not create copies.

+ Augmented assignment with += or *= creates new objects if the lefthand variable
is bound to an immutable object, but may modify a mutable object in place.

« Assigning a new value to an existing variable does not change the object previ-
ously bound to it. This is called a rebinding: the variable is now bound to a differ-
ent object. If that variable was the last reference to the previous object, that object
will be garbage collected.

6 A terrible use for this information would be to ask about it when interviewing candidates or authoring ques-
tions for “certification” exams. There are countless more important and useful facts to check for Python
knowledge.

7 Actually the type of an object may be changed by merely assigning a different class to its __class__ attribute,
but that is pure evil and I regret writing this footnote.

Chapter Summary | 223

 Function parameters are passed as aliases, which means the function may change
any mutable object received as an argument. There is no way to prevent this,
except making local copies or using immutable objects (e.g., passing a tuple
instead of a list).

« Using mutable objects as default values for function parameters is dangerous
because if the parameters are changed in place, then the default is changed,
affecting every future call that relies on the default.

In CPython, objects are discarded as soon as the number of references to them rea-
ches zero. They may also be discarded if they form groups with cyclic references but
not outside references.

In some situations, it may be useful to hold a reference to an object that will not—by
itself—keep an object alive. One example is a class that wants to keep track of all its
current instances. This can be done with weak references, a low-level mechanism
underlying the more useful collections WeakValueDictionary, WeakKeyDictionary,
WeakSet, and the finalize function from the weakref module. For more on this,
please see “Weak References” at fluentpython.com.

Further Reading

The “Data Model” chapter of The Python Language Reference starts with a clear
explanation of object identities and values.

Wesley Chun, author of the Core Python series of books, presented Understanding
Python’s Memory Model, Mutability, and Methods at EuroPython 2011, covering not
only the theme of this chapter but also the use of special methods.

Doug Hellmann wrote the posts “copy — Duplicate Objects” and “weakref—Garbage-
Collectable References to Objects” covering some of the topics we just discussed.

More information on the CPython generational garbage collector can be found in the
gc module documentation, which starts with the sentence “This module provides an
interface to the optional garbage collector.” The “optional” qualifier here may be sur-
prising, but the “Data Model” chapter also states:

An implementation is allowed to postpone garbage collection or omit it altogether—it
is a matter of implementation quality how garbage collection is implemented, as long
as no objects are collected that are still reachable.

224 | Chapter 6: Object References, Mutability, and Recycling

https://fpy.li/weakref
https://fpy.li/dtmodel
https://fpy.li/6-8
https://fpy.li/6-8
https://fpy.li/6-9
https://fpy.li/6-10
https://fpy.li/6-10
https://fpy.li/6-11
https://fpy.li/dtmodel

Pablo Galindo wrote more in-depth treatment of Python’s GC in “Design of CPy-
thon’s Garbage Collector” in the Python Developer’s Guide, aimed at new and experi-
enced contributors to the CPython implementation.

The CPython 3.4 garbage collector improved handling of objects with a __del__
method, as described in PEP 442—Safe object finalization.

Wikipedia has an article about string interning, mentioning the use of this technique
in several languages, including Python.

Wikipedia also as an article on “Haddocks’ Eyes”, the Lewis Carroll song I quoted at
the top of this chapter. The Wikipedia editors wrote that the lyrics are used in works
on logic and philosophy “to elaborate on the symbolic status of the concept of name:
a name as identification marker may be assigned to anything, including another
name, thus introducing different levels of symbolization.”

Soapbox

Equal Treatment to All Objects

I learned Java before I discovered Python. The == operator in Java never felt right to
me. It is much more common for programmers to care about equality than identity,
but for objects (not primitive types), the Java == compares references, and not object
values. Even for something as basic as comparing strings, Java forces you to use
the .equals method. Even then, there is another catch: if you write a.equals(b) and
a is null, you get a null pointer exception. The Java designers felt the need to over-
load + for strings, so why not go ahead and overload == as well?

Python gets this right. The == operator compares object values; is compares refer-
ences. And because Python has operator overloading, == works sensibly with all
objects in the standard library, including None, which is a proper object, unlike Java’s
null.

And of course, you can define __eq__ in your own classes to decide what == means
for your instances. If you don’t override __eq__, the method inherited from object
compares object IDs, so the fallback is that every instance of a user-defined class is
considered different.

These are some of the things that made me switch from Java to Python as soon as I
finished reading The Python Tutorial one afternoon in September 1998.

Mutability

This chapter would not be necessary if all Python objects were immutable. When you
are dealing with unchanging objects, it makes no difference whether variables hold
the actual objects or references to shared objects. If a == b is true, and neither object

FurtherReading | 225

https://fpy.li/6-12
https://fpy.li/6-12
https://fpy.li/6-13
https://fpy.li/6-14
https://fpy.li/6-15
https://fpy.li/6-16

can change, they might as well be the same. That’s why string interning is safe. Object
identity becomes important only when objects are mutable.

In “pure” functional programming, all data is immutable: appending to a collection
actually creates a new collection. Elixir is one easy to learn, practical functional lan-
guage in which all built-in types are immutable, including lists.

Python, however, is not a functional language, much less a pure one. Instances of
user-defined classes are mutable by default in Python—as in most object-oriented
languages. When creating your own objects, you have to be extra careful to make
them immutable, if that is a requirement. Every attribute of the object must also be
immutable, otherwise you end up with something like the tuple: immutable as far as
object IDs go, but the value of a tuple may change if it holds a mutable object.

Mutable objects are also the main reason why programming with threads is so hard
to get right: threads mutating objects without proper synchronization produce cor-
rupted data. Excessive synchronization, on the other hand, causes deadlocks. The
Erlang language and platform—which includes Elixir—was designed to maximize
uptime in highly concurrent, distributed applications such as telecommunications
switches. Naturally, they chose immutable data by default.

Object Destruction and Garbage Collection

There is no mechanism in Python to directly destroy an object, and this omission is
actually a great feature: if you could destroy an object at any time, what would hap-
pen to existing references pointing to it?

Garbage collection in CPython is done primarily by reference counting, which is easy
to implement, but is prone to memory leaking when there are reference cycles, so
with version 2.0 (October 2000) a generational garbage collector was implemented,
and it is able to dispose of unreachable objects kept alive by reference cycles.

But the reference counting is still there as a baseline, and it causes the immediate dis-
posal of objects with zero references. This means that, in CPython—at least for now
—it’s safe to write this:

open('test.txt', 'wt', encoding='utf-8"').write('1, 2, 3'")

That code is safe because the reference count of the file object will be zero after the
write method returns, and Python will immediately close the file before destroying
the object representing it in memory. However, the same line is not safe in Jython or
IronPython that use the garbage collector of their host runtimes (the Java VM and
the NET CLR), which are more sophisticated but do not rely on reference counting
and may take longer to destroy the object and close the file. In all cases, including
CPython, the best practice is to explicitly close the file, and the most reliable way of
doing it is using the with statement, which guarantees that the file will be closed even
if exceptions are raised while it is open. Using with, the previous snippet becomes:

226 | Chapter 6: Object References, Mutability, and Recycling

with open('test.txt', 'wt', encoding='utf-8') as fp:
fp.write('1, 2, 3")
If you are into the subject of garbage collectors, you may want to read Thomas Perl’s
paper “Python Garbage Collector Implementations: CPython, PyPy and Ga$S”, from
which I learned the bit about the safety of the open() .write() in CPython.

Parameter Passing: Call by Sharing

A popular way of explaining how parameter passing works in Python is the phrase:
“Parameters are passed by value, but the values are references.” This is not wrong, but
causes confusion because the most common parameter passing modes in older lan-
guages are call by value (the function gets a copy of the argument) and call by refer-
ence (the function gets a pointer to the argument). In Python, the function gets a copy
of the arguments, but the arguments are always references. So the value of the refer-
enced objects may be changed, if they are mutable, but their identity cannot. Also,
because the function gets a copy of the reference in an argument, rebinding it in the
function body has no effect outside of the function. I adopted the term call by sharing
after reading up on the subject in Programming Language Pragmatics, 3rd ed., by
Michael L. Scott (Morgan Kaufmann), section “8.3.1: Parameter Modes.”

FurtherReading | 227

https://fpy.li/6-17

PART II

Functions as Objects

CHAPTER 7
Functions as First-Class Objects

I have never considered Python to be heavily influenced by functional languages, no
matter what people say or think. I was much more familiar with imperative languages
such as C and Algol 68 and although I had made functions first-class objects, I didn’t
view Python as a functional programming language.

— Guido van Rossum, Python BDFL!

Functions in Python are first-class objects. Programming language researchers define
a “first-class object” as a program entity that can be:

+ Created at runtime
« Assigned to a variable or element in a data structure
o Passed as an argument to a function

o Returned as the result of a function

Integers, strings, and dictionaries are other examples of first-class objects in Python
—nothing fancy here. Having functions as first-class objects is an essential feature of
functional languages, such as Clojure, Elixir, and Haskell. However, first-class func-
tions are so useful that they’ve been adopted by popular languages like JavaScript, Go,
and Java (since JDK 8), none of which claim to be “functional languages.”

This chapter and most of Part IIT explore the practical applications of treating func-
tions as objects.

1 “Origins of Python’s ‘Functional’ Features”, from Guido’s The History of Python blog.

231

https://fpy.li/7-1

The term “first-class functions” is widely used as shorthand for
“functions as first-class objects.” It’s not ideal because it implies an
“elite” among functions. In Python, all functions are first-class.

What's New in This Chapter

The section “The Nine Flavors of Callable Objects” on page 237 was titled “The Seven
Flavors of Callable Objects” in the first edition of this book. The new callables are
native coroutines and asynchronous generators, introduced in Python 3.5 and 3.6,
respectively. Both are covered in Chapter 21, but they are mentioned here along with
the other callables for completeness.

“Positional-Only Parameters” on page 242 is a new section, covering a feature added
in Python 3.8.

I moved the discussion of runtime access to function annotations to “Reading Type
Hints at Runtime” on page 537. When I wrote the first edition, PEP 484—Type Hints
was still under consideration, and people used annotations in different ways. Since
Python 3.5, annotations should conform to PEP 484. Therefore, the best place to
cover them is when discussing type hints.

The first edition of this book had sections about the introspection
of function objects that were too low-level and distracted from the
main subject of this chapter. I merged those sections into a post
titled “Introspection of Function Parameters” at fluentpython.com.

Now let’s see why Python functions are full-fledged objects.

Treating a Function Like an Object

The console session in Example 7-1 shows that Python functions are objects. Here we
create a function, call it, read its __doc__ attribute, and check that the function object
itself is an instance of the function class.

Example 7-1. Create and test a function, then read its __doc__ and check its type

>>> def factorial(n): (1]
"""returns n!"""
return 1 if n < 2 else n * factorial(n - 1)

>>> factorial(42)
1405006117752879898543142606244511569936384000000000
>>> factorial.__doc__

232 | Chapter7: Functions as First-Class Objects

https://fpy.li/pep484
https://fpy.li/7-2

'returns n!'
>>> type(factorial) (3]
<class 'function's>

© This is a console session, so we’re creating a function at “runtime.”
® _ doc__ is one of several attributes of function objects.

©® factorial is an instance of the function class.

The __doc__ attribute is used to generate the help text of an object. In the Python
console, the command help(factorial) will display a screen like Figure 7-1.

8 00 1. less ..

Help on function factorial in module __main__:

factorial(n)
returns n!

Figure 7-1. Help screen for factorial; the text is built from the __doc__ attribute of
the function.

Example 7-2 shows the “first class” nature of a function object. We can assign it a
variable fact and call it through that name. We can also pass factorial as an argu-
ment to the map function. Calling map(function, iterable) returns an iterable
where each item is the result of calling the first argument (a function) to successive
elements of the second argument (an iterable), range(10) in this example.

Example 7-2. Use factorial through a different name, and pass factorial as an
argument

>>> fact = factorial

>>> fact

<function factorial at 0x...>

>>> fact(5)

120

>>> map(factorial, range(11))

<map object at Ox...>

>>> list(map(factorial, range(11)))

[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]

Treating a Function Like an Object | 233

https://fpy.li/7-3

Having first-class functions enables programming in a functional style. One of the
hallmarks of functional programming is the use of higher-order functions, our next
topic.

Higher-Order Functions

A function that takes a function as an argument or returns a function as the result is a
higher-order function. One example is map, shown in Example 7-2. Another is the
built-in function sorted: the optional key argument lets you provide a function to be
applied to each item for sorting, as we saw in “list.sort Versus the sorted Built-In” on
page 56. For example, to sort a list of words by length, pass the len function as the
key, as in Example 7-3.

Example 7-3. Sorting a list of words by length

>>> fruits = ['strawberry', 'fig', 'apple', 'cherry', 'raspberry', 'banana']
>>> sorted(fruits, key=len)

['fig', 'apple', 'cherry', 'banana', 'raspberry', 'strawberry']

>>>

Any one-argument function can be used as the key. For example, to create a rhyme
dictionary it might be useful to sort each word spelled backward. In Example 7-4,
note that the words in the list are not changed at all; only their reversed spelling is
used as the sort criterion, so that the berries appear together.

Example 7-4. Sorting a list of words by their reversed spelling

>>> def reverse(word):
return word[::-1]
>>> reverse('testing')
'gnitset’
>>> sorted(fruits, key=reverse)
['banana', 'apple', 'fig', 'raspberry', 'strawberry', 'cherry']
>>>

In the functional programming paradigm, some of the best known higher-order
functions are map, filter, reduce, and apply. The apply function was deprecated in
Python 2.3 and removed in Python 3 because it’s no longer necessary. If you need to
call a function with a dynamic set of arguments, you can write fn(*args, **kwargs)
instead of apply(fn, args, kwargs).

The map, filter, and reduce higher-order functions are still around, but better alter-
natives are available for most of their use cases, as the next section shows.

234 | Chapter7: Functions as First-Class Objects

https://fpy.li/7-4

Modern Replacements for map, filter, and reduce

Functional languages commonly offer the map, filter, and reduce higher-order
functions (sometimes with different names). The map and filter functions are still
built-ins in Python 3, but since the introduction of list comprehensions and genera-
tor expressions, they are not as important. A listcomp or a genexp does the job of map
and filter combined, but is more readable. Consider Example 7-5.

Example 7-5. Lists of factorials produced with map and filter compared to
alternatives coded as list comprehensions

>>> list(map(factorial, range(6))) (1]

[1, 1, 2, 6, 24, 120]

>>> [factorial(n) for n in range(6)] (2]

[1, 1, 2, 6, 24, 120]

>>> list(map(factorial, filter(lambda n: n % 2, range(6)))) (3]

[1, 6, 120]

>>> [factorial(n) for n in range(6) if n % 2] (4]

[1, 6, 120]

>>>

© Build a list of factorials from 0! to 5!.

® Same operation, with a list comprehension.

©® List of factorials of odd numbers up to 5!, using both map and filter.

O List comprehension does the same job, replacing map and filter, and making

lambda unnecessary.

In Python 3, map and filter return generators—a form of iterator—so their direct
substitute is now a generator expression (in Python 2, these functions returned lists,
therefore their closest alternative was a listcomp).

The reduce function was demoted from a built-in in Python 2 to the functools
module in Python 3. Its most common use case, summation, is better served by the
sum built-in available since Python 2.3 was released in 2003. This is a big win in terms
of readability and performance (see Example 7-6).

Example 7-6. Sum of integers up to 99 performed with reduce and sum

>>> from import reduce (1)
>>> from import add (2]
>>> reduce(add, range(100)) (3]
4950

>>> sum(range(100)) (4]

Higher-Order Functions | 235

4950

Starting with Python 3.0, reduce is no longer a built-in.
Import add to avoid creating a function just to add two numbers.

Sum integers up to 99.

© © o0 ©

Same task with sum—no need to import and call reduce and add.

The common idea of sum and reduce is to apply some operation to
successive items in a series, accumulating previous results, thus
reducing a series of values to a single value.

Other reducing built-ins are all and any:

all(iterable)
Returns True if there are no falsy elements in the iterable; all([]) returns True.

any(iterable)
Returns True if any element of the iterable is truthy; any([]) returns False.

I give a fuller explanation of reduce in “Vector Take #4: Hashing and a Faster ==” on
page 411 where an ongoing example provides a meaningful context for the use of this
function. The reducing functions are summarized later in the book when iterables are
in focus, in “Iterable Reducing Functions” on page 630.

To use a higher-order function, sometimes it is convenient to create a small, . one-off
function. That is why anonymous functions exist. We’ll cover them next.

Anonymous Functions

The lambda keyword creates an anonymous function within a Python expression.

However, the simple syntax of Python limits the body of lambda functions to be pure
expressions. In other words, the body cannot contain other Python statements such
as while, try, etc. Assignment with = is also a statement, so it cannot occur in a
lambda. The new assignment expression syntax using := can be used—but if you need
it, your lambda is probably too complicated and hard to read, and it should be refac-
tored into a regular function using def.

236 | Chapter7: Functions as First-Class Objects

The best use of anonymous functions is in the context of an argument list for a
higher-order function. For example, Example 7-7 is the rhyme index example from
Example 7-4 rewritten with lambda, without defining a reverse function.

Example 7-7. Sorting a list of words by their reversed spelling using lambda

>>> fruits = ['strawberry', 'fig', 'apple', 'cherry', 'raspberry', 'banana']
>>> sorted(fruits, key=lambda word: word[::-1])

['banana', 'apple', 'fig', 'raspberry', 'strawberry', 'cherry']

>>>

Outside the limited context of arguments to higher-order functions, anonymous
functions are rarely useful in Python. The syntactic restrictions tend to make nontriv-
ial lambdas either unreadable or unworkable. If a lambda is hard to read, I strongly
advise you follow Fredrik Lundh’s refactoring advice.

Fredrik Lundh’s lambda Refactoring Recipe
If you find a piece of code hard to understand because of a lambda, Fredrik Lundh
suggests this refactoring procedure:
1. Write a comment explaining what the heck that lambda does.

2. Study the comment for a while, and think of a name that captures the essence of
the comment.

3. Convert the lambda to a def statement, using that name.

4. Remove the comment.

These steps are quoted from the “Functional Programming HOWTO?”, a must read.

The lambda syntax is just syntactic sugar: a lambda expression creates a function
object just like the def statement. That is just one of several kinds of callable objects
in Python. The following section reviews all of them.

The Nine Flavors of Callable Objects

The call operator () may be applied to other objects besides functions. To determine
whether an object is callable, use the callable() built-in function. As of Python 3.9,
the data model documentation lists nine callable types:

The Nine Flavors of Callable Objects | 237

https://fpy.li/7-5
https://fpy.li/7-6

User-defined functions
Created with def statements or lambda expressions.

Built-in functions
A function implemented in C (for CPython), like len or time.strftime.

Built-in methods
Methods implemented in C, like dict.get.

Methods
Functions defined in the body of a class.

Classes
When invoked, a class runs its __new__ method to create an instance, then
__init__ to initialize it, and finally the instance is returned to the caller. Because
there is no new operator in Python, calling a class is like calling a function.?

Class instances
If a class defines a __call__ method, then its instances may be invoked as func-
tions—that’s the subject of the next section.

Generator functions
Functions or methods that use the yield keyword in their body. When called,
they return a generator object.

Native coroutine functions
Functions or methods defined with async def. When called, they return a
coroutine object. Added in Python 3.5.

Asynchronous generator functions
Functions or methods defined with async def that have yield in their body.
When called, they return an asynchronous generator for use with async for.
Added in Python 3.6.

Generators, native coroutines, and asynchronous generator functions are unlike
other callables in that their return values are never application data, but objects that
require further processing to yield application data or perform useful work. Genera-
tor functions return iterators. Both are covered in Chapter 17. Native coroutine func-
tions and asynchronous generator functions return objects that only work with the
help of an asynchronous programming framework, such as asyncio. They are the sub-
ject of Chapter 21.

2 Calling a class usually creates an instance of that same class, but other behaviors are possible by overriding
__new__. We'll see an example of this in “Flexible Object Creation with __new__” on page 843.

238 | Chapter7: Functions as First-Class Objects

Given the variety of existing callable types in Python, the safest way
to determine whether an object is callable is to use the callable()
built-in:

>>> abs, str, 'Ni!'

(<built-in function abs>, <class 'str's, 'Ni!'")

>>> [callable(obj) for obj in (abs, str, 'Ni!')]

[True, True, False]

We now move on to building class instances that work as callable objects.

User-Defined Callable Types

Not only are Python functions real objects, but arbitrary Python objects may also be
made to behave like functions. Implementing a __call__ instance method is all it
takes.

Example 7-8 implements a BingoCage class. An instance is built from any iterable,
and stores an internal 1ist of items, in random order. Calling the instance pops an
item.?

Example 7-8. bingocall.py: A BingoCage does one thing: picks items from a shuffled list
import random
class BingoCage:

def __init__(self, items):
self._items = list(items) (1]
random.shuffle(self._items)

def pick(self): ©
try:
return self._1items.pop()
except IndexError:
raise LookupError('pick from empty BingoCage') (4)

def __call_ (self): ©
return self.pick()

3 Why build a BingoCage when we already have random.choice? The choice function may return the same
item multiple times, because the picked item is not removed from the collection given. Calling BingoCage
never returns duplicate results—as long as the instance is filled with unique values.

User-Defined Callable Types | 239

© __init__ accepts any iterable; building a local copy prevents unexpected side
effects on any list passed as an argument.

shuffle is guaranteed to work because self._items isa list.
The main method.

Raise exception with custom message if self._items is empty.

® 06 o ©°

Shortcut to bingo.pick(): bingo().

Here is a simple demo of Example 7-8. Note how a bingo instance can be invoked as
a function, and the callable() built-in recognizes it as a callable object:

>>> bingo = BingoCage(range(3))

>>> bingo.pick()

1

>>> bingo()

0

>>> callable(bingo)
True

A class implementing __call__ is an easy way to create function-like objects that
have some internal state that must be kept across invocations, like the remaining
items in the BingoCage. Another good use case for __call__ is implementing decora-
tors. Decorators must be callable, and it is sometimes convenient to “remember”
something between calls of the decorator (e.g., for memoization—caching the results
of expensive computations for later use) or to split a complex implementation into
separate methods.

The functional approach to creating functions with internal state is to use closures.
Closures, as well as decorators, are the subject of Chapter 9.

Now let’s explore the powerful syntax Python offers to declare function parameters
and pass arguments into them.

From Positional to Keyword-Only Parameters

One of the best features of Python functions is the extremely flexible parameter han-
dling mechanism. Closely related are the use of * and ** to unpack iterables and
mappings into separate arguments when we call a function. To see these features in
action, see the code for Example 7-9 and tests showing its use in Example 7-10.

240 | Chapter7: Functions as First-Class Objects

Example 7-9. tag generates HTML elements; a keyword-only argument class_ is used

to pass “class” attributes as a workaround because class is a keyword in Python

def tag(name, *content, class_=None, **attrs):
"""Generate one or more HTML tags"""
if class_ is not None:
attrs['class'] = class_
attr_pairs = (f' {attr}="{value}"' for attr, value
in sorted(attrs.items()))
attr_str = ''.join(attr_pairs)
if content:
elements = (f'<{name}{attr_str}>{c}</{name}>"
for c in content)
return '\n'.join(elements)
else:
return f'<{name}{attr_str} />'

The tag function can be invoked in many ways, as Example 7-10 shows.

Example 7-10. Some of the many ways of calling the tag function from Example 7-9

>>> tag('br") (1)

'
'

>>> tag('p', 'hello') @

'<p>hello</p>"'

>>> print(tag('p', 'hello', 'world'))

<p>hello</p>

<p>world</p>

>>> tag('p', 'hello', id=33) ©

'<p 1d="33">hello</p>"

>>> print(tag('p', 'hello', 'world', class_='sidebar')) (4]
<p class="sidebar">hello</p>

<p class="sidebar">world</p>

>>> tag(content='testing', name="img") (5)

''

>>> my_tag = {'name': 'img', 'title': 'Sunset Boulevard',
c.. 'src': 'sunset.jpg', 'class': 'framed'}

>>> tag(**my_tag)
''

© A single positional argument produces an empty tag with that name.

©® Any number of arguments after the first are captured by *content as a tuple.

©® Keyword arguments not explicitly named in the tag signature are captured by

**attrs asadict.

O The class_ parameter can only be passed as a keyword argument.

From Positional to Keyword-Only Parameters |

© The first positional argument can also be passed as a keyword.

O Prefixing the my_tag dict with ** passes all its items as separate arguments,
which are then bound to the named parameters, with the remaining caught by
**attrs. In this case we can have a 'class' key in the arguments dict, because
it is a string, and does not clash with the class reserved word.

Keyword-only arguments are a feature of Python 3. In Example 7-9, the class_
parameter can only be given as a keyword argument—it will never capture unnamed
positional arguments. To specify keyword-only arguments when defining a function,
name them after the argument prefixed with *. If you don’t want to support variable
positional arguments but still want keyword-only arguments, put a * by itself in the
signature, like this:

>>> def f(a, *, b):
return a, b

>>> £(1, b=2)
(1, 2)
>>> (1, 2)

File "<stdin>", 1line 1, in <module>
TypeError: f() takes 1 positional argument but 2 were given

Note that keyword-only arguments do not need to have a default value: they can be
mandatory, like b in the preceding example.

Positional-Only Parameters

Since Python 3.8, user-defined function signatures may specify positional-only
parameters. This feature always existed for built-in functions, such as divmod(a, b),
which can only be called with positional parameters, and not as divmod(a=10, b=4).

To define a function requiring positional-only parameters, use / in the parameter list.

This example from “What’s New In Python 3.8” shows how to emulate the divmod
built-in function:

def divmod(a, b, /):
return (a // b, a % b)

All arguments to the left of the / are positional-only. After the /, you may specify
other arguments, which work as usual.

242 | Chapter7: Functions as First-Class Objects

https://fpy.li/7-7

The / in the parameter list is a syntax error in Python 3.7 or earlier.

For example, consider the tag function from Example 7-9. If we want the name
parameter to be positional only, we can add a / after it in the function signature, like
this:

def tag(name, /, *content, class_=None, **attrs):

You can find other examples of positional-only parameters in “What’s New In
Python 3.8” and in PEP 570.

After diving into Python’s flexible argument declaration features, the remainder of
this chapter covers the most useful packages in the standard library for programming
in a functional style.

Packages for Functional Programming

Although Guido makes it clear that he did not design Python to be a functional pro-
gramming language, a functional coding style can be used to good extent, thanks to
first-class functions, pattern matching, and the support of packages like operator
and functools, which we cover in the next two sections.

The operator Module

Often in functional programming it is convenient to use an arithmetic operator as a
function. For example, suppose you want to multiply a sequence of numbers to calcu-
late factorials without using recursion. To perform summation, you can use sum, but
there is no equivalent function for multiplication. You could use reduce—as we saw
in “Modern Replacements for map, filter, and reduce” on page 235—but this requires
a function to multiply two items of the sequence. Example 7-11 shows how to solve
this using lambda.

Example 7-11. Factorial implemented with reduce and an anonymous function

from import reduce

def factorial(n):
return reduce(lambda a, b: a*b, range(l, n+1))

Packages for Functional Programming | 243

https://fpy.li/7-7
https://fpy.li/7-7
https://fpy.li/pep570

The operator module provides function equivalents for dozens of operators so you
don’t have to code trivial functions like lambda a, b: a*b. With it, we can rewrite
Example 7-11 as Example 7-12.

Example 7-12. Factorial implemented with reduce and operator.mul

from import reduce
from import mul

def factorial(n):
return reduce(mul, range(1l, n+1))

Another group of one-trick lambdas that operator replaces are functions to pick
items from sequences or read attributes from objects: itemgetter and attrgetter
are factories that build custom functions to do that.

Example 7-13 shows a common use of itemgetter: sorting a list of tuples by the
value of one field. In the example, the cities are printed sorted by country code (field
1). Essentially, itemgetter(1) creates a function that, given a collection, returns the
item at index 1. That’s easier to write and read than lambda fields: fields[1],
which does the same thing.

Example 7-13. Demo of itemgetter to sort a list of tuples (data from Example 2-8)

>>> metro_data = [

('Tokyo', 'JP', 36.933, (35.689722, 139.691667)),

('Delhi NCR', 'IN', 21.935, (28.613889, 77.208889)),
('Mexico City', 'MX', 20.142, (19.433333, -99.133333)),
('New York-Newark', 'US', 20.104, (40.808611, -74.020386)),
('Sao Paulo', 'BR', 19.649, (-23.547778, -46.635833)),

]

>>>
>>> from import itemgetter
>>> for city in sorted(metro_data, key=itemgetter(1)):

print(city)

('Sdo Paulo', 'BR', 19.649, (-23.547778, -46.635833))
('Delhi NCR', 'IN', 21.935, (28.613889, 77.208889))
('Tokyo', "JP', 36.933, (35.689722, 139.691667))

('Mexico City', 'MX', 20.142, (19.433333, -99.133333))
('New York-Newark', 'US', 20.104, (40.808611, -74.020386))

If you pass multiple index arguments to itemgetter, the function it builds will return
tuples with the extracted values, which is useful for sorting on multiple keys:
>>> cc_name = itemgetter(1l, 0)

>>> for city in metro_data:
print(cc_name(city))

244 | Chapter7: Functions as First-Class Objects

('JP', 'Tokyo")

('"IN', 'Delhi NCR')
('MX', 'Mexico City')
('US', 'New York-Newark')
('BR', 'Sdo Paulo')

>>>

Because itemgetter uses the [] operator, it supports not only sequences but also
mappings and any class that implements __getitem__.

A sibling of itemgetter is attrgetter, which creates functions to extract object
attributes by name. If you pass attrgetter several attribute names as arguments, it
also returns a tuple of values. In addition, if any argument name contains a . (dot),
attrgetter navigates through nested objects to retrieve the attribute. These behav-
iors are shown in Example 7-14. This is not the shortest console session because we
need to build a nested structure to showcase the handling of dotted attributes by
attrgetter.

Example 7-14. Demo of attrgetter to process a previously defined list of namedtuple
called metro_data (the same list that appears in Example 7-13)

>>> from import namedtuple

>>> LatLon = namedtuple('LatLon', 'lat lon') (1)

>>> Metropolis = namedtuple('Metropolis', 'name cc pop coord') (2]

>>> metro_areas = [Metropolis(name, cc, pop, LatLon(lat, lon)) (3]
for name, cc, pop, (lat, lon) in metro_data]

>>> metro_areas[0]

Metropolis(name='Tokyo', cc='JP', pop=36.933, coord=LatLon(lat=35.689722,

1on=139.691667))

>>> metro_areas[0].coord. lat (4)

35.689722

>>> from import attrgetter

>>> name_lat = attrgetter('name', 'coord.lat') (5]

>>>

>>> for city in sorted(metro_areas, key=attrgetter('coord.lat')): (6]
print(name_lat(city))

('Sédo Paulo', -23.547778)
('Mexico City', 19.433333)
('Delhi NCR', 28.613889)
('Tokyo', 35.689722)

('New York-Newark', 40.808611)

@ Use namedtuple to define LatLon.

® Also define Metropolis.

Packages for Functional Programming | 245

© Build metro_areas list with Metropolis instances; note the nested tuple unpack-
ing to extract (lat, lon) and use them to build the LatLon for the coord
attribute of Metropolis.

Reach into element metro_areas[0] to get its latitude.
Define an attrgetter to retrieve the name and the coord. lat nested attribute.

Use attrgetter again to sort list of cities by latitude.

®© ©6 6 ©

Use the attrgetter defined in @ to show only the city name and latitude.

Here is a partial list of functions defined in operator (names starting with _ are omit-
ted, because they are mostly implementation details):

>>> [name for name in dir(operator) if not name.startswith('_')]

['abs', 'add', 'and_', 'attrgetter', 'concat', 'contains',

'countOf', 'delitem', 'eq', 'floordiv', 'ge', 'getitem', 'gt’,

'iadd', 'iand', 'iconcat', 'ifloordiv', 'ilshift', 'imatmul',

'imod', 'imul', 'index', 'indexOf', 'inv', 'invert', 'ior',

'ipow', 'irshift', 'is_', 'is_not', 'isub', 'itemgetter',

'{truediv', 'ixor', 'le', 'length_hint', 'lshift', 'lt', 'matmul’,

'methodcaller', 'mod', 'mul', 'ne', 'neg', 'not_', 'or_', 'pos',

'pow', 'rshift', 'setitem', 'sub', 'truediv', 'truth', 'xor']
Most of the 54 names listed are self-evident. The group of names prefixed with 1 and
the name of another operator—e.g., iadd, iand, etc.—correspond to the augmented
assignment operators—e.g., +=, &=, etc. These change their first argument in place, if

it is mutable; if not, the function works like the one without the 1 prefix: it simply
returns the result of the operation.

Of the remaining operator functions, methodcaller is the last we will cover. It is
somewhat similar to attrgetter and itemgetter in that it creates a function on the
fly. The function it creates calls a method by name on the object given as argument,
as shown in Example 7-15.

Example 7-15. Demo of methodcaller: second test shows the binding of extra
arguments

>>> from import methodcaller

>>> s = 'The time has come'

>>> upcase = methodcaller('upper')

>>> upcase(s)

'THE TIME HAS COME'

>>> hyphenate = methodcaller('replace', ' ', '-")
>>> hyphenate(s)

'The-time-has-come'

246 | Chapter7: Functions as First-Class Objects

The first test in Example 7-15 is there just to show methodcaller at work, but if you
need to use the str.upper as a function, you can just call it on the str class and pass
a string as an argument, like this:

>>> str.upper(s)
'THE TIME HAS COME'

The second test in Example 7-15 shows that methodcaller can also do a partial appli-
cation to freeze some arguments, like the functools.partial function does. That is
our next subject.*Bold Text*opmod07

Freezing Arguments with functools.partial

The functools module provides several higher-order functions. We saw reduce in
“Modern Replacements for map, filter, and reduce” on page 235. Another is partial:
given a callable, it produces a new callable with some of the arguments of the original
callable bound to predetermined values. This is useful to adapt a function that takes
one or more arguments to an API that requires a callback with fewer arguments.
Example 7-16 is a trivial demonstration.

Example 7-16. Using partial to use a two-argument function where a one-argument
callable is required

>>> from import mul

>>> from import partial

>>> triple = partial(mul, 3) (1)

>>> triple(7)

21

>>> list(map(triple, range(1, 10))) (3]
[3, 6, 9, 12, 15, 18, 21, 24, 27]

© Create new triple function from mul, binding the first positional argument to 3.
QO Testit.

© Use triple with map; mul would not work with map in this example.

A more useful example involves the unicode.normalize function that we saw in
“Normalizing Unicode for Reliable Comparisons” on page 140. If you work with text
from many languages, you may want to apply unicode.normalize('NFC', s) to any
string s before comparing or storing it. If you do that often, it’s handy to have an nfc
function to do so, as in Example 7-17.

Packages for Functional Programming | 247

Example 7-17. Building a convenient Unicode normalizing function with partial

>>> import B
>>> nfc = functools.partial(unicodedata.normalize, 'NFC')
>>> sl = 'café'

>>> s2 = 'cafe\u0301'
>>> sl, s2
('café', 'café')

>>> sl == s2

False

>>> nfc(sl) == nfc(s2)
True

partial takes a callable as first argument, followed by an arbitrary number of posi-
tional and keyword arguments to bind.

Example 7-18 shows the use of partial with the tag function from Example 7-9, to
freeze one positional argument and one keyword argument.

Example 7-18. Demo of partial applied to the function tag from Example 7-9

>>> from import tag

>>> tag

<function tag at 0x10206d1e0> (1]
>>> from import partial

>>> picture = partial(tag, 'img', class_='pic-frame') (2]

>>> picture(src="wumpus.jpeg')

'' (3)

>>> picture

functools.partial(<function tag at 0x10206d1e0>, 'img', class_='pic-frame') (4)
>>> picture.func

<function tag at 0x10206d1e0>

>>> picture.args

('img',)

>>> picture.keywords

{'class_': 'pic-frame'}

© Import tag from Example 7-9 and show its ID.

® Create the picture function from tag by fixing the first positional argument
with 'img' and the class_ keyword argument with 'pic-frame'.

© picture works as expected.

248 | Chapter7: Functions as First-Class Objects

O partial() returnsa functools.partial object.*

© A functools.partial object has attributes providing access to the original func-
tion and the fixed arguments.

The functools.partialmethod function does the same job as partial, but is
designed to work with methods.

The functools module also includes higher-order functions designed to be used as
function decorators, such as cache and singledispatch, among others. Those
functions are covered in Chapter 9, which also explains how to implement custom
decorators.

Chapter Summary

The goal of this chapter was to explore the first-class nature of functions in Python.
The main ideas are that you can assign functions to variables, pass them to other
functions, store them in data structures, and access function attributes, allowing
frameworks and tools to act on that information.

Higher-order functions, a staple of functional programming, are common in Python.
The sorted, min, and max built-ins, and functools.partial are examples of com-
monly used higher-order functions in the language. Using map, filter, and reduce is
not as common as it used to be, thanks to list comprehensions (and similar con-
structs like generator expressions) and the addition of reducing built-ins like sum,
all, and any.

Callables come in nine different flavors since Python 3.6, from the simple functions
created with lambda to instances of classes implementing __call__. Generators and
coroutines are also callable, although their behavior is very different from other calla-
bles. All callables can be detected by the callable() built-in. Callables offer rich syn-
tax for declaring formal parameters, including keyword-only parameters, positional-
only parameters, and annotations.

Lastly, we covered some functions from the operator module and functools.par
tial, which facilitate functional programming by minimizing the need for the func-
tionally challenged lambda syntax.

4 The source code for functools.py reveals that functools.partial is implemented in C and is used by default.
If that is not available, a pure-Python implementation of partial is available since Python 3.4.

Chapter Summary | 249

https://fpy.li/7-9

Further Reading

The next chapters continue our exploration of programming with function objects.
Chapter 8 is devoted to type hints in function parameters and return values. Chap-
ter 9 dives into function decorators—a special kind of higher-order function—and
the closure mechanism that makes them work. Chapter 10 shows how first-class
functions can simplify some classic object-oriented design patterns.

In The Python Language Reference, “3.2. The standard type hierarchy” presents the
nine callable types, along with all the other built-in types.

Chapter 7 of the Python Cookbook, 3rd ed. (O’Reilly), by David Beazley and Brian K.
Jones, is an excellent complement to the current chapter as well as Chapter 9 of this
book, covering mostly the same concepts with a different approach.

See PEP 3102—Keyword-Only Arguments if you are interested in the rationale and
use cases for that feature.

A great introduction to functional programming in Python is A. M. Kuchling’s
“Python Functional Programming HOWTO”. The main focus of that text, however,
is the use of iterators and generators, which are the subject of Chapter 17.

The StackOverflow question “Python: Why is functools.partial necessary?” has a
highly informative (and funny) reply by Alex Martelli, coauthor of the classic Python
in a Nutshell (O’Reilly).

Reflecting on the question “Is Python a functional language?”, I created one of my
favorite talks, “Beyond Paradigms,” which I presented at PyCaribbean, PyBay, and
PyConDE. See the slides and video from the Berlin presentation—where I met Miro-
slav Sedivy and Jiirgen Gmach, two of the technical reviewers of this book.

Soapbox

Is Python a Functional Language?

Sometime in the year 2000 I attended a Zope workshop at Zope Corporation in the
United States when Guido van Rossum dropped by the classroom (he was not the
instructor). In the Q&A that followed, somebody asked him which features of Python
were borrowed from other languages. Guido’s answer: “Everything that is good in
Python was stolen from other languages.”

Shriram Krishnamurthi, professor of Computer Science at Brown University, starts
his “Teaching Programming Languages in a Post-Linnaean Age” paper with this:

Programming language “paradigms” are a moribund and tedious legacy of a bygone
age. Modern language designers pay them no respect, so why do our courses slavishly
adhere to them?

250 | Chapter7: Functions as First-Class Objects

https://fpy.li/7-10
https://fpy.li/pycook3
https://fpy.li/pep3102
https://fpy.li/7-5
https://fpy.li/7-12
https://fpy.li/7-13
https://fpy.li/7-14
https://fpy.li/7-15

In that paper, Python is mentioned by name in this passage:

What else to make of a language like Python, Ruby, or Perl? Their designers have no
patience for the niceties of these Linnaean hierarchies; they borrow features as they
wish, creating mélanges that utterly defy characterization.

Krishnamurthi argues that instead of trying to classify languages in some taxonomy,
it’s more useful to consider them as aggregations of features. His ideas inspired my
talk “Beyond Paradigms,” mentioned at the end of “Further Reading” on page 250.

Even if it was not Guido’s goal, endowing Python with first-class functions opened
the door to functional programming. In his post, “Origins of Python’s Functional
Features”, he says that map, filter, and reduce were the motivation for adding
lambda to Python in the first place. All of these features were contributed together by
Amrit Prem for Python 1.0 in 1994, according to Misc/HISTORY in the CPython
source code.

Functions like map, filter, and reduce first appeared in Lisp, the original functional
language. However, Lisp does not limit what can be done inside a lambda, because
everything in Lisp is an expression. Python uses a statement-oriented syntax in which
expressions cannot contain statements, and many language constructs are statements
—including try/catch, which is what I miss most often when writing lambdas. This
is the price to pay for Python’s highly readable syntax.® Lisp has many strengths, but
readability is not one of them.

Ironically, stealing the list comprehension syntax from another functional language—
Haskell—significantly diminished the need for map and filter, and also for lambda.

Besides the limited anonymous function syntax, the biggest obstacle to wider adop-
tion of functional programming idioms in Python is the lack of tail-call elimination,
an optimization that allows memory-efficient computation of a function that makes a
recursive call at the “tail” of its body. In another blog post, “Tail Recursion Elimina-
tion”, Guido gives several reasons why such optimization is not a good fit for Python.
That post is a great read for the technical arguments, but even more so because the
first three and most important reasons given are usability issues. It is no accident that
Python is a pleasure to use, learn, and teach. Guido made it so.

So there you have it: Python is not, by design, a functional language—whatever that
means. Python just borrows a few good ideas from functional languages.

The Problem with Anonymous Functions

Beyond the Python-specific syntax constraints, anonymous functions have a serious
drawback in any language: they have no name.

5 There is also the problem of lost indentation when pasting code to web forums, but I digress.

FurtherReading | 251

https://fpy.li/7-1
https://fpy.li/7-1
https://fpy.li/7-17
https://fpy.li/7-18
https://fpy.li/7-18

I am only half joking here. Stack traces are easier to read when functions have names.
Anonymous functions are a handy shortcut, people have fun coding with them, but
sometimes they get carried away—especially if the language and environment
encourage deep nesting of anonymous functions, like JavaScript on Node.js do. Lots
of nested anonymous functions make debugging and error handling hard. Asynchro-
nous programming in Python is more structured, perhaps because the limited lambda
syntax prevents its abuse and forces a more explicit approach. Promises, futures, and
deferreds are concepts used in modern asynchronous APIs. Along with coroutines,
they provide an escape from the so-called “callback hell.” I promise to write more
about asynchronous programming in the future, but this subject must be deferred to
Chapter 21.

252 | Chapter7: Functions as First-Class Objects

CHAPTER 8
Type Hints in Functions

It should also be emphasized that Python will remain a dynamically typed language,
and the authors have no desire to ever make type hints mandatory, even by
convention.

—Guido van Rossum, Jukka Lehtosalo, and Lukasz Langa, PEP 484—Type Hints'

Type hints are the biggest change in the history of Python since the unification of
types and classes in Python 2.2, released in 2001. However, type hints do not benefit
all Python users equally. That’s why they should always be optional.

PEP 484—Type Hints introduced syntax and semantics for explicit type declarations
in function arguments, return values, and variables. The goal is to help developer
tools find bugs in Python codebases via static analysis, i.e., without actually running
the code through tests.

The main beneficiaries are professional software engineers using IDEs (Integrated
Development Environments) and CI (Continuous Integration). The cost-benefit
analysis that makes type hints attractive to that group does not apply to all users of
Python.

Python’s user base is much wider than that. It includes scientists, traders, journalists,
artists, makers, analysts, and students in many fields—among others. For most of
them, the cost of learning type hints is likely higher—unless they already know a
language with static types, subtyping, and generics. The benefits will be lower for
many of those users, given how they interact with Python, and the smaller size of
their codebases and teams—often “teams” of one. Python’s default dynamic typing is

1 PEP 484—Type Hints, “Rationale and Goals”; bold emphasis retained from the original.

253

https://fpy.li/8-1
https://fpy.li/descr101
https://fpy.li/descr101
https://fpy.li/pep484

simpler and more expressive when writing code for exploring data and ideas, as in
data science, creative computing, and learning,

This chapter focuses on Python’s type hints in function signatures. Chapter 15
explores type hints in the context of classes, and other typing module features.

The major topics in this chapter are:

A hands-on introduction to gradual typing with Mypy
o The complementary perspectives of duck typing and nominal typing

o Overview of the main categories of types that can appear in annotations—this is
about 60% of the chapter

o Type hinting variadic parameters (*args, **kwargs)

« Limitations and downsides of type hints and static typing

What's New in This Chapter

This chapter is completely new. Type hints appeared in Python 3.5 after I wrapped up
the first edition of Fluent Python.

Given the limitations of a static type system, the best idea of PEP 484 was to intro-
duce a gradual type system. Let’s begin by defining what that means.

About Gradual Typing

PEP 484 introduced a gradual type system to Python. Other languages with gradual
type systems are Microsoft’s TypeScript, Dart (the language of the Flutter SDK, cre-
ated by Google), and Hack (a dialect of PHP supported by Facebook’s HHVM virtual
machine). The Mypy type checker itself started as a language: a gradually typed dia-
lect of Python with its own interpreter. Guido van Rossum convinced the creator of
Mypy, Jukka Lehtosalo, to make it a tool for checking annotated Python code.

A gradual type system:

Is optional
By default, the type checker should not emit warnings for code that has no type
hints. Instead, the type checker assumes the Any type when it cannot determine
the type of an object. The Any type is considered compatible with all other types.

Does not catch type errors at runtime
Type hints are used by static type checkers, linters, and IDEs to raise warnings.
They do not prevent inconsistent values from being passed to functions or
assigned to variables at runtime.

254 | Chapter8: Type Hints in Functions

Does not enhance performance
Type annotations provide data that could, in theory, allow optimizations in the
generated bytecode, but such optimizations are not implemented in any Python
runtime that I am aware in of July 2021.2

The best usability feature of gradual typing is that annotations are always optional.

With static type systems, most type constraints are easy to express, many are cumber-
some, some are hard, and a few are impossible.’ You may very well write an excellent
piece of Python code, with good test coverage and passing tests, but still be unable to
add type hints that satisfy a type checker. That’s OK; just leave out the problematic
type hints and ship it!

Type hints are optional at all levels: you can have entire packages with no type hints,
you can silence the type checker when you import one of those packages into a mod-
ule where you use type hints, and you can add special comments to make the type
checker ignore specific lines in your code.

Seeking 100% coverage of type hints is likely to stimulate type hint-
ing without proper thought, only to satisfy the metric. It will also
prevent teams from making the most of the power and flexibility of
Python. Code without type hints should naturally be accepted
when annotations would make an API less user-friendly, or unduly
complicate its implementation.

Gradual Typing in Practice

Let’s see how gradual typing works in practice, starting with a simple function and
gradually adding type hints to it, guided by Mypy.

There are several Python type checkers compatible with PEP 484,
including Google’s pytype, Microsoft’s Pyright, Facebook’s Pyre—
in addition to type checkers embedded in IDEs such as PyCharm. I
picked Mypy for the examples because it’s the best known. How-
ever, one of the others may be a better fit for some projects or
teams. Pytype, for example, is designed to handle codebases with
no type hints and still provide useful advice. It is more lenient than
Mypy, and can also generate annotations for your code.

2 A just-in-time compiler like the one in PyPy has much better data than type hints: it monitors the Python
program as it runs, detects the concrete types in use, and generates optimized machine code for those
concrete types.

3 For example, recursive types are not supported as of July 2021—see typing module issue #182, Define a JSON
type and Mypy issue #731, Support recursive types.

Gradual Typing in Practice | 255

https://fpy.li/8-2
https://fpy.li/8-2
https://fpy.li/8-3
https://fpy.li/8-4
https://fpy.li/8-5
https://fpy.li/8-6
https://fpy.li/mypy

We will annotate a show_count function that returns a string with a count and a sin-
gular or plural word, depending on the count:

>>> show_count(99, 'bird')

'99 birds'

>>> show_count(1, 'bird")
'1 bird'

>>> show_count(0, 'bird")
'no birds'

Example 8-1 shows the source code of show_count, without annotations.

Example 8-1. show_count from messages.py without type hints

def show_count(count, word):
if count ==
return f'1 {word}'
count_str = str(count) if count else 'no'
return f'{count_str} {word}s'

Starting with Mypy

To begin type checking, I run the mypy command on the messages.py module:

../no_hints/ $ pip install mypy
[lots of messages omitted...]
../no_hints/ $ mypy messages.py
Success: no issues found in 1 source file

Mypy with default settings finds no problem with Example 8-1.

I am using Mypy 0.910, the most recent release as I review this in
July 2021. The Mypy “Introduction” warns that it “is officially beta
software. There will be occasional changes that break backward
\ compatibility.” Mypy is giving me at least one report that is not the
same I got when I wrote this chapter in April 2020. By the time you
read this, you may get different results than shown here.

If a function signature has no annotations, Mypy ignores it by default—unless config-
ured otherwise.

For Example 8-2, I also have pytest unit tests. This is the code in messages_test.py.

Example 8-2. messages_test.py without type hints
from import mark

from import show_count

256 | Chapter8: Type Hints in Functions

https://fpy.li/8-7

('qty, expected', [
(1, "1 part"),
(2, '2 parts'),
D
def test_show_count(qty, expected):
got = show_count(qty, 'part')
assert got == expected

def test_show_count_zero():
got = show_count(0, 'part')
assert got == 'no parts'

Now let’s add type hints, guided by Mypy.

Making Mypy More Strict

The command-line option - -disallow-untyped-defs makes Mypy flag any function
definition that does not have type hints for all its parameters and for its return value.

Using - -disallow-untyped-defs on the test file produces three errors and a note:

../no_hints/ $ mypy --disallow-untyped-defs messages_test.py

messages.py:14: error: Function is missing a type annotation
messages_test.py:10: error: Function is missing a type annotation
messages_test.py:15: error: Function is missing a return type annotation
messages_test.py:15: note: Use "-> None" if function does not return a value
Found 3 errors in 2 files (checked 1 source file)

For the first steps with gradual typing, I prefer to use another option: --disallow-
incomplete-defs. Initially, it tells me nothing:

../no_hints/ $ mypy --disallow-incomplete-defs messages_test.py
Success: no issues found in 1 source file

Now I can add just the return type to show_count in messages.py:
def show_count(count, word) -> str:

This is enough to make Mypy look at it. Using the same command line as before to
check messages_test.py will lead Mypy to look at messages.py again:

../no_hints/ $ mypy --disallow-incomplete-defs messages_test.py
messages.py:14: error: Function is missing a type annotation
for one or more arguments

Found 1 error in 1 file (checked 1 source file)

Now I can gradually add type hints function by function, without getting warnings
about functions that I haven’t annotated. This is a fully annotated signature that satis-
fies Mypy:

def show_count(count: int, word: str) -> str:

Gradual Typing in Practice | 257

Instead of typing command-line options like --disallow-
incomplete-defs, you can save your favorite as described in the
Mypy configuration file documentation. You can have global set-
tings and per-module settings. Here is a simple mypy.ini to get
started:

[mypy]

python_version = 3.9
warn_unused_configs = True
disallow_incomplete_defs = True

A Default Parameter Value

The show_count function in Example 8-1 only works with regular nouns. If the plural

can’t be spelled by appending an 's', we should let the user provide the plural form,
like this:

>>> show_count(3, 'mouse', 'mice')

'3 mice'
Let’s do a little “type-driven development.” First we add a test that uses that third
argument. Don’t forget to add the return type hint to the test function, otherwise
Mypy will not check it.

def test_irregular() -> None:
got = show_count(2, 'child', 'children')
assert got == '2 children’

Mypy detects the error:

../hints_2/ $ mypy messages_test.py
messages_test.py:22: error: Too many arguments for "show_count"
Found 1 error in 1 file (checked 1 source file)

Now I edit show_count, adding the optional plural parameter in Example 8-3.

Example 8-3. showcount from hints_2/messages.py with an optional parameter

def show_count(count: int, singular: str, plural: str = '') -> str:
if count == 1:
return f'1 {singular}'
count_str = str(count) if count else 'no'
if not plural:
plural = singular + 's'
return f'{count_str} {plural}'

Now Mypy reports “Success.”

258 | Chapter 8: Type Hints in Functions

https://fpy.li/8-8

Here is one typing mistake that Python does not catch. Can you
spot it?

def hex2rgb(color=str) -> tuple[int, int, int]:
Mypy’s error report is not very helpful:

colors.py:24: error: Function is missing a type
annotation for one or more arguments

The type hint for the color argument should be color: str. I
wrote color=str, which is not an annotation: it sets the default
value of color to str.

In my experience, it’s a common mistake and easy to overlook,
especially in complicated type hints.

The following details are considered good style for type hints:

 No space between the parameter name and the :; one space after the :

o Spaces on both sides of the = that precedes a default parameter value

On the other hand, PEP 8 says there should be no spaces around the = if there is no
type hint for that particular parameter.

Code Style: Use flake8 and blue

Instead of memorizing such silly rules, use tools like flake8 and blue. flake8 reports on
code styling, among many other issues, and blue rewrites source code according to
(most) rules embedded in the black code formatting tool.

Given the goal of enforcing a “standard” coding style, blue is better than black
because it follows Python’s own style of using single quotes by default, double quotes
as an alternative:

>>> "I prefer single quotes"
'T prefer single quotes'

The preference for single quotes is embedded in repr(), among other places in CPy-
thon. The doctest module depends on repr() using single quotes by default.

One of the authors of blue is Barry Warsaw, coauthor of PEP 8, Python core devel-
oper since 1994, and a member of Python’s Steering Council from 2019 to present
(July 2021). We are in very good company when we choose single quotes by default.

If you must use black, use the black -S option. Then it will leave your quotes as they
are.

Gradual Typing in Practice | 259

https://fpy.li/8-9
https://fpy.li/8-10
https://fpy.li/8-11
https://fpy.li/doctest
https://fpy.li/8-12

Using None as a Default

In Example 8-3, the parameter plural is annotated as str, and the default valueis ',
so there is no type conflict.

I like that solution, but in other contexts None is a better default. If the optional
parameter expects a mutable type, then None is the only sensible default—as we saw
in “Mutable Types as Parameter Defaults: Bad Idea” on page 214.

To have None as the default for the plural parameter, here is what the signature
would look like:

from import Optional

def show_count(count: int, singular: str, plural: Optional[str] = None) -> str:

Let’s unpack that:

 Optional[str] means plural may be a str or None.

» You must explicitly provide the default value = None.

If you don’t assign a default value to plural, the Python runtime will treat it as a
required parameter. Remember: at runtime, type hints are ignored.

Note that we need to import Optional from the typing module. When importing
types, it’s good practice to use the syntax from typing import X to reduce the length
of the function signatures.

Optional is not a great name, because that annotation does not
make the parameter optional. What makes it optional is assigning a
default value to the parameter. Optional[str] just means: the type

\ of this parameter may be str or NoneType. In the Haskell and Elm
languages, a similar type is named Maybe.

Now that we’ve had a first practical view of gradual typing, let’s consider what the
concept of type means in practice.

Types Are Defined by Supported Operations

There are many definitions of the concept of type in the literature. Here we assume
that type is a set of values and a set of functions that one can apply to these values.

—PEP 483—The Theory of Type Hints

260 | Chapter8: Type Hints in Functions

In practice, it’s more useful to consider the set of supported operations as the defin-
ing characteristic of a type.*

For example, from the point of view of applicable operations, what are the valid types
for x in the following function?
def double(x):
return x * 2

The x parameter type may be numeric (int, complex, Fraction, numpy.uint32, etc.)
but it may also be a sequence (str, tuple, list, array), an N-dimensional
numpy .array, or any other type that implements or inherits a __mul__ method that
accepts an int argument.

However, consider this annotated double. Please ignore the missing return type for
now, let’s focus on the parameter type:

from import abc

def double(x: abc.Sequence):
return x * 2
A type checker will reject that code. If you tell Mypy that x is of type abc.Sequence, it
will flag x * 2 as an error because the Sequence ABC does not implement or inherit
the __mul__ method. At runtime, that code will work with concrete sequences such as
str, tuple, list, array, etc., as well as numbers, because at runtime the type hints
are ignored. But the type checker only cares about what is explicitly declared, and
abc.Sequence hasno __mul__

That’s why the title of this section is “T'ypes Are Defined by Supported Operations.”
The Python runtime accepts any object as the x argument for both versions of the
double function. The computation x * 2 may work, or it may raise TypeError if the
operation is not supported by x. In contrast, Mypy will declare x * 2 as wrong while
analyzing the annotated double source code, because it’s an unsupported operation
for the declared type: x: abc.Sequence.

In a gradual type system, we have the interplay of two different views of types:

Duck typing
The view adopted by Smalltalk—the pioneering object-oriented language—as
well as Python, JavaScript, and Ruby. Objects have types, but variables (including

4 Python doesn’t provide syntax to control the set of possible values for a type—except in Enum types. For exam-
ple, using type hints you can’t define Quantity as an integer between 1 and 1000, or AirportCode as a 3-letter
combination. NumPy offers uint8, int16, and other machine-oriented numeric types, but in the Python
standard library we only have types with very small sets of values (NoneType, bool) or extremely large sets
(float, int, str, all possible tuples, etc.).

Types Are Defined by Supported Operations | 261

https://fpy.li/8-13

parameters) are untyped. In practice, it doesn’t matter what the declared type of
the object is, only what operations it actually supports. If I can invoke
birdie.quack(), then birdie is a duck in this context. By definition, duck typ-
ing is only enforced at runtime, when operations on objects are attempted. This
is more flexible than nominal typing, at the cost of allowing more errors at run-
time.’

Nominal typing

The view adopted by C++, Java, and C#, supported by annotated Python. Objects
and variables have types. But objects only exist at runtime, and the type checker
only cares about the source code where variables (including parameters) are
annotated with type hints. If Duck is a subclass of Bird, you can assign a Duck
instance to a parameter annotated as birdie: Bird. But in the body of the func-
tion, the type checker considers the call birdie.quack() illegal, because birdie
is nominally a Bird, and that class does not provide the .quack() method. It
doesn’t matter if the actual argument at runtime is a Duck, because nominal typ-
ing is enforced statically. The type checker doesn’t run any part of the program, it
only reads the source code. This is more rigid than duck typing, with the advan-
tage of catching some bugs earlier in a build pipeline, or even as the code is typed
in an IDE.

Example 8-4 is a silly example that contrasts duck typing and nominal typing, as well
as static type checking and runtime behavior.®

Example 8-4. birds.py

class Bird:

pass

class Duck(Bird): (1]

def quack(self):

print('Quack!")

def alert(birdie): (2]

birdie.quack()

def alert_duck(birdie: Duck) -> None: ©

birdie.quack()

5 Duck typing is an implicit form of structural typing, which Python > 3.8 also supports with the introduction

of typing.Protocol. This is covered later in this chapter—in “Static Protocols” on page 286—with more
details in Chapter 13.

6 Inheritance is often overused and hard to justify in examples that are realistic yet simple, so please accept this
animal example as a quick illustration of subtyping.

262

| Chapter 8: Type Hints in Functions

def alert_bird(birdie: Bird) -> None: (4)
birdie.quack()

Duck is a subclass of Bird.
alert has no type hints, so the type checker ignores it.

o
(2]
©® alert_duck takes one argument of type Duck.
O alert_bird takes one argument of type Bird.
Type checking birds.py with Mypy, we see a problem:

../birds/ $ mypy birds.py
birds.py:16: error: "Bird" has no attribute "quack"
Found 1 error in 1 file (checked 1 source file)

Just by analyzing the source code, Mypy sees that alert_bird is problematic: the type
hint declares the birdie parameter with type Bird, but the body of the function calls
birdie.quack()—and the Bird class has no such method.

Now let’s try to use the birds module in daffy.py in Example 8-5.

Example 8-5. daffy.py
from import *

daffy = Duck()

alert(daffy) (1)
alert_duck(daffy) @
alert_bird(daffy) ©

@ Valid call, because alert has no type hints.
® Valid call, because alert_duck takes a Duck argument, and daffy is a Duck.
© Valid call, because alert_bird takes a Bird argument, and daffy is also a Bird—

the superclass of Duck.

Running Mypy on daffy.py raises the same error about the quack call in the
alert_bird function defined in birds.py:

../birds/ $ mypy daffy.py
birds.py:16: error: "Bird" has no attribute "quack"
Found 1 error in 1 file (checked 1 source file)

But Mypy sees no problem with daffy.py itself: the three function calls are OK.
Now, if you run daffy.py, this is what you get:

Types Are Defined by Supported Operations | 263

./birds/ $ python3 daffy.py
Quack!
Quack!
Quack!

Everything works! Duck typing FTW!

At runtime, Python doesn’t care about declared types. It uses duck typing only. Mypy
flagged an error in alert_bird, but calling it with daffy works fine at runtime. This
may surprise many Pythonistas at first: a static type checker will sometimes find
errors in programs that we know will execute.

However, if months from now you are tasked with extending the silly bird example,
you may be grateful for Mypy. Consider this woody.py module, which also uses
birds, in Example 8-6.

Example 8-6. woody.py
from import *

woody = Bird()
alert(woody)
alert_duck(woody)
alert_bird(woody)

Mypy finds two errors while checking woody.py:

../birds/ $ mypy woody.py

birds.py:16: error: "Bird" has no attribute "quack"

woody.py:5: error: Argument 1 to "alert_duck" has incompatible type "Bird";
expected "Duck"

Found 2 errors in 2 files (checked 1 source file)

The first error is in birds.py: the birdie.quack() call in alert_bird, which we've
seen before. The second error is in woody.py: woody is an instance of Bird, so the call

alert_duck(woody) is invalid because that function requires a Duck. Every Duck is a
Bird, but not every Bird is a Duck.

At runtime, none of the calls in woody.py succeed. The succession of failures is best
illustrated in a console session with callouts in Example 8-7.

Example 8-7. Runtime errors and how Mypy could have helped

>>> from import *

>>> woody = Bird()

>>> alert(woody) (1]

Traceback (most recent call last):

AttributeError: 'Bird' object has no attribute 'quack'
>>>

264 | Chapter8: Type Hints in Functions

>>> alert_duck(woody) (2]
Traceback (most recent call last):

AttributeError: 'Bird' object has no attribute 'quack'
>>>

>>> alert_bird(woody) (3]

Traceback (most recent call last):

AttributeError: 'Bird' object has no attribute 'quack'
@ Mypy could not detect this error because there are no type hints in alert.

©® Mypy reported the problem: Argument 1 to "alert_duck" has incompatible
type "Bird"; expected "Duck".

©® Mypy has been telling us since Example 8-4 that the body of the alert_bird
function is wrong: "Bird" has no attribute "quack".

This little experiment shows that duck typing is easier to get started and is more flexi-
ble, but allows unsupported operations to cause errors at runtime. Nominal typing
detects errors before runtime, but sometimes can reject code that actually runs—such
as the call alert_bird(daffy) in Example 8-5. Even if it sometimes works, the
alert_bird function is misnamed: its body does require an object that supports
the .quack() method, which Bird doesn’t have.

In this silly example, the functions are one-liners. But in real code they could be
longer; they could pass the birdie argument to more functions, and the origin of the
birdie argument could be many function calls away, making it hard to pinpoint the
cause of a runtime error. The type checker prevents many such errors from ever hap-
pening at runtime.

The value of type hints is questionable in the tiny examples that fit
in a book. The benefits grow with the size of the codebase. That’s
why companies with millions of lines of Python code—like Drop-
box, Google, and Facebook—invested in teams and tools to sup-
port the company-wide adoption of type hints, and have significant
and increasing portions of their Python codebases type checked in
their CI pipelines.

In this section we explored the relationship of types and operations in duck typing
and nominal typing, starting with the simple double() function—which we left
without proper type hints. Now we will tour the most important types used for anno-
tating functions. We'll see a good way to add type hints to double() when we reach
“Static Protocols” on page 286. But before we get to that, there are more fundamental
types to know.

Types Are Defined by Supported Operations | 265

Types Usable in Annotations

Pretty much any Python type can be used in type hints, but there are restrictions and
recommendations. In addition, the typing module introduced special constructs
with semantics that are sometimes surprising.

This section covers all the major types you can use with annotations:

o typing.Any

« Simple types and classes

« typing.Optional and typing.Union

o Generic collections, including tuples and mappings
« Abstract base classes

« Generic iterables

 Parameterized generics and TypeVar

« typing.Protocols—the key to static duck typing

« typing.Callable

 typing.NoReturn—a good way to end this list

We'll cover each of these in turn, starting with a type that is strange, apparently use-
less, but crucially important.

The Any Type

The keystone of any gradual type system is the Any type, also known as the dynamic
type. When a type checker sees an untyped function like this:

def double(x):
return x * 2

it assumes this:

def double(x: Any) -> Any:
return x * 2

That means the x argument and the return value can be of any type, including differ-
ent types. Any is assumed to support every possible operation.

Contrast Any with object. Consider this signature:
def double(x: object) -> object:

This function also accepts arguments of every type, because every type is a subtype-of
object.

266 | Chapter8: Type Hints in Functions

However, a type checker will reject this function:

def double(x: object) -> object:
return x * 2

The problem is that object does not support the __mul__ operation. This is what
Mypy reports:

../birds/ $ mypy double_object.py
double_object.py:2: error: Unsupported operand types for * ("object" and "int")
Found 1 error in 1 file (checked 1 source file)

More general types have narrower interfaces, i.e., they support fewer operations. The
object class implements fewer operations than abc.Sequence, which implements
fewer operations than abc.MutableSequence, which implements fewer operations
than list.

But Any is a magic type that sits at the top and the bottom of the type hierarchy. It’s
simultaneously the most general type—so that an argument n: Any accepts values of
every type—and the most specialized type, supporting every possible operation. At
least, that’s how the type checker understands Any.

Of course, no type can support every possible operation, so using Any prevents the
type checker from fulfilling its core mission: detecting potentially illegal operations
before your program crashes with a runtime exception.

Subtype-of versus consistent-with

Traditional object-oriented nominal type systems rely on the is subtype-of relation-
ship. Given a class T1 and a subclass T2, then T2 is subtype-of T1.

Consider this code:

class T1:
class T2(T1):
def f1(p: T1) -> None:

02 = T2()

f1(02) # OK

Types Usable in Annotations | 267

The call f1(02) is an application of the Liskov Substitution Principle—LSP. Barbara
Liskov” actually defined is subtype-of in terms of supported operations: if an object of
type T2 substitutes an object of type T1 and the program still behaves correctly, then
T2 is subtype-of T1.

Continuing from the previous code, this shows a violation of the LSP:

def f2(p: T2) -> None:

ol = T1()

f2(ol) # type error

From the point of view of supported operations, this makes perfect sense: as a sub-
class, T2 inherits and must support all operations that T1 does. So an instance of T2
can be used anywhere an instance of T1 is expected. But the reverse is not necessarily
true: T2 may implement additional methods, so an instance of T1 may not be used
everywhere an instance of T2 is expected. This focus on supported operations is
reflected in the name behavioral subtyping, also used to refer to the LSP.

In a gradual type system, there is another relationship: consistent-with, which applies
wherever subtype-of applies, with special provisions for type Any.

The rules for consistent-with are:

1. Given T1 and a subtype T2, then T2 is consistent-with T1 (Liskov substitution).

2. Every type is consistent-with Any: you can pass objects of every type to an argu-
ment declared of type Any.

3. Any is consistent-with every type: you can always pass an object of type Any where
an argument of another type is expected.

Considering the previous definitions of the objects 01 and 02, here are examples of
valid code, illustrating rules #2 and #3:

def f3(p: Any) -> None:

00 = object()
ol = T1()
02 = T2()

f3(o0) #
f3(ol) # all OK: rule #2
f3(02) #

7 MIT Professor, programming language designer, and Turing Award recipient. Wikipedia: Barbara Liskov.

268 | Chapter8: Type Hints in Functions

https://fpy.li/8-14
https://fpy.li/8-15

def f4(): # implicit return type: ‘Any’

o4 = f4() # inferred type: ‘Any’

f1(od4) #
f2(o4) # all OK: rule #3
f3(od4) #

Every gradual type system needs a wildcard type like Any.

The verb “to infer” is a fancy synomym for “to guess,” used in the
context of type analysis. Modern type checkers in Python and other
languages don’t require type annotations everywhere because they
can infer the type of many expressions. For example, if I write x =
len(s) * 10, the type checker doesn’t need an explicit local decla-
ration to know that x is an int, as long as it can find type hints for
the len built-in.

Now we can explore the rest of the types used in annotations.

Simple Types and Classes

Simple types like int, float, str, and bytes may be used directly in type hints. Con-
crete classes from the standard library, external packages, or user defined—French
Deck, Vector2d, and Duck—may also be used in type hints.

Abstract base classes are also useful in type hints. We'll get back to them as we study
collection types, and in “Abstract Base Classes” on page 278.

Among classes, consistent-with is defined like subtype-of: a subclass is consistent-with
all its superclasses.

However, “practicality beats purity,” so there is an important exception, which I dis-
cuss in the following tip.

int Is Consistent-With complex

There is no nominal subtype relationship between the built-in
types int, float, and complex: they are direct subclasses of object.
But PEP 484 declares that int is consistent-with float, and float
is consistent-with complex. It makes sense in practice: int imple-
ments all operations that float does, and int implements addi-
tional ones as well—bitwise operations like &, |, <<, etc. The end
result is: int is consistent-with complex. For 1 = 3, i.realis 3, and
i.1imagis 0.

Types Usable in Annotations | 269

https://fpy.li/cardxvi

Optional and Union Types

We saw the Optional special type in “Using None as a Default” on page 260. It solves
the problem of having None as a default, as in this example from that section:

from import Optional

def show_count(count: int, singular: str, plural: Optional[str] = None) -> str:

The construct Optional[str] is actually a shortcut for Union[str, None], which
means the type of plural may be str or None.

Better Syntax for Optional and Union in Python 3.10

We can write str | bytes instead of Union[str, bytes] since
Python 3.10. It’s less typing, and there’s no need to import
Optional or Union from typing. Contrast the old and new syntax
for the type hint of the plural parameter of show_count:

plural: Optional[str] = None # before

plural: str | None = None # after

The | operator also works with isinstance and issubclass to
build the second argument: isinstance(x, int | str). For
more, see PEP 604—Complementary syntax for Union[].

The ord built-in function’s signature is a simple example of Union—it accepts str or
bytes, and returns an int:?

def ord(c: Union[str, bytes]) -> int: ...
Here is an example of a function that takes a str, but may return a str or a float:

from import Union

def parse_token(token: str) -> Union[str, float]:
try:
return float(token)
except ValueError:
return token

If possible, avoid creating functions that return Union types, as they put an extra bur-
den on the user—forcing them to check the type of the returned value at runtime to

know what to do with it. But the parse_token in the preceding code is a reasonable
use case in the context of a simple expression evaluator.

8 To be more precise, ord only accepts str or bytes with len(s) == 1. But the type system currently can’t
express this constraint.

270 | Chapter8: Type Hints in Functions

https://fpy.li/pep604

In “Dual-Mode str and bytes APIs” on page 155, we saw functions
that accept either str or bytes arguments, but return str if the
argument was str or bytes if the arguments was bytes. In those
cases, the return type is determined by the input type, so Union is
not an accurate solution. To properly annotate such functions, we
need a type variable—presented in “Parameterized Generics and
TypeVar” on page 282—or overloading, which we’ll see in “Overloa-
ded Signatures” on page 520.

Union[] requires at least two types. Nested Union types have the same effect as a flat-
tened Union. So this type hint:

Union[A, B, Union[C, D, E]]
is the same as:
Union[A, B, C, D, E]

Union is more useful with types that are not consistent among themselves. For exam-
ple: Union[int, float] is redundant because int is consistent-with float. If you just
use float to annotate the parameter, it will accept int values as well.

Generic Collections

Most Python collections are heterogeneous. For example, you can put any mixture of
different types in a list. However, in practice that’s not very useful: if you put
objects in a collection, you are likely to want to operate on them later, and usually
this means they must share at least one common method.’

Generic types can be declared with type parameters to specify the type of the items
they can handle.

For example, a list can be parameterized to constrain the type of the elements in it,
as you can see in Example 8-8.
Example 8-8. tokenize with type hints for Python = 3.9

def tokenize(text: str) -> list[str]:
return text.upper().split()

In Python > 3.9, it means that tokenize returns a list where every item is of type
str.

9 In ABC—the language that most influenced the initial design of Python—each list was constrained to accept
values of a single type: the type of the first item you put into it.

Types Usable in Annotations | 271

The annotations stuff: 1list and stuff: list[Any] mean the same thing: stuff is
a list of objects of any type.

If you are using Python 3.8 or earlier, the concept is the same, but
you need more code to make it work—as explained in the optional
box “Legacy Support and Deprecated Collection Types” on page 272.

PEP 585—Type Hinting Generics In Standard Collections lists collections from the
standard library accepting generic type hints. The following list shows only those col-
lections that use the simplest form of generic type hint, container[item]:

list collections.deque abc.Sequence abc.MutableSequence
set abc.Contatiner abc.Set abc.MutableSet
frozenset abc.Collection

The tuple and mapping types support more complex type hints, as we’ll see in their
respective sections.

As of Python 3.10, there is no good way to annotate array.array, taking into
account the typecode constructor argument, which determines whether integers or
floats are stored in the array. An even harder problem is how to type check integer
ranges to prevent OverflowError at runtime when adding elements to arrays. For
example, an array with typecode='B' can only hold int values from 0 to 255. Cur-
rently, Python’s static type system is not up to this challenge.

Legacy Support and Deprecated Collection Types
(You may skip this box if you only use Python 3.9 or later.)

For Python 3.7 and 3.8, you need a __future__ import to make the [] notation work
with built-in collections such as 1ist, as shown in Example 8-9.

Example 8-9. tokenize with type hints for Python = 3.7
from import annotations

def tokenize(text: str) -> list[str]:
return text.upper().split()

The __future__ import does not work with Python 3.6 or earlier. Example 8-10
shows how to annotate tokenize in a way that works with Python > 3.5.

Example 8-10. tokenize with type hints for Python = 3.5

from import List

272 | Chapter 8: Type Hints in Functions

https://fpy.li/8-16

def tokenize(text: str) -> List[str]:
return text.upper().split()

To provide the initial support for generic type hints, the authors of PEP 484 created
dozens of generic types in the typing module. Table 8-1 shows some of them. For the
full list, visit the typing documentation.

Table 8-1. Some collection types and their type hint equivalents

list typing.List

set typing.Set
frozenset typing.FrozenSet
collections.deque typing.Deque

collections.abc.MutableSequence typing.MutableSequence

collections.abc.Sequence typing.Sequence
collections.abc.Set typing.AbstractSet
collections.abc.MutableSet typing.MutableSet

PEP 585—Type Hinting Generics In Standard Collections started a multiyear process
to improve the usability of generic type hints. We can summarize that process in four
steps:

1. Introduce from __future__ import annotations in Python 3.7 to enable the
use of standard library classes as generics with 1ist[str] notation.

2. Make that behavior the default in Python 3.9: 1ist[str] now works without the
future import.

3. Deprecate all the redundant generic types from the typing module.”” Depreca-
tion warnings will not be issued by the Python interpreter because type checkers
should flag the deprecated types when the checked program targets Python 3.9 or
newer.

4. Remove those redundant generic types in the first version of Python released five
years after Python 3.9. At the current cadence, that could be Python 3.14, ak.a
Python Pi.

Now let’s see how to annotate generic tuples.

10 One of my contributions to the typing module documentation was to add dozens of deprecation warnings as
I reorganized the entries below “Module Contents” into subsections, under the supervision of Guido van
Rossum.

Types Usable in Annotations | 273

https://fpy.li/8-17
https://fpy.li/typing
https://fpy.li/pep585

Tuple Types

There are three ways to annotate tuple types:

« Tuples as records
« Tuples as records with named fields

+ Tuples as immutable sequences

Tuples as records

If you’re using a tuple as a record, use the tuple built-in and declare the types of the
fields within [].

For example, the type hint would be tuple[str, float, str] to accept a tuple with
city name, population, and country: ('Shanghai', 24.28, 'China').

Consider a function that takes a pair of geographic coordinates and returns a Geo-
hash, used like this:

>>> shanghatl = 31.2304, 121.4737
>>> geohash(shanghati)
'wtw3sjq6q’

Example 8-11 shows how geohash is defined, using the geolib package from PyPI.

Example 8-11. coordinates.py with the geohash function
from import geohash as gh # type: ignore (1)
PRECISION = 9

def geohash(lat_lon: tuple[float, float]) -> str: (2]
return gh.encode(*lat_lon, PRECISION)

© This comment stops Mypy from reporting that the geolib package doesn’t have
type hints.

® 1lat_lon parameter annotated as a tuple with two float fields.

For Python < 3.9, import and use typing.Tuple in type hints. It is
deprecated but will remain in the standard library at least until
2024.

274 | Chapter8: Type Hints in Functions

https://fpy.li/8-18
https://fpy.li/8-18

Tuples as records with named fields

To annotate a tuple with many fields, or specific types of tuple your code uses in
many places, I highly recommend using typing.NamedTuple, as seen in Chapter 5.
Example 8-12 shows a variation of Example 8-11 with NamedTuple.

Example 8-12. coordinates_named.py with the NamedTuple Coordinates and the geo
hash function

from import NamedTuple
from import geohash as gh # type: ignore
PRECISION = 9

class Coordinate(NamedTuple):
lat: float
lon: float

def geohash(lat_lon: Coordinate) -> str:
return gh.encode(*lat_lon, PRECISION)

As explained in “Overview of Data Class Builders” on page 164, typing.NamedTuple
is a factory for tuple subclasses, so Coordinate is comsistent-with tuple[float,
float] but the reverse is not true—after all, Coordinate has extra methods added by
NamedTuple, like . _asdict(), and could also have user-defined methods.

In practice, this means that it is type safe to pass a Coordinate instance to the dis
play function defined in the following:
def display(lat_lon: tuple[float, float]) -> str:
lat, lon = lat_lon
ns = 'N' if lat >= 0 else 'S'
ew = '"E' if lon >= 0 else 'W'
return f'{abs(lat):0.1f}°{ns}, {abs(lon):0.1f}°{ew}"'

Tuples as immutable sequences

To annotate tuples of unspecified length that are used as immutable lists, you must
specify a single type, followed by a comma and ... (that’s Python’s ellipsis token,
made of three periods, not Unicode U+2026—HORIZONTAL ELLIPSIS).

For example, tuple[int, ...]isa tuple with int items.

The ellipsis indicates that any number of elements >= 1 is acceptable. There is no way
to specify fields of different types for tuples of arbitrary length.

The annotations stuff: tuple[Any, ...] and stuff: tuple mean the same thing:
stuff is a tuple of unspecified length with objects of any type.

Types Usable in Annotations | 275

Here is a columnize function that transforms a sequence into a table of rows and cells
in the form of a list of tuples with unspecified lengths. This is useful to display items
in columns, like this:

>>> animals = 'drake fawn heron ibex koala lynx tahr xerus yak zapus'.split()
>>> table = columnize(animals)
>>> table

[('drake', 'koala', 'yak'), ('fawn', 'lynx', 'zapus'), ('heron', 'tahr'),
('ibex', 'xerus')]
>>> for row in table:
print('"'.join(f'{word:10}"' for word in row))

drake koala yak

fawn lynx zapus
heron tahr
ibex Xerus

Example 8-13 shows the implementation of columnize. Note the return type:

list[tuple[str, ...]]

Example 8-13. columnize.py returns a list of tuples of strings
from import Sequence

def columnize(
sequence: Sequence[str], num_columns: int = 0
) -> list[tuple[str, ...]]:
if num_columns ==
num_columns = round(len(sequence) ** 0.5)
num_rows, reminder = divmod(len(sequence), num_columns)
num_rows += bool(reminder)
return [tuple(sequence[i::num_rows]) for 1 in range(num_rows)]

Generic Mappings

Generic mapping types are annotated as MappingType[KeyType, ValueType]. The
built-in dict and the mapping types in collections and collections.abc accept
that notation in Python > 3.9. For earlier versions, you must use typing.Dict and
other mapping types from the typing module, as described in “Legacy Support and
Deprecated Collection Types” on page 272.

Example 8-14 shows a practical use of a function returning an inverted index to
search Unicode characters by name—a variation of Example 4-21 more suitable for
server-side code that we’ll study in Chapter 21.

Given starting and ending Unicode character codes, name_index returns a dict[str,
set[str]], which is an inverted index mapping each word to a set of characters that
have that word in their names. For example, after indexing ASCII characters from 32

276 | Chapter8: Type Hints in Functions

https://fpy.li/8-19

to 64, here are the sets of characters mapped to the words 'SIGN' and 'DIGIT', and
how to find the character named 'DIGIT EIGHT':

>>> index = name_index(32, 65)
>>> index['SICGN']
{18, ', e, e, e, %, #')
>>> index['DIGIT']
{'s', 's', 'e', '2', '3', 'e', '1', '4', '7', '9'}
>>> index['DIGIT'] & index['EIGHT']
{'8'}
Example 8-14 shows the source code for charindex.py with the name_index function.

Besides a dict[] type hint, this example has three features appearing for the first
time in the book.

Example 8-14. charindex.py

import sys

import re

import unicodedata

from collections.abc import Iterator

RE_WORD = re.compile(r'\w+")
STOP_CODE = sys.maxunicode + 1

def tokenize(text: str) -> Iterator[str]: (1]
"""return iterable of uppercased words
for match in RE_WORD.finditer(text):

yield match.group().upper()

mwun

def name_1index(start: int = 32, end: int = STOP_CODE) -> dict[str, set[str]]:
index: dict[str, set[str]] = {} (2]
for char in (chr(i) for 1 in range(start, end)):
if name := unicodedata.name(char, ''):
for word in tokenize(name):
index.setdefault(word, set()).add(char)
return index

© tokenize is a generator function. Chapter 17 is about generators.

©® The local variable index is annotated. Without the hint, Mypy says: Need type
annotation for 'index' (hint: "index: dict[<type>, <type>] = ...").

Types Usable in Annotations | 277

© [used the walrus operator := in the if condition. It assigns the result of the uni
codedata.name() call to name, and the whole expression evaluates to that result.
When the result is ' ', that’s falsy, and the index is not updated."

When using a dict as a record, it is common to have all keys of the
str type, with values of different types depending on the keys. That
is covered in “TypedDict” on page 526.

Abstract Base Classes

Be conservative in what you send, be liberal in what you accept.

—Postel’s law, a.k.a. the Robustness Principle

Table 8-1 lists several abstract classes from collections.abc. Ideally, a function
should accept arguments of those abstract types—or their typing equivalents before
Python 3.9—and not concrete types. This gives more flexibility to the caller.

Consider this function signature:

from import Mapping

def name2hex(name: str, color_map: Mapping[str, int]) -> str:

Using abc.Mapping allows the caller to provide an instance of dict, defaultdict,
ChainMap, a UserDict subclass, or any other type that is a subtype-of Mapping.

In contrast, consider this signature:
def name2hex(name: str, color_map: dict[str, int]) -> str:

Now color_map must be a dict or one of its subtypes, such as defaultDict or
OrderedDict. In particular, a subclass of collections.UserDict would not pass
the type check for color_map, despite being the recommended way to create
user-defined mappings, as we saw in “Subclassing UserDict Instead of dict” on page
97. Mypy would reject a UserDict or an instance of a class derived from it, because
UserDict is not a subclass of dict; they are siblings. Both are subclasses of
abc.MutableMapping.'?

11 I use := when it makes sense in a few examples, but I don’t cover it in the book. Please see PEP 572—Assign-
ment Expressions for all the gory details.

12 Actually, dict is a virtual subclass of abc.MutableMapping. The concept of a virtual subclass is explained in
Chapter 13. For now, know that issubclass(dict, abc.MutableMapping) is True, despite the fact that dict
is implemented in C and does not inherit anything from abc.MutableMapping, but only from object.

278 | Chapter8: Type Hints in Functions

https://fpy.li/pep572
https://fpy.li/pep572

Therefore, in general it’s better to use abc.Mapping or abc.MutableMapping in
parameter type hints, instead of dict (or typing.Dict in legacy code). If the
name2hex function doesn’t need to mutate the given color_map, the most accurate
type hint for color_map is abc.Mapping. That way, the caller doesn’t need to provide
an object that implements methods like setdefault, pop, and update, which are part
of the MutableMapping interface, but not of Mapping. This has to do with the second
part of Postel’s law: “Be liberal in what you accept.”

Postel’s law also tells us to be conservative in what we send. The return value of a
function is always a concrete object, so the return type hint should be a concrete type,
as in the example from “Generic Collections” on page 271—which uses list[str]:

def tokenize(text: str) -> list[str]:
return text.upper().split()

Under the entry of typing.List, the Python documentation says:

Generic version of list. Useful for annotating return types. To annotate arguments it
is preferred to use an abstract collection type such as Sequence or Iterable.

A similar comment appears in the entries for typing.Dict and typing.Set.

Remember that most ABCs from collections.abc and other concrete classes from
collections, as well as built-in collections, support generic type hint notation like
collections.deque[str] starting with Python 3.9. The corresponding typing col-
lections are only needed to support code written in Python 3.8 or earlier. The full list
of classes that became generic appears in the “Implementation” section of PEP 585—
Type Hinting Generics In Standard Collections.

To wrap up our discussion of ABCs in type hints, we need to talk about the numbers
ABCs.

The fall of the numeric tower
The numbers package defines the so-called numeric tower described in PEP 3141—A
Type Hierarchy for Numbers. The tower is linear hierarchy of ABCs, with Number at
the top:

e Number

e Complex

e Real

e Rational

e Integral

Types Usable in Annotations | 279

https://fpy.li/8-20
https://fpy.li/8-21
https://fpy.li/8-22
https://fpy.li/8-16
https://fpy.li/pep585
https://fpy.li/pep585
https://fpy.li/8-24
https://fpy.li/pep3141
https://fpy.li/pep3141

Those ABCs work perfectly well for runtime type checking, but they are not sup-
ported for static type checking. The “Numeric Tower” section of PEP 484 rejects the
numbers ABCs and dictates that the built-in types complex, float, and int should
be treated as special cases, as explained in “int Is Consistent-With complex” on page
269.

We'll come back to this issue in “The numbers ABCs and Numeric Protocols” on
page 478, in Chapter 13, which is devoted to contrasting protocols and ABCs.

In practice, if you want to annotate numeric arguments for static type checking, you
have a few options:
1. Use one of the concrete types int, float, or complex—as recommended by PEP
488.
2. Declare a union type like Union[float, Decimal, Fraction].
3. If you want to avoid hardcoding concrete types, use numeric protocols like Sup

portsFloat, covered in “Runtime Checkable Static Protocols” on page 468.

The upcoming section “Static Protocols” on page 286 is a prerequisite for understand-
ing the numeric protocols.

Meanwhile, let’s get to one of the most useful ABCs for type hints: Iterable.

Iterable

The typing.List documentation I just quoted recommends Sequence and Iterable
for function parameter type hints.

One example of the Iterable argument appears in the math. fsum function from the
standard library:

def fsum(__seq: Iterable[float]) -> float:

Stub Files and the Typeshed Project

As of Python 3.10, the standard library has no annotations, but
Mypy, PyCharm, etc. can find the necessary type hints in the
Typeshed project, in the form of stub files: special source files with
a .pyi extension that have annotated function and method signa-
tures, without the implementation—much like header files in C.

The signature for math. fsum is in /stdlib/2and3/math.pyi. The lead-
ing underscores in __seq are a PEP 484 convention for positional-
only parameters, explained in “Annotating Positional Only and
Variadic Parameters” on page 295.

280 | Chapter8: Type Hints in Functions

https://fpy.li/cardxvi
https://fpy.li/8-20
https://fpy.li/8-26
https://fpy.li/8-27

Example 8-15 is another example using an Iterable parameter that produces items
that are tuple[str, str]. Here is how the function is used:

>>> 133t = [('a', '4"), ('e', '3"), ('i', '1"), ('o', '0")]
>>> text 'mad skilled noob powned leet'

>>> from import zip_replace

>>> zip_replace(text, 133t)

'm4d sk1113d n@Ob pOwn3d 133t'

Example 8-15 shows how it’s implemented.

Example 8-15. replacer.py
from import Iterable
FromTo = tuple[str, str] (1)

def zip_replace(text: str, changes: Iterable[FromTo]) -> str: (2]
for from_, to in changes:
text = text.replace(from_, to)
return text

© FromTo is a type alias: I assigned tuple[str, str] to FromTo, to make the signa-
ture of zip_replace more readable.

® changes needs to be an Iterable[FromTo]; that’s the same as Itera
ble[tuple[str, str]], butshorter and easier to read.

Explicit TypeAlias in Python 3.10

PEP 613—Explicit Type Aliases introduced a special type, TypeA
lias, to make the assignments that create type aliases more visible
and easier to type check. Starting with Python 3.10, this is the pre-
ferred way to create type aliases:

from import TypeAlias

FromTo: TypeAlias = tuple[str, str]

abc.lterable versus abc.Sequence

Both math.fsum and replacer.zip_replace must iterate over the entire Iterable
arguments to return a result. Given an endless iterable such as the itertools.cycle
generator as input, these functions would consume all memory and crash the Python
process. Despite this potential danger, it is fairly common in modern Python to offer
functions that accept an Iterable input even if they must process it completely to
return a result. That gives the caller the option of providing input data as a generator

Types Usable in Annotations | 281

https://fpy.li/pep613

instead of a prebuilt sequence, potentially saving a lot of memory if the number of
input items is large.

On the other hand, the columnize function from Example 8-13 needs a Sequence
parameter, and not an Iterable, because it must get the len() of the input to com-
pute the number of rows up front.

Like Sequence, Iterable is best used as a parameter type. It’s too vague as a return
type. A function should be more precise about the concrete type it returns.

Closely related to Iterable is the Iterator type, used as a return type in
Example 8-14. We'll get back to it in Chapter 17, which is about generators and
classic iterators.

Parameterized Generics and TypeVar

A parameterized generic is a generic type, written as 1ist[T], where T is a type vari-
able that will be bound to a specific type with each usage. This allows a parameter
type to be reflected on the result type.

Example 8-16 defines sample, a function that takes two arguments: a Sequence of ele-
ments of type T, and an int. It returns a 1ist of elements of the same type T, picked
at random from the first argument.

Example 8-16 shows the implementation.

Example 8-16. sample.py

from import Sequence
from import shuffle
from import TypeVar

T = TypeVar('T")

def sample(population: Sequence[T], size: int) -> list[T]:
if size < 1:
raise ValueError('size must be >= 1')
result = list(population)
shuffle(result)
return result[:size]

Here are two examples of why I used a type variable in sample:

o If called with a tuple of type tuple[int, ...]—which is consistent-with
Sequence[int]—then the type parameter is int, so the return type is list[int].

282 | Chapter8: Type Hints in Functions

o If called with a str—which is consistent-with Sequence[str]—then the type
parameter is str, so the return type is list[str].

Why Is TypeVar Needed?

The authors of PEP 484 wanted to introduce type hints by adding
the typing module and not changing anything else in the language.
With clever metaprogramming they could make the [] operator
work on classes like Sequence[T]. But the name of the T variable
inside the brackets must be defined somewhere—otherwise the
Python interpreter would need deep changes to support generic
type notation as special use of []. That’s why the typing.TypeVar
constructor is needed: to introduce the variable name in the cur-
rent namespace. Languages such as Java, C#, and TypeScript don’t
require the name of type variable to be declared beforehand, so
they have no equivalent of Python’s TypeVar class.

Another example is the statistics.mode function from the standard library, which
returns the most common data point from a series.

Here is one usage example from the documentation:

>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
3

Without using a TypeVar, mode could have the signature shown in Example 8-17.

Example 8-17. mode_float.py: mode that operates on float and subtypes"

from import Counter
from import Iterable

def mode(data: Iterable[float]) -> float:
pairs = Counter(data).most_common(1)
if len(pairs) == 0:
raise ValueError('no mode for empty data')
return pairs[0][0]

Many uses of mode involve int or float values, but Python has other numerical
types, and it is desirable that the return type follows the element type of the given
Iterable. We can improve that signature using TypeVar. Let’s start with a simple,
but wrong, parameterized signature:

13 The implementation here is simpler than the one in the Python standard library statistics module.

Types Usable in Annotations | 283

https://fpy.li/8-29
https://fpy.li/8-28

from import Iterable
from import TypeVar

T = TypeVar('T")

def mode(data: Iterable[T]) -> T:

When it first appears in the signature, the type parameter T can be any type. The sec-
ond time it appears, it will mean the same type as the first.

Therefore, every iterable is consistent-with Iterable[T], including iterables of
unhashable types that collections.Counter cannot handle. We need to restrict the
possible types assigned to T. We'll see two ways of doing that in the next two sections.

Restricted TypeVar

TypeVar accepts extra positional arguments to restrict the type parameter. We can
improve the signature of mode to accept specific number types, like this:

from import Iterable
from import Decimal

from import Fraction

from import TypeVar

NumberT = TypeVar('NumberT', float, Decimal, Fraction)

def mode(data: Iterable[NumberT]) -> NumberT:

That’s better than before, and it was the signature for mode in the statistics.pyi stub file
on typeshed on May 25, 2020.

However, the statistics.mode documentation includes this example:

>>> mode(["red", "blue", "blue",
'red’

red", "green", "red", "red"])

In a hurry, we could just add str to the NumberT definition:
NumberT = TypeVar('NumberT', float, Decimal, Fraction, str)

That certainly works, but NumberT is badly misnamed if it accepts str. More impor-
tantly, we can’t keep listing types forever, as we realize mode can deal with them. We
can do better with another feature of TypeVar, introduced next.

Bounded TypeVar

Looking at the body of mode in Example 8-17, we see that the Counter class is used for
ranking. Counter is based on dict, therefore the element type of the data iterable
must be hashable.

At first, this signature may seem to work:

284 | Chapter8: Type Hints in Functions

https://fpy.li/8-30
https://fpy.li/8-28

from import Iterable, Hashable

def mode(data: Iterable[Hashable]) -> Hashable:

Now the problem is that the type of the returned item is Hashable: an ABC that
implements only the __hash__ method. So the type checker will not let us do any-
thing with the return value except call hash() on it. Not very useful.

The solution is another optional parameter of TypeVar: the bound keyword parame-
ter. It sets an upper boundary for the acceptable types. In Example 8-18, we have

bound=Hashable, which means the type parameter may be Hashable or any subtype-
of it."

Example 8-18. mode_hashable.py: same as Example 8-17, with a more flexible
signature

from import Counter
from import Iterable, Hashable
from import TypeVar

HashableT = TypeVar('HashableT', bound=Hashable)

def mode(data: Iterable[HashableT]) -> HashableT:
pairs = Counter(data).most_common(1)
if len(pairs) == 0:
raise ValueError('no mode for empty data')
return pairs[0][0]

To summarize:

o A restricted type variable will be set to one of the types named in the TypeVar
declaration.

+ A bounded type variable will be set to the inferred type of the expression—as
long as the inferred type is consistent-with the boundary declared in the bound=
keyword argument of TypeVar.

It is unfortunate that the keyword argument to declare a bounded
TypeVar is named bound=, because the verb “to bind” is commonly
used to mean setting the value of a variable, which in the reference
semantics of Python is best described as binding a name to the
value. It would have been less confusing if the keyword argument
was named boundary=.

14 I contributed this solution to typeshed, and that’s how mode is annotated on statistics.pyi as of May 26, 2020.

Types Usable in Annotations | 285

https://fpy.li/8-32

The typing.TypeVar constructor has other optional parameters—covariant and con
travariant—that we’ll cover in Chapter 15, “Variance” on page 544.

Let’s conclude this introduction to TypeVar with AnyStr.

The AnyStr predefined type variable

The typing module includes a predefined TypeVar named AnyStr. It’s defined like
this:

AnyStr = TypeVar('AnyStr', bytes, str)

AnyStr is used in many functions that accept either bytes or str, and return values
of the given type.

Now, on to typing.Protocol, a new feature of Python 3.8 that can support more
Pythonic use of type hints.

Static Protocols

In object-oriented programming, the concept of a “protocol” as an
informal interface is as old as Smalltalk, and is an essential part of
Python from the beginning. However, in the context of type hints,
a protocol is a typing.Protocol subclass defining an interface that
a type checker can verify. Both kinds of protocols are covered in
Chapter 13. This is just a brief introduction in the context of func-
tion annotations.

The Protocol type, as presented in PEP 544—Protocols: Structural subtyping (static
duck typing), is similar to interfaces in Go: a protocol type is defined by specifying
one or more methods, and the type checker verifies that those methods are imple-
mented where that protocol type is required.

In Python, a protocol definition is written as a typing.Protocol subclass. However,
classes that implement a protocol don’t need to inherit, register, or declare any rela-
tionship with the class that defines the protocol. It’s up to the type checker to find the
available protocol types and enforce their usage.

Here is a problem that can be solved with the help of Protocol and TypeVar. Suppose
you want to create a function top(it, n) that returns the largest n elements of the
iterable it:

>>> top([4, 1, 5, 2, 6, 7, 3], 3)

[7, 6, 5]

>>> 1 = 'mango pear apple kiwil banana'.split()
>>> top(l, 3)

['pear', 'mango', 'kiwi']

286 | Chapter8: Type Hints in Functions

https://fpy.li/pep544
https://fpy.li/pep544

>>>

>>> 12 = [(len(s), s) for s in 1]
>>> 12

[(5, 'mango'), (4, 'pear'), (5, 'apple'), (4, 'kiwi'), (6, 'banana')]
>>> top(l2, 3)
[(6, 'banana'), (5, 'mango'), (5, 'apple')]

A parameterized generic top would look like what’s shown in Example 8-19.

Example 8-19. top function with an undefined T type parameter

def top(series: Iterable[T], length: int) -> list[T]:
ordered = sorted(series, reverse=True)
return ordered[:length]

The problem is how to constrain T? It cannot be Any or object, because the series
must work with sorted. The sorted built-in actually accepts Iterable[Any], but
that’s because the optional parameter key takes a function that computes an arbitrary
sort key from each element. What happens if you give sorted a list of plain objects
but don’t provide a key argument? Let’s try that:
>>> 1 = [object() for
>s> 1

[<object object at 0x10fc2fcad>, <object object at 0x10fc2fbbo>,
<object object at 0x10fc2fbcO>, <object object at 0x10fc2fbdo>]
>>> sorted(l)

in range(4)]

File "<stdin>", 1line 1, in <module>

TypeError: '<' not supported between instances of 'object' and 'object'

The error message shows that sorted uses the < operator on the elements of the itera-
ble. Is this all it takes? Let’s do another quick experiment:'

>>> class Spam:
def __init__(self, n): self.n =n
def __1t_ (self, other): return self.n < other.n
def __repr__(self): return f'Spam({self.n})'

>>> 1 = [Spam(n) for n in range(5, 0, -1)]
>>> 1

[Spam(5), Spam(4), Spam(3), Spam(2), Spam(1)]
>>> sorted(l)

[Spam(1), Spam(2), Spam(3), Spam(4), Spam(5)]

That confirms it: I can sort a list of Spam because Spam implements __1t__—the spe-
cial method that supports the < operator.

15 How wonderful it is to open an interactive console and rely on duck typing to explore language features like I
just did. I badly miss this kind of exploration when I use languages that don’t support it.

Types Usable in Annotations | 287

So the T type parameter in Example 8-19 should be limited to types that implement
__lt__. In Example 8-18 we needed a type parameter that implemented __hash__, so
we were able to use typing.Hashable as the upper bound for the type parameter. But
now there is no suitable type in typing or abc to use, so we need to create it.

Example 8-20 shows the new SupportsLessThan type, a Protocol.

Example 8-20. comparable.py: definition of a SupportsLessThan Protocol type
from import Protocol, Any

class SupportsLessThan(Protocol): (1]
def __1t_ (self, other: Any) -> bool: ... @

© A protocol is a subclass of typing.Protocol.

® The body of the protocol has one or more method definitions, with .. . in their
bodies.

A type T is consistent-with a protocol P if T implements all the methods defined in P,
with matching type signatures.

Given SupportsLessThan, we can now define this working version of top in
Example 8-21.

Example 8-21. top.py: definition of the top function using a TypeVar with bound=Sup
portslLessThan

from import Iterable
from import TypeVar
from import SupportsLessThan

LT = TypeVar('LT', bound=SupportsLessThan)

def top(series: Iterable[LT], length: int) -> list[LT]:
ordered = sorted(series, reverse=True)
return ordered[:length]

Let’s test-drive top. Example 8-22 shows part of a test suite for use with pytest. It
tries calling top first with a generator expression that yields tuple[int, str], and
then with a list of object. With the list of object, we expect to get a TypeError
exception.

288 | Chapter8: Type Hints in Functions

Example 8-22. top_test.py: partial listing of the test suite for top

from collections.abc import Iterator
from typing import TYPE_CHECKING (1)

import pytest
from top import top
several lines omitted

def test_top_tuples() -> None:
fruit = 'mango pear apple kiwi banana'.split()
series: Iterator[tuple[int, str]] = (
(len(s), s) for s in fruit)
length = 3
expected = [(6, 'banana'), (5, 'mango'), (5, 'apple')]
result = top(series, length)
if TYPE_CHECKING:
reveal_type(series) (4]
reveal_type(expected)
reveal_type(result)
assert result == expected

intentional type error
def test_top_objects_error() -> None:
series = [object() for _ in range(4)]
if TYPE_CHECKING:
reveal_type(series)
with pytest.raises(TypeError) as excinfo:
top(series, 3)

assert "'<' not supported" in str(excinfo.value)

© The typing. TYPE_CHECKING constant is always False at runtime, but type check-
ers pretend it is True when they are type checking.

® Explicit type declaration for the series variable, to make the Mypy output easier
to read.'®

This 1f prevents the next three lines from executing when the test runs.

reveal_type() cannot be called at runtime, because it is not a regular function
but a Mypy debugging facility—that’s why there is no import for it. Mypy will

16 Without this type hint, Mypy would infer the type of series as Generator[Tuple[builtins.int, buil
tins.str*], None, Nonel, which is verbose but consistent-with Iterator[tuple[int, str]], as we'll see in
“Generic Iterable Types” on page 639.

Types Usable in Annotations | 289

output one debugging message for each reveal_type() pseudofunction call,
showing the inferred type of the argument.

© This line will be flagged as an error by Mypy.

The preceding tests pass—but they would pass anyway, with or without type hints in
top.py. More to the point, if I check that test file with Mypy, I see that the TypeVar is
working as intended. See the mypy command output in Example 8-23.

As of Mypy 0.910 (July 2021), the output of reveal_type does not
show precisely the types I declared in some cases, but compatible
types instead. For example, I did not use typing.Iterator but

\ used abc.Iterator. Please ignore this detail. The Mypy output is
still useful. I will pretend this issue of Mypy is fixed when discus-
sing the output.

Example 8-23. Output of mypy top_test.py (lines split for readability)

..Jcomparable/ $ mypy top_test.py
top_test.py:32: note:

Revealed type is "typing.Iterator[Tuple[builtins.int, builtins.str]]" (1)
top_test.py:33: note:

Revealed type is "builtins.list[Tuple[builtins.int, builtins.str]]"
top_test.py:34: note:

Revealed type is "builtins.list[Tuple[builtins.int, builtins.str]]" (2]
top_test.py:41: note:

Revealed type is "builtins.list[builtins.object*]" (3]
top_test.py:43: error:

Value of type variable "LT" of "top" cannot be "object" (4]
Found 1 error in 1 file (checked 1 source file)

©® Intest_top_tuples, reveal_type(series) shows itisan Iterator[tuple[int,
str]]—which I explicitly declared.

® reveal_type(result) confirms that the type returned by the top call is what I
wanted: given the type of series, the resultis list[tuple[int, str]].

©® In test_top_objects_error, reveal_type(series) shows it is list[object*].
Mypy puts a * after any type that was inferred: I did not annotate the type of
series in this test.

O Mypy flags the error that this test intentionally triggers: the element type of the
Iterable series cannot be object (it must be of type SupportsLessThan).

A key advantage of a protocol type over ABCs is that a type doesn’t need any special
declaration to be consistent-with a protocol type. This allows a protocol to be created

290 | Chapter8: Type Hints in Functions

leveraging preexisting types, or types implemented in code that we do not control. I
don’t need to derive or register str, tuple, float, set, etc. with SupportsLessThan to
use them where a SupportsLessThan parameter is expected. They only need to
implement __1t__. And the type checker will still be able do its job, becaus